
Complex Analysis II, Michaelmas 2024. Assignment 8: Uniform Convergence & Power Series page 1

Q.1 For every n ∈ N, let fn(x) = 1
xn for x ∈ [1,∞). Show that {fn}n∈N converges pointwise on [1,∞), and

determine whether convergence is uniform on [1,∞). For a fixed R > 1, determine whether convergence is
uniform on [R,∞).

S.1 Let

f(x) =

{
1 if x = 1

0 if x > 1

Clearly fn → f pointwise on [1,∞), because fn(1) = 1 for all n, and if x > 1 then 1
xn → 0.

[In full epsilonic detail, for every ϵ ∈ (0, 1) and x > 1 we may pick any N > | ln(ϵ)|/ ln(x), because then,
for n > N , we have |fn(x)− f(x)| = 1/xn < 1/xN < ϵ. ]

Method 1 (using a big theorem): Each fn is continuous on [1,∞) and f is not, so by the Uniform Limit
Theorem the convergence cannot be uniform on [1,∞).

Method 2 (by lesser means): Pick any real number c > 0 and consider the sequence xn = (1 + c)1/n

in [1,∞). We have |fn(xn) − f(xn)| = |1/(1 + c) − 0| = 1/(1 + c), so by the test for non-uniform
convergence convergence is not uniform.

For [R,∞), note that for any x ∈ [R,∞) we have

|fn(x)− f(x)| = 1

xn
≤ 1

Rn
→ 0 as n → ∞.

So, according to a lemma from class the convergence is uniform in [R,∞).

[If you wish you can prove all of the above directly from the definitions without appealing to any of the
Theorems/Lemmas.]

Q.2 For every n ∈ N, let fn(x) = arctan(nx) for x ∈ R. Show that {fn}n∈N converges pointwise on R to

f(x) =


π/2, if x > 0.

0, if x = 0.

−π/2, if x < 0.

Is the convergence uniform?

S.2 In full epsilonic detail: Let ϵ > 0 and pick x ∈ R. If x = 0 we have fn(x) = arctan(0) = 0, and so
convergence to 0 is trivial. If x > 1, then pick any N > tan(π/2− ϵ)/x. Then for n > N we have

|fn(x)− f(x)| = π/2− arctan(nx) < π/2− arctan(x tan(π/2− ϵ)/x) = π/2− (π/2− ϵ) = ϵ,

since arctan is an increasing function. Similarly, if x < 0 pick any N > tan(ϵ−π/2)/x (which is positive).
Then for n > N we have

|fn(x)− f(x)| = arctan(nx) + π/2 < arctan(x tan(ϵ− π/2)/x) + π/2 = (ϵ− π/2) + π/2 = ϵ.

Note that each N depends on x so we do not expect uniform convergence. Indeed:

Method 1 (using a big theorem): Each fn is continuous on R and f is not, so by the Uniform Limit
Theorem convergence cannot be uniform on R.

Method 2 (by lesser means): Pick any real number 0 < c < π/2 and consider the sequence xn = tan(c)/n
in R. We have |fn(xn) − f(xn)| = |c − π/2| = π/2 − c, so by the test for non-uniform convergence the
convergence is not uniform.

Q.3 (i) Show that for any ρ > 0 the sequence
{

1
nz

}
n∈N converges uniformly on { z ∈ C : |z| ≥ ρ }.

(ii) Does
{

1
nz

}
n∈N converge uniformly on C∗ := C \ {0}?
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S.3 (i) For every z in the set we have |1/(nz)| = |z|−1(1/n) → 0 as n → ∞, so the pointwise limit is the
constant function f(z) = 0.
For each fixed n we see that

∣∣ 1
nz

∣∣ ≤ 1
ρn for all |z| ≥ ρ. Since

{
1
ρn

}
→ 0 as n → ∞, it follows from

a lemma from class that the given sequence converges uniformly to the function f(z) = 0 on the set
{ z ∈ C : |z| ≥ ρ }.

(ii) The pointwise limit on C∗ is the constant function f(z) = 0, so, if convergence is uniform then the
uniform limit must be f(z) = 0. However, for any c > 0 consider the sequence zn = c/n in C∗.
We have |fn(zn)− f(zn)| = 1/c, so by the test for non-(uniform convergence) the convergence is not
uniform.
[Alternatively, by hand: for any fixed n, as z → 0 we see that

∣∣ 1
nz

∣∣ tends to infinity. So given ϵ > 0 and
any n ∈ N, we can always find a point z ∈ C such that

∣∣ 1
nz

∣∣ ≥ ϵ; namely z = 1/(nϵ) will do. Hence
convergence is not uniform.]

Q.4 For any ρ > 0, show that
{

n
1+nz

}
n∈N converges uniformly on { z ∈ C : |z| > ρ }. Does it converge

uniformly on C∗ ?

S.4 Given any fixed z ∈ {z ∈ C : |z| > ρ } we have limn→∞
n

1+nz = limn→∞
1

(1/n)+z = 1
z , so the pointwise

limit on the set is the function f(z) = 1/z. Also, for each fixed n, we see that∣∣∣∣ n

1 + nz
− 1

z

∣∣∣∣ = ∣∣∣∣ 1

z(1 + nz)

∣∣∣∣ .
However, for |z| > ρ and n sufficiently large (n > 1/ρ, say), we have that |z(1 + nz)| > ρ|1 + nz| ≥
ρ(ρn− 1), so that

|fn(z)− f(z)| =
∣∣∣∣ n

1 + nz
− 1

z

∣∣∣∣ ≤ 1

ρ(ρn− 1)
.

Let ϵ > 0. Since
{

1
ρ(ρn−1)

}
→ 0 as n → ∞, we can find N ∈ N such that 1

ρ(ρn−1) < ϵ for all n > N ; this
proves that converge is uniform (to the function f(z) = 1/z) on {z ∈ C : |z| > ρ }.

To see if the convergence is not uniform on all of C∗ we wish to construct a sequence zn in C∗ and find
a constant c > 0 such that |fn(zn) − f(zn)| = c . Let’s just find such a sequence of strictly positive real
numbers. Let c > 0. Then we want zn such that 1

zn(1+nzn)
= c. By rearanging this equation and completing

the square we see that

zn =
1

2n
+

√
1

4n2
+

1

cn

does the trick. Each of these is clearly in C∗, so convergence is not uniform.

[Alternatively: To show convergence is not uniform on all of C∗ we can argue more directly. Given n, we
can always find a point z ∈ C∗ such that 1 + nz = 0 (namely, z = −1/n). Hence, nearby z = −1/n, the
difference

∣∣ 1
z(1+nz)

∣∣ becomes arbitrarily large. That is, for any ϵ > 0 and any n ∈ N we can find z such that

|fn(z)− f(z)| =
∣∣ 1
z(1+nz)

∣∣ ≥ ϵ.]

Q.5 (i) Show that if 0 < ρ < 1, then the sequence
{

1
1+zn

}
n∈N converges uniformly on { z ∈ C : |z| ≤ ρ }

to the constant function f(z) = 1. On the other hand, show that the sequence converges uniformly on
{ z ∈ C : |z| ≥ ρ−1 } to the constant function f(z) = 0.

(ii) Show that the sequence
{

1
1+zn

}
n∈N does not converge uniformly on D = { z ∈ C : |z| < 1 }.

S.5 (i) Let fn(z) = 1/(1 + zn) be defined on {z ∈ C : |z| ≤ ρ} and let f(z) = 1. Then, since by the reverse
triangle inequality |1 + zn| = |1− (−zn)| ≥

∣∣ |1| − |(−zn)|
∣∣ = 1− |z|n for z with |z| < 1, we have for z

in {z ∈ C : |z| ≤ ρ} that

|fn(z)− f(z)| =

∣∣∣∣ 1

1 + zn
− 1

∣∣∣∣ =

∣∣∣∣ zn

1 + zn

∣∣∣∣ ≤ |z|n

1− |z|n
≤ ρn

1− ρn
→ 0 as n → ∞.
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Hence {fn} converges uniformly on {z ∈ C : |z| ≤ ρ} to the constant function f(z) = 1.

Now consider points in { z ∈ C : |z| ≥ ρ−1 } . Here |z| > 1, so |1+zn| = |1−(−zn)| ≥
∣∣||1|−|(−zn)|

∣∣ =
|z|n − 1. Then

|fn(z)− f(z)| =

∣∣∣∣ 1

1 + zn

∣∣∣∣ ≤ 1

|z|n − 1
≤ 1

ρ−n − 1
=

ρn

1− ρn
→ 0 as n → ∞.

Therefore {fn} converges uniformly on { z ∈ C : |z| ≥ ρ−1 } to the constant function f(z) = 0.

(ii) As above, the sequence converges pointwise on {z : |z| < 1} to the constant function f(z) = 1. To show
convergence is not uniform it is enough to find c > 0 and a sequence zn in D such that |fn(zn)−f(zn)| = c.
Let’s just find such a sequence zn in the open unit interval (0, 1) on the real line. If

|fn(zn)− f(zn)| =
|(zn)n|

|1 + (zn)n|
=

(zn)
n

1 + (zn)n
= c,

then rearranging gives us zn =
(

c
1−c

)1/n
. So, we may for example choose c = 1/3, then zn =

(
c

1−c

)1/n
=

1
21/n

∈ D and |fn(zn)− f(zn)| = 1/3, so the convergence is not uniform in D.

[Alternatively: Note that for a fixed n, we have

lim
z→1

|fn(z)− f(z)| = lim
z→1

|zn|
|1 + zn|

=
1

1 + 1
=

1

2
.

So let ϵ = 1/4, say. Then for any n we can find z ∈ D such that |fn(z) − f(z)| ≥ 1
2 − ϵ = ϵ. Hence the

convergence is not uniform.]

Q.6 For every n ∈ N, let fn(z) = sin(z/n) for z ∈ C. Show that {fn}n∈N converges pointwise on C. Let ρ be
a positive real number. Show that {fn}n∈N converges uniformly on {z : |z| ≤ ρ}. Show that {fn}n∈N does
not converge uniformly on C.

S.6 For fixed z, limn→∞ z/n = 0, so, since sin(z) is continuous at z = 0, it follows that, for fixed z,
limn→∞ sin(z/n) = sin(0) = 0. Hence {fn} converges pointwise on C to the zero function f(z) = 0.

For each fixed n,

| sin(z/n)−f(z)| = | sin(x/n) cosh(y/n)+i cos(x/n) sinh(y/n)| ≤ | sin(x/n) cosh(y/n)|+| sinh(y/n)|,

so, for |z| ≤ ρ,
| sin(z/n)− f(z)| ≤ (ρ/n) cosh(ρ/n) + sinh(ρ/n).

Putting sn equal to the RHS of the above inequality, we see that limn→∞ sn = 0. Hence, by a lemma from
class, we have that {fn} converges uniformly to the zero function on {z : |z| ≤ ρ}.

[Alternatively (without using the Lemma): Note | sin(z/n)− f(z)| can be made arbitraily small for large n
independent of z, that is, for any ϵ > 0 we can find N ∈ N such that for n > N we have sn < ϵ, so {fn}
converges uniformly to the zero function on {z : |z| ≤ ρ}.]

To see if the convergence is not uniform on C we wish to construct a sequence {zn}n∈N and find a constant
c > 0 such that |fn(zn)− f(zn)| = c . The sequence zn = in with c = sinh(1) > 0 does the trick, for then
|fn(zn)− f(zn)| = | sin(zn/n)| = | sin(i)| = sinh(1). Thus, convergence is not uniform.

[Alternatively, just say that for fixed n, we have limy→∞| sin(iy/n)| = limy→∞| sinh(y/n)| = ∞. Hence
for every n, |fn(z)− f(z)| is unbounded. So convergence isn’t uniform on C.]

Q.7 For every n ∈ N, let fn(x) = cos
(
1 + x

n

)
for x ∈ R. Show that {fn}n∈N converges pointwise and

determine whether convergence is uniform on R. For fixed R > 0, is the convergence uniform on [0, R]?
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S.7 For fixed x, limn→∞ x/n = 0, so, since cos(x) is continuous at x = 1, it follows that, for fixed x we
have limn→∞ cos(1 + x/n) = cos(1). Hence {fn} converges pointwise on R to the constant function
f(x) = cos(1).

To see if the convergence is not uniform on R we wish to construct a sequence xn in R and find a constant
c > 0 such that |fn(xn)−f(xn)| = c . The sequence xn = (π2 −1)n with c = cos(1) > 0 does the trick, for
then |fn(xn) − f(xn)| = | cos(1 + xn/n) − cos(1)| = | cos(π/2) − cos(1)| = cos(1). Thus, convergence
is not uniform.

[Alternatively: Note that for fixed n, cos
(
1 + x

n

)
periodically takes value 0 as x → ∞, so for all n and any

ϵ > 0, there must be some x ∈ R such that |fn(x)− cos(1)| ≥ ϵ. So convergence is not uniform on R.]

We now consider what happens on [0, R]. For fixed n,∣∣∣cos(1 + x

n

)
− cos(1)

∣∣∣ ≤ x

n
≤ R

n
(by the Mean Value Theorem from last year).

So, taking sn = R
n , we see that {sn} → 0 as n → ∞. (By Lemma 5.6 part 1.), this shows that we have

uniform convergence (to the constant function f(x) = cos(1) on [0, R].

Q.8 Show that the series
∞∑
k=1

2kz2k

k2
converges uniformly on

{
z ∈ C : |z| ≤ 1√

2

}
, and deduce that the limit func-

tion is continuous on this set.

S.8 Let fk(z) = 2kz2k

k2
. First note that for |z| ≤ 1√

2
we have |z|2k ≤ 1/2k, so

|fk(z)| =

∣∣∣∣2kz2kk2

∣∣∣∣ =
2k|z|2k

k2
≤ 1

k2
.

Now
∑∞

k=1
1
k2

is a convergent series, so, by the Weierstrass M-test, the series converges uniformly on
|z| ≤ 1√

2
. Since each term of the series is continuous, we see (since uniform limits of continuous functions

are continuous) that the limit function f(z) :=
∑∞

k=1
2kz2k

k2
is continuous. Note that we do not know what

f(z) is, just that it exists and is continuous.

Q.9 Prove that
∑∞

n=0 e
nz converges uniformly on {z ∈ C : Re(z) ≤ −1}, but not on {z ∈ C : Re(z) ≤ 0}.

S.9 Let fn(z) = enz and write z = x+ iy, with x ≤ −1. We have

|fn(z)| = |enz| = |enxeiny| = enx|einy| = enx ≤ e−n =

(
1

e

)n

.

As 1
e < 1, the series

∞∑
n=1

(
1

e

)n

is convergent (it is just a geometric series). It follows by the Weierstrass

M-test that
∞∑
n=1

enz converges uniformly on {z ∈ C : Re(z) ≤ −1}.

The series is not even pointwise convergent on {z ∈ C : Re(z) ≤ 0}; take for example z = 0 for then the
partial sums

∑N
n=0 e

nz = N + 1 clearly do not converge. Thus the series does not converge uniformly on
the set {z ∈ C : Re(z) ≤ 0}.

Q.10 Let R satisfy 0 < R < 1. Show that the series
∞∑
n=1

zn

1 + zn
converges uniformly on {z ∈ C : |z| < R}.

Conclude that the infinite series defines a continuous function on the unit disc D.
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S.10 Let fn(z) = zn

1+zn . Notice that for z in {z ∈ C : |z| < R} we have |z| < 1. So, by the reverse triangle
inequality,

|1 + zn| = |1− (−zn)| ≥
∣∣ |1| − |(−zn)|

∣∣ =
∣∣1− |z|n

∣∣ = 1− |z|n ≥ 1−Rn.

Thus, for z in {z ∈ C : |z| < R}, we have

|fn(z)| =

∣∣∣∣ zn

1 + zn

∣∣∣∣ ≤ |z|n

1−Rn
<

Rn

1−Rn
.

Let Mn = Rn

1−Rn , then (by the ratio test) the sum
∑∞

n=1Mn converges.

[
Details: L = lim

n→∞

Mn+1

Mn
= lim

n→∞

Rn+1/(1−Rn+1)

Rn/(1−Rn)
= lim

n→∞

R(1−Rn)

1−Rn+1
= R < 1.

]
Thus, by the Weierstrass M-test,

∑∞
n=1

zn

1+zn converges uniformly on {z ∈ C : |z| < R}.

To see that the series is continuous on the unit disc, note that for every point z ∈ D we can find 0 < R < 1
such that z ∈ BR(0). Since the series converges uniformly on BR(0) and each function fn is continuous,
the limit function is continuous at z.

[Note that here we have really used locally uniform convergence - we have found an open set BR(0) con-
taining z, on which the series converges uniformly.]

Q.11 Prove that each of the following series converge uniformly on the corresponding subset of C:

(a)
∞∑
n=1

1

n2z2n
, on { z ∈ C : |z| ≥ 1 }.

(b)
∞∑
n=1

√
n e−nz, on { z ∈ C : 0 < r ≤ Re(z) }.

(c)

∞∑
n=1

2n

zn + z−n
, on

{
z ∈ C : |z| ≤ r <

1

2

}
.

(d)
∞∑
n=1

2−n cos(nz), on { z ∈ C : |Im(z)| ≤ r < ln 2 }.

S.11 As in the previous solutions, simply compare each series to

(a)
∑

n−2; (b)
∑√

ne−nr; (c)
∑ (2r)n

1− r2n
; (d)

∑
2−nenr;

respectively. All converge (we know the series in (a) converges from Analysis I, the series in (b), (c), (d)
converge via the ratio test) so the Weierstrass M-test implies uniform convergence of each series.

Q.12 Given 0 < r < R < ∞, show that
∞∑
n=1

(
z + 1

z

)n
n!

converges uniformly on r < |z| < R. Conclude that the

infinite series defines a continuous function on C∗.

S.12 When r < |z| < R we have ∣∣∣∣z + 1

z

∣∣∣∣ ≤ |z|+
∣∣∣∣1z

∣∣∣∣ ≤ R+
1

r
.

Let Mn =
(R+ 1

r )
n

n! . Then, the sum
∑∞

n=1Mn converges (by the ratio test).

[
Details: L = lim

n→∞

Mn+1

Mn
= lim

n→∞

(
R+ 1

r

)n+1
/(n+ 1)!(

R+ 1
r

)n
/n!

= lim
n→∞

R+ 1
r

n+ 1
= 0 < 1.

]
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Thus, the series
∑∞

n=1
(z+ 1

z )
n

n! converges uniformly on {z ∈ C : r < |z| < R} by the Weierstrass M-test.

To see that the series is continuous on C∗, note that for every point z0 ∈ C∗ we can find 0 < r < R < ∞
such that r < |z0| < R. Since the series converges uniformly on {z ∈ C : r < |z| < R}, this shows that the
series converges locally uniformly on C∗. Thus by a theorem from class, since all the terms of the series are
continuous on C∗, the limit function is continuous.

Q.13 Prove that
∞∑
n=1

zn

1 + z2n
converges uniformly on |z| < r, for any r < 1. Prove it also converges uniformly on

|z| ≥ R, for any R > 1. Conclude that the infinite series defines a continuous function inside and outside
the unit circle. What is the situation on the unit circle?

S.13 If |z| < r for some r < 1, then |1 + z2n| ≥ 1− r2n. Therefore, for |z| < r∣∣∣∣ zn

1 + z2n

∣∣∣∣ ≤ rn

1− r2n
.

The series
∑ rn

1−r2n
is convergent (by the ratio test). So, by the Weierstrass M-test, the series is uniformly

convergent on the set {z ∈ C : |z| ≤ r}, for any r < 1.

If |z| ≥ R (for R > 1), then∣∣∣∣ zn

1 + z2n

∣∣∣∣ = ∣∣∣∣ 1

zn(1/z2n + 1)

∣∣∣∣ ≤ 1

Rn

1

1− 1/R2n
=

Rn

R2n − 1
.

You can use now the same arguments as above to conclude that the series converges uniformly on |z| ≥ R,
for any R > 1.

To see that the series is continuous inside the unit disc, note that for every point z0 ∈ D we can find
0 < r < 1 such that |z0| < r, and so z0 ∈ Br(0). Since the series converges uniformly on the open ball
Br(0) and each function fn is continuous, the limit function is continuous at z.

[Note that here we have really used locally uniform convergence - we have found an open set Br(0) con-
taining z0, on which the series converges uniformly.]

Similarly, for |z0| > 1 there is an R > 1 such that |z0| > R so that z0 is in the open set {z ∈ C : |z| > R},
on which the series converges uniformly. Thus the series is continuous on {z ∈ C : |z| > 1}.

On the unit circle the series does not even converge pointwise. For example, take z = 1.


