1 (i) To any matrix $T = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{C})$ we associate the Möbius transformation $M_T(z) = \frac{az+b}{cz+d}$. Given two Möbius transformations $M_T(z) = \frac{az+b}{cz+d}$ and $M_S(z) = \frac{pz+q}{rz+s}$ determine $M_T \circ M_S$ by a direct calculation and conclude

$$M_T \circ M_S = M_{TS}.$$

(ii) Show that

 $M_T = \text{Id} \quad \iff \quad T = t \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{(for some } t \in \mathbb{C}^*\text{)}.$

Conclude that under composition a Möbius transformation M_T has inverse $(M_T)^{-1} = M_{T^{-1}}$.

- 2 Find the image of the unit circle and the unit disc under the Möbius transformation $f(z) = w = \frac{z+i}{z-i}$.
- 3 Find the image of the unit circle and the unit disc under the Möbius transformation $f(z) = w = \frac{(1+i)z+i-1}{iz+1}$.
- 4 Find the image of the unit circle and the unit disc under the transformation $f(z) = w = \frac{(1+i)z-1-i}{z+1}$.
- 5 Is there a Möbius transformation which maps the sides of the triangle with vertices at -1, *i* and 1 to the sides of an equilateral triangle (all sides of equal length)? Either give an example of such a Möbius transformation, or explain why it is not possible.
- 6 Show that the Cayley Map $M_C = w = \frac{z-i}{z+i}$ takes the point $\frac{1}{2}(1+i)$ to the point $-\frac{1}{5}(1+2i)$. Hence, or otherwise, sketch the image of the triangle with vertices at 0, 1 and *i* under M_C .
- 7 Find the fixed points of the inverse Cayley Map $M_{C^{-1}}$ [that is, the Möbius transformation associated with the matrix $C^{-1} = \begin{pmatrix} i & i \\ -1 & 1 \end{pmatrix}$].
- 8 If α and β are the two fixed points of a Möbius transformation f(z), show that for all $z \neq \alpha, \beta$ and $f(z) \neq \infty$, we have

$$\frac{f(z) - \alpha}{f(z) - \beta} = K \frac{z - \alpha}{z - \beta},$$

where K is a constant.

- 9 Find the Möbius transformation taking the ordered set of points $\{-i, -1, i\}$ to the ordered set of points $\{-i, 0, i\}$. What is the image of the unit disc under this map? Which point is sent to ∞ ?
- 10 Find the Möbius transformation taking the ordered set of points $\{-1, 1, -i\}$ to the ordered set of points $\{1, -1, 0\}$. What is the image of the unit disc under this Möbius transformation?
- 11 Find the Möbius transformation taking the ordered set of points $\{-1+i, 0, 1-i\}$ to the ordered set of points $\{-1, -i, 1\}$. What is the image of the region $\mathcal{R} = \{x + iy : x + y > 0\}$ under this Möbius transformation? What happens to ∞ under this Möbius transformation?
- 12 Find the Möbius transformation taking the ordered set of points $\{0, 1+i, -1-i\}$ to the ordered set of points $\{1, -i, i\}$. What is the image of the region $\mathcal{R} = \{x + iy : x y \ge 0\}$ under this Möbius transformation?
- 13 Let z_0 be an arbitrary complex number with $|z_0| < 1$. Show that the Möbius transformation

$$f(z) = \frac{z - z_0}{\overline{z_0} \, z - 1}$$

maps the unit disc to the unit disc, and maps z_0 to 0, and 0 to z_0 . Compute $f \circ f$. What do you observe? What happens if $|z_0| = 1$? What happens if $|z_0| > 1$?