- 1 Let $f(z) = (-1 i\sqrt{3}) z + 3 2i$. Describe f as a rotation followed by a dilation followed by a translation. Hence draw the image under f of the unit circle |z| = 1 and of the line x = y.
- 2 Show that the function f(z) = az + b (with $a \neq 0$) may be described as a translation followed by a rotation followed by a dilation. Describe $f(z) = \sqrt{2}(1-i)z + 2 4i$ in this way.
- 3 In what subset of the complex plane is $4z^3 3iz^2 + 4 3i$ conformal?
- 4 In what subset of the complex plane is $2z^3 3(1+i)z^2 + 6iz$ conformal?
- 5 In what subset of the complex plane is $\sinh z$ conformal? For every point z_0 at which the function is not conformal, give an example of two paths (lines) through z_0 such that the angle (or the orientation of the angle) between them is not preserved by f(z) at z_0 .
- 6 At which points in C are the following maps conformal?
 (a) f(z) = z³ + 2i
 (b) f(x + iy) = x 3yi
 In both cases, for every point z₀ at which the function is not conformal, give an example of two paths (lines) through z₀ such that the angle (or the orientation of the angle) between them is not preserved by f(z) at z₀.
- 7 Let $f(z) = z^2 + 2z$. Show that f is conformal at z = i and describe the effect of f'(z) on the tangent vectors of curves passing through this point.
- 8 Let $f(z) = 2z^3 + 3z^2$. Show that f is conformal at z = i and describe the effect of f'(z) on the tangent vectors of curves passing through this point.
- 9 Is the following true or false? If f, g are conformal at a point z_0 then f + g is conformal at z_0 . Give a proof or a counter-example.
- 10 Let $f(z) = \overline{g(z)}$ with g(z) holomorphic (such functions f we call **anti-holomorphic**). Describe geometrically what happens to tangent vectors of paths passing through a point under the map f. Conclude that f is angle-preserving, but reverses the orientation.
- 11 Let $f : \mathcal{D} \to \mathcal{D}'$ be a biholomorphic map between two domains \mathcal{D} and \mathcal{D}' . By considering the equation $f(f^{-1}(w)) = w$ (for $w \in \mathcal{D}'$), show that f is conformal.
- 12 Let $\Omega := \{z \in \mathbb{C} : \operatorname{Re}(z) > \sqrt{3} |\operatorname{Im}(z)|\}$. Sketch the domain Ω and find its image $f(\Omega)$ under the map $f(z) = z^6$. Hence show that f is a biholomorphic map from Ω onto its image, and give the inverse function.