- Q.1 Let $f(z) = (-1 i\sqrt{3}) z + 3 2i$. Describe f as a rotation followed by a dilation followed by a translation. Hence draw the image under f of the unit circle |z| = 1 and of the line x = y.
- S.1 Here, $f(z) = 2e^{-\frac{i2\pi}{3}}z + 3 2i$. Thus f represents a <u>clockwise</u> rotation about the origin through angle $\frac{2\pi}{3}$, followed by dilation with factor 2, followed by translation through 3 2i.

So, f takes the unit circle to the circle of radius 2 centred at 3-2i. We have $-2\pi/3 + \pi/4 = -5\pi/12$, so f takes the line x = y to the line (with negative slope) meeting the real axis at angle $-5\pi/12$ passing through the point 3-2i.

- Q.2 Show that the function f(z) = az + b (with $a \neq 0$) may be described as a translation followed by a rotation followed by a dilation. Describe $f(z) = \sqrt{2}(1-i)z + 2 4i$ in this way.
- S.2 We have az + b = a(z + (b/a)), so f(z) = az + b can indeed be described as a translation through b/a, followed by a rotation about the origin by angle Arg(a), followed by a dilation with factor |a|.

For $f(z) = \sqrt{2} (1 - i) z + 2 - 4i$ we have

$$f(z) = \sqrt{2} (1-i) z + 2 - 4i$$

= $\sqrt{2}(1-i) \left(z + \frac{2-4i}{\sqrt{2}(1-i)} \right) = 2e^{-\frac{i\pi}{4}} \left(z + \frac{3-i}{\sqrt{2}} \right).$

So f is translation through $\frac{3-i}{\sqrt{2}}$, followed by rotation about the origin through an angle $-\frac{\pi}{4}$ anticlockwise followed by dilation with factor 2.

- Q.3 In what subset of the complex plane is $4z^3 3iz^2 + 4 3i$ conformal?
- S.3 Let $f(z) = 4z^3 3iz^2 + 4 3i$; then $f'(z) = 12z^2 6iz = 6z(2z i)$. Thus for $z \neq 0, i/2$ we have $f'(z) \neq 0$ and so f is conformal in $\mathbb{C} \setminus \{0, i/2\}$, but is not conformal at 0 or i/2.
- Q.4 In what subset of the complex plane is $2z^3 3(1+i)z^2 + 6iz$ conformal?
- S.4 Let $f(z) = 2z^3 3(1+i)z^2 + 6iz$; then

$$f'(z) = 6z^2 - 6(1+i)z + 6i$$

= 6(z² - (1+i)z + i)
= 6(z - 1)(z - i).

Thus for $z \neq 1, i$, we see that $f'(z) \neq 0$. Hence f is conformal in $\mathbb{C} \setminus \{1, i\}$, but not for $z \in \{1, i\}$ because f'(z) = 0 there.

- Q.5 In what subset of the complex plane is $\sinh z$ conformal? For every point z_0 at which the function is not conformal, give an example of two paths (lines) through z_0 such that the angle (or the orientation of the angle) between them is not preserved by f(z) at z_0 .
- S.5 Let $f(z) = \sinh z$, so that $f'(z) = \cosh z$. Certainly f(z) is holomorphic on \mathbb{C} and

$$f'(z) = 0$$

$$\iff e^{z} + e^{-z} = 0$$

$$\iff e^{2z} = -1$$

$$\iff e^{2z} = e^{i\pi}$$

$$\iff 2z - i\pi = i2k\pi$$

$$\iff z = i\left(\frac{\pi}{2} + k\pi\right)$$

where $k \in \mathbb{Z}$. Let

$$S = \left\{ i\left(\frac{\pi}{2} + k\pi\right) : k \in \mathbb{Z} \right\}$$

Thus f(z) is conformal on $\mathbb{C} \setminus S$, but not on S.

Now take $z_0 = i(\frac{\pi}{2} + k\pi) \in S$. Using that $\sinh(z + w) = \sinh z \cosh w + \cosh z \sinh w$ and $\sinh(z_0) = i \sin(z_0/i) = i(-1)^k$, we get $\sinh(z_0 + w) = i(-1)^k \cosh w$. Consider the two lines

$$\gamma_1(t) = z_0 + t, \quad \gamma_2(t) = z_0 + it$$

for $t \in \mathbb{R}$, then these curves meet at z_0 at an angle $\pi/2$. However, the curves

$$(f \circ \gamma_1)(t) = i(-1)^k \cosh t, \quad (f \circ \gamma_2)(t) = i(-1)^k \cos t$$

meet at $f(z_0)$ at an angle π . So the angle is not preserved at z_0 .

- Q.6 At which points in \mathbb{C} are the following maps conformal? (a) $f(z) = z^3 + 2i$ (b) f(x + iy) = x - 3yiIn both cases, for every point z_0 at which the function is not conformal, give an example of two paths (lines) through z_0 such that the angle (or the orientation of the angle) between them is not preserved by f(z) at z_0 .
- S.6 (a) $f(z) = z^3 + 2i$ is holomorphic, but $f'(z) = 3z^2 \neq 0$ only when $z \neq 0$. So f is conformal on $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$.

Any choices of two distinct lines passing through z = 0 works. For example, the paths $\gamma_1(t) = (t - \frac{1}{2})e^{i\theta_1}$, $\gamma_2(t) = (t - \frac{1}{2})e^{i\theta_2}$, $t \in [0, 1]$, $\theta_1 > \theta_2$ intersect at the origin at angle $\theta_1 - \theta_2$. However, $(f \circ \gamma_j)(t) = (t - \frac{1}{2})^3 e^{i3\theta_j} + 2i$ for j = 1, 2. The angle between the images of these paths under f is therefore $3\theta_1 - 3\theta_2$ (up to a multiple of 2π) [since $(f \circ \gamma_j)'(t) = 3(t - \frac{1}{2})^2 e^{i3\theta_j}$], and so angle is not preserved.

(b) Let f(x + iy) = x - 3yi. We have $u_x = 1, v_y = -3, v_x = 0, u_y = 0$ so the first C-R equation is never satisfied. Therefore f is conformal nowhere.

For the second part of the question, we must check every point in the complex plane. Let $z_0 = x_0 + iy_0$ be a complex number. Many choices of lines through z_0 work, but let's choose the simplest. Let $\gamma_1(t) = z_0 + t$ and let $\gamma_2(t) = z_0 + it$. The angle between γ_1 and γ_2 at z_0 is clearly $\pi/2$ <u>anticlockwise</u> (since $\gamma'_1(t) = 1$ and $\gamma'_2(t) = i$).

But, $(f \circ \gamma_1)(t) = (x_0+t) - 3iy_0$, so $(f \circ \gamma_1)'(t) = 1$, while $(f \circ \gamma_2)(t) = x_0 - 3i(y_0+t)$, so $(f \circ \gamma_2)'(t) = -3i$. The angle between $(f \circ \gamma_1)$ and $(f \circ \gamma_2)$ at z_0 is therefore $\pi/2$ clockwise. Hence orientation is not preserved.

- Q.7 Let $f(z) = z^2 + 2z$. Show that f is conformal at z = i and describe the effect of f'(z) on the tangent vectors of curves passing through this point.
- S.7 First note

$$f'(z) = 2z + 2$$
$$f'(i) = 2 + 2i \neq 0$$

so that f(z) is conformal at z = i. Now, we have $\operatorname{Arg}(f'(i)) = \frac{\pi}{4}$, so the tangent vectors at z = i are rotated by $\frac{\pi}{4}$ anticlockwise. The dilation factor is

$$|f'(i)| = \sqrt{4+4} = 2\sqrt{2}.$$

Q.8 Let $f(z) = 2z^3 + 3z^2$. Show that f is conformal at z = i and describe the effect of f'(z) on the tangent vectors of curves passing through this point.

S.8 First note

$$f'(z) = 6z^2 + 6z$$
$$f'(i) = -6 + 6i \neq 0$$

so that f(z) is conformal at z = i. We have $\operatorname{Arg}(f'(i)) = \frac{3\pi}{4}$, so the tangent vectors at z = i are rotated by $\frac{3\pi}{4}$ anticlockwise. The dilation factor is

$$\left|f'(i)\right| = \sqrt{6^2 + 6^2} = 6\sqrt{2}.$$

- Q.9 Is the following true or false? If f, g are conformal at a point z_0 then f + g is conformal at z_0 . Give a proof or a counter-example.
- S.9 False. For example, let $f(z) = z + z^2$, g(z) = -z and $z_0 = 0$. Then f'(0) = 1, g'(0) = -1 so both f and g are conformal at z = 0. But $f(z) + g(z) = z^2$, which is not conformal at z = 0 because its derivative is 0 there.
- Q.10 Let f(z) = g(z) with g(z) holomorphic (such functions f we call **anti-holomorphic**). Describe geometrically what happens to tangent vectors of paths passing through a point under the map f. Conclude that f is angle-preserving, but reverses the orientation.
- S.10 Let $\gamma(t)$ be a path in \mathbb{C} . Then

$$\frac{\partial}{\partial t}f(\gamma(t)) = \frac{\partial}{\partial t}\overline{g(\gamma(t))} \stackrel{(*)}{=} \frac{\partial}{\partial t}g(\gamma(t)) = \overline{g'(\gamma(t)) \cdot \gamma'(t)}.$$

To see that the equality (*) holds in the above, either observe that conjugation is preserved by linear maps, or explicitly notice:

$$\left[\overline{(g\circ\gamma)(t)}\right]' = \left[u(\gamma(t)) - iv(\gamma(t))\right]' = \left[u(\gamma(t))\right]' - i\left[v(\gamma(t))\right]' = \overline{\left[u(\gamma(t))\right]'} + i\left[v(\gamma(t))\right]' = \overline{(g\circ\gamma)'(t)},$$

where g = u + iv.

Hence tangent vectors get rotated then dilated by the holomorphic derivative g'(z) of g as usual, but then they are conjugated (so reflected in the real axis). In the last step the angle is preserved, but orientation is reversed.

- Q.11 Let $f : \mathcal{D} \to \mathcal{D}'$ be a biholomorphic map between two domains \mathcal{D} and \mathcal{D}' . By considering the equation $f(f^{-1}(w)) = w$ (for $w \in \mathcal{D}'$), show that f is conformal.
- S.11 Since f is holomorphic with holomorphic inverse, we have that $f \circ f^{-1} : \mathcal{D}' \to \mathcal{D}'$ is trivially holomorphic. Taking the derivative of both sides of the equation $f(f^{-1}(w)) = w$, with respect to w, it follows from the chain rule that $f'(f^{-1}(w)) \cdot (f^{-1})'(w) = 1$. Since f^{-1} is onto this means $f'(z) \neq 0$ for all $z \in \mathcal{D}$. Hence f is conformal on \mathcal{D} .
- Q.12 Let $\Omega := \{z \in \mathbb{C} : Re(z) > \sqrt{3} | Im(z)| \}$. Sketch the domain Ω and find its image $f(\Omega)$ under the map $f(z) = z^6$. Hence show that f is a biholomorphic map from Ω onto its image, and give the inverse function.
- S.12 The function is holomorphic on \mathbb{C} . It is easy to see that $\Omega = \{z \in \mathbb{C} : -\pi/6 < \operatorname{Arg}(z) < \pi/6\}$ (sketch of this sector is omitted). If $z = |z|e^{i\operatorname{Arg}(z)} \in \Omega$ then $f(z) = |z|^6 e^{i6\operatorname{Arg}(z)}$. Since $\operatorname{Arg}(z) \in (-\pi/6, \pi/6)$ we have $6\operatorname{Arg}(z) \in (-\pi, \pi)$. Thus, the image of Ω under f is $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$. By considering the modulus-argument form of any point in the image, it is clear that this map is injective and surjective. We know that the inverse map $z^{1/6} = \exp(\frac{1}{6}\operatorname{Log}(z))$ is holomorphic on $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$. Thus

$$z^6:\Omega\xrightarrow{\sim}\mathbb{C}\setminus\mathbb{R}_{<0}.$$