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For everyn € N, let fn(z) = - for x € [1,00). Show that { fn}nen converges pointwise on [1,00), and
determine whether convergence is uniform on [1,00). For a fixed R > 1, determine whether convergence is

uniform on [R, 00).

Let

1 ifr=1
ﬂ@_{o ifz>1

Clearly f,, — f pointwise on [1, 00), because f,(1) = 1 for all n, and if z > 1 then & — 0.

[In full epsilonic detail, for every € € (0,1) and x > 1 we may pick any N > |In(e)|/In(x), because then,
forn > N, we have | fn(z) — f(z)| = 1/2" < 1/2N < e. ]

Method 1 (using a big theorem): Each f, is continuous on [1,00) and f is not, so by the Uniform Limit
Theorem the convergence cannot be uniform on [1, 00).

Method 2 (by lesser means):  Pick any real number ¢ > 0 and consider the sequence z,, = (1 + ¢)%/"
in [1,00). We have |f,(z,) — f(zn)] = [1/(1 +¢) — 0] = 1/(1 + ¢), so by the test for non-uniform
convergence convergence is not uniform.

For [R, 00), note that for any = € [R, co) we have

1
|fu(x) — f(x)] = 0 < ﬁ—>0asn—>oo.
So, according to a lemma from class the convergence is uniform in [R, c0).
[If you wish you can prove all of the above directly from the definitions without appealing to any of the
Theorems/Lemmas. |

For everyn € N, let f,(z) = arctan(nz) for x € R. Show that { f, }nen converges pointwise on R to
/2, ifx > 0.
f(z) =40, ifr=0.

—m/2, ifx <O0.
Is the convergence uniform?

In full epsilonic detail: Let ¢ > 0 and pick z € R. If x = 0 we have f,(z) = arctan(0) = 0, and so
convergence to 0 is trivial. If z > 1, then pick any N > tan(w/2 — €)/x. Then for n > N we have

|fn(x) — f(x)] = 7/2 — arctan(nx) < 7/2 — arctan(z tan(w/2 —€)/x) = /2 — (7/2 —€) = ¢,

since arctan is an increasing function. Similarly, if z < 0 pick any N > tan(e—m/2)/x (which is positive).
Then for n > N we have

|fn(x) — f(x)| = arctan(nz) + 7/2 < arctan(ztan(e — 7/2)/x)+7/2 = (e —7/2)+7/2 = e.

Note that each N depends on = so we do not expect uniform convergence. Indeed:

Method 1 (using a big theorem): FEach f, is continuous on R and f is not, so by the Uniform Limit
Theorem convergence cannot be uniform on R.

Method 2 (by lesser means):  Pick any real number 0 < ¢ < 7 /2 and consider the sequence z,, = tan(c)/n
in R. We have |f,(x,) — f(zn)| = |c — 7/2| = 7/2 — ¢, so by the test for non-uniform convergence the
convergence is not uniform.

(i) Show that for any p > 0 the sequence {%} converges uniformlyon {z € C: |z| > p}.

neN
(ii) Does {%}neN converge uniformly on C* := C\ {0}?
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(i) For every z in the set we have |1/(nz)| = |z|7}(1/n) — 0as n — oo, so the pointwise limit is the
constant function f(z) = 0.

For each fixed n we see that |1 | < 5 forall [z] > p. Since { -1 — 0as n — oo, it follows from
a lemma from class that the given sequence converges umformly to the function f(z) = 0 on the set
{z€C: |z| >p}.

(ii) The pointwise limit on C* is the constant function f(z) = 0, so, if convergence is uniform then the
uniform limit must be f(z) = 0. However, for any ¢ > 0 consider the sequence z, = ¢/n in C*.
We have | f,(z,) — f(2n)| = 1/¢, so by the test for non-(uniform convergence) the convergence is not
uniform.
[Alternatively, -
any n € N, we can always find a point z € C such that ‘é| > ¢; namely z = 1/(ne) will do. Hence
convergence is not uniform. |

For any p > 0, show that {H%}neN converges uniformly on {z € C : |z| > p}. Does it converge
uniformly on C* ?
Given any fixed z € {z € C: |z| > p} we have lim,,_, s = im0 m = % so the pointwise

limit on the set is the function f(z) = 1/z. Also, for each fixed n, we see that

1
z(1+nz)|

n 1
1+nz =z

However, for |z| > p and n sufficiently large (n > 1/p, say), we have that |2(1 + nz)| > p|l + nz| >

p(pn — 1), so that
1

= plpn—1)

Lete > 0. Smce{ﬁ} — 0asn — oo, wecanﬁndNGNsuchthatW < ¢ for all n > N; this

proves that converge is uniform (to the function f(z) =1/z)on{z € C: |z| > p}.

n 1

1+nz_z

)= 1)1 = |

To see if the convergence is not uniform on all of C* we wish to construct a sequence 2, in C* and find
a constant ¢ > 0 such that | f,,(z,) — f(2n)| = c. Let’s just find such a sequence of strictly positive real

numbers. Let ¢ > 0. Then we want z,, such that m = c. By rearanging this equation and completing
the square we see that
1 1 1
o + 4n? + cn

does the trick. Each of these is clearly in C*, so convergence is not uniform.

[Alternatively: To show convergence is not uniform on all of C* we can argue more directly. Given n, we
can alwaysﬁnd a point z € C* such that 1 + nz = 0 (namely, z = —1/n). Hence, nearby z = —1/n, the
difference } a +m ‘ becomes arbitrarily large. That is, for any € > 0 and any n € N we can find z such that

|fn( )_ ( )| ’z(l-l—nz ‘ =

(i) Show that if 0 < p < 1, then the sequence {H%}nEN converges uniformlyon {z € C: |z| < p}
to the constant function f(z) = 1. On the other hand, show that the sequence converges uniformly on
{z€C: |z| > p~t} to the constant function f(z) = 0.

(ii) Show that the sequence {1—5—%} does not converge uniformlyonD ={z € C: |z| <1}

neN
(i) Let fo(2) = 1/(1 + 2™) be defined on {z € C : |z| < ,0} and let f( ) = 1. Then, since by the reverse
triangle inequality |1 + 2"| = |1 — (=2")| > | [1] = |[(=2™)| | = 1 — |2|" for z with |z| < 1, we have for z
in{zeC:|z| < p} that

n
2] < P
IR et I S

Fal2) = )] = ‘ 1 _1' _ ‘

1+ 27
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Hence { f,, } converges uniformly on {z € C : |z| < p} to the constant function f(z) = 1.
Now consider pointsin { 2 € C: |z[ > p~' } . Here |z| > 1,50 [1+2"| = [1—(—2")| > |||1|—|(=2")|| =
|z|"™ — 1. Then

1
1+ 2n

1 < ! P —0 —
— as .
HT-1 T e 1" e

=101 = |

Therefore { f,} converges uniformly on { z € C: |z| > p~!} to the constant function f(z) = 0.

(ii) As above, the sequence converges pointwise on {z : |z| < 1} to the constant function f(z) = 1. To show
convergence is not uniform it is enough to find ¢ > 0 and a sequence z, in D such that | f,,(z,) — f(zn)| = c.
Let’s just find such a sequence z,, in the open unit interval (0, 1) on the real line. If

|(20)" (2n)"

)] = |
’fn(zn) f( n)’ 11+ (z0)"] 14 (zo)"

207

_c
1—c

€ Dand |f,(zn) — f(zn)| = 1/3, so the convergence is not uniform in D.

then rearranging gives us z,, =

1
21/n

1/n 1/n
) . So, we may for example choose ¢ = 1/3, then z,, = (1—;) =

[Alternatively: Note that for a fixed n, we have

lim | (2) — F(2)] = lim L — L1
a M T A e T 1L 2

So let € = 1/4, say. Then for any n we can find z € D such that |f,(z) — f(z)| > 3 — € = €. Hence the
convergence is not uniform. |

For everyn € N, let f,,(2) = sin(z/n) for z € C. Show that { f,} nen converges pointwise on C. Let p be
a positive real number. Show that { fy, }nen converges uniformly on {z : |z| < p}. Show that { f,, } nen does
not converge uniformly on C.

For fixed z, lim,_~ z/n = 0, so, since sin(z) is continuous at z = 0, it follows that, for fixed z,
lim;,_, o0 sin(z/n) = sin(0) = 0. Hence { f,,} converges pointwise on C to the zero function f(z) = 0.

For each fixed n,
|sin(z/n)—f(z)| = |sin(z/n) cosh(y/n)+icos(x/n)sinh(y/n)| < |sin(xz/n) cosh(y/n)|+| sinh(y/n)|,

so, for |z| < p,
|sin(z/n) — f(2)| < (p/n) cosh(p/n) + sinh(p/n).

Putting s, equal to the RHS of the above inequality, we see that lim,,_,, s, = 0. Hence, by a lemma from
class, we have that { f,,} converges uniformly to the zero function on {z : |z| < p}.

[Alternatively (without using the Lemma): Note |sin(z/n) — f(z)| can be made arbitraily small for large n
independent of z, that is, for any € > 0 we can find N € N such that for n > N we have s,, < €, so {fn}
converges uniformly to the zero function on {z : |z| < p}.]

To see if the convergence is not uniform on C we wish to construct a sequence {z, },, . and find a constant
¢ > 0 such that | f,(z,) — f(2,)| = c. The sequence z,, = in with ¢ = sinh(1) > 0 does the trick, for then
| fn(zn) — f(zn)| = | sin(z,/n)| = |sin(é)| = sinh(1). Thus, convergence is not uniform.

[Alternatively, just say that for fixed n, we have limy_,o| sin(iy/n)| = limy_oo| sinh(y/n)| = co. Hence
foreveryn, |fn(2) — f(2)| is unbounded. So convergence isn’t uniform on C.]

For every n € N, let fu(x) = cos (14 %) for x € R. Show that {fy}nen converges pointwise and
determine whether convergence is uniform on R. For fixed R > 0, is the convergence uniform on [0, R]?
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For fixed x, lim,, o z/n = 0, so, since cos(z) is continuous at x = 1, it follows that, for fixed = we
have lim,,_,o, cos(1 + x/n) = cos(1). Hence {f,} converges pointwise on R to the constant function

f(z) = cos(1).
To see if the convergence is not uniform on R we wish to construct a sequence x,, in R and find a constant
¢ > O such that | f,,(z,) — f(2n)| = c. The sequence x,, = (5 — 1)n with ¢ = cos(1) > 0 does the trick, for
then |f,(x) — f(2zn)| = |cos(1l + z,/n) — cos(1)] = | cos(n/2) — cos(1)| = cos(1). Thus, convergence
is not uniform.

[Alternatively: Note that for fixed n, cos (1 + %) periodically takes value 0 as x — oo, so for all n and any
€ > 0, there must be some x € R such that | f,(x) — cos(1)| > €. So convergence is not uniform on R.]

We now consider what happens on [0, R]. For fixed n,

<

R
— (by the Mean Value Theorem from last year).
n

‘cos (1 + E) - cos(l)’ < z

n n
So, taking s,, = %, we see that {s,,} — 0asn — oco. (By Lemma 5.6 part 1.), this shows that we have
uniform convergence (to the constant function f(z) = cos(1) on [0, R].

o0 2kz2k
Show that the series 2
k=1

tion is continuous on this set.

converges uniformly on {z eC: |z| < % } and deduce that the limit func-

Let fr(z) = Qkkzjk. First note that for |z| < % we have |z|?* < 1/2F, so

2kz2k

2F| 2|2k 1
k2 =

|fk(z)| = 2 — k2’

Now > 72, k—lz is a convergent series, so, by the Weierstrass M-test, the series converges uniformly on

|z| < % Since each term of the series is continuous, we see (since uniform limits of continuous functions
. . . . k 2k . .

are continuous) that the limit function f(z) := > 72, % is continuous. Note that we do not know what

f(z) is, just that it exists and is continuous.

Prove that " °  €"* converges uniformly on {z € C : Re(z) < —1}, but noton {z € C : Re(z) < 0}.

Let f,(z) = €™ and write z = x + iy, with © < —1. We have
’fn(z)’ — |€nz‘ — lenxezny| — enx|€zny’ — < e — < > .

(&

o0 n
As % < 1, the series Z <) is convergent (it is just a geometric series). It follows by the Weierstrass
e

n=1
o
M-test that Z e"* converges uniformly on {z € C : Re(z) < —1}.
n=1

The series is not even pointwise convergent on {z € C : Re(z) < 0}; take for example z = 0 for then the
partial sums Zgzo €™ = N + 1 clearly do not converge. Thus the series does not converge uniformly on
the set {z € C: Re(z) < 0}.

ZTZ

1427
Conclude that the infinite series defines a continuous function on the unit disc D.

(0]
Let R satisfy 0 < R < 1. Show that the series Z converges uniformly on {z € C : |z| < R}.
=1
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Q.11

S.11

Q.12

S.12

inequality,
L+2" = (1= (=2") = |1 = [(=2")|] = 1= [z]"] = 1—[¢]" > 1-R".
Thus, for z in {z € C: |z| < R}, we have

Z’Vl

1427

|Z|n - R"
- 1-R" 1—-R"

o)l = |

Let M,, = 1~ R"’ then (by the ratio test) the sum Z 1 M, converges.

b Lot Matt _ o RO RUY RO RY
[Detalls. L—nh_{go M, = R"/(1 — R") nILH;oW

R<1.]

Thus, by the Weierstrass M-test, > ° | 155 converges uniformly on {z € C: [2| < R}.

To see that the series is continuous on the unit disc, note that for every point z € D we can find 0 < R < 1
such that z € Br(0). Since the series converges uniformly on Bg(0) and each function f,, is continuous,
the limit function is continuous at z.

[Note that here we have really used locally uniform convergence - we have found an open set Br(0) con-
taining z, on which the series converges uniformly.]

Prove that each of the following series converge uniformly on the corresponding subset of C:

- 1

(G)ZW’ on {ze€C: |z|>1}.
n=1
o0

(b)z\/ﬁe_”z, on {ze€C: 0<r<Re(z)}.
n=1
2 1

(C)Zm, on {ZG(C: |Z§7‘<2}
n=1
o0

(d) 227" cos(nz), on {z€C: |Im(z)|<r<In2}.
n=1

As in the previous solutions, simply compare each series to

) Y% ) Y v (@ YO @) Y e

respectively. All converge (we know the series in (a) converges from Analysis I, the series in (b), (c), (d)
converge via the ratio test) so the Weierstrass M-test implies uniform convergence of each series.

z+1)"
Given 0 < r < R < oo, show that Z u converges uniformly on r < |z| < R. Conclude that the

n=1
infinite series defines a continuous function on C*.

When r < |z| < R we have

1 1
z+ = ‘<|z|—|—' ’<R+
z

1\"
Let M,, = M. Then, the sum >, M, converges (by the ratio test).
M, R+ 1" Jn+ 1) R+1
[ Details: L = lim “lzhm( D)/ P i L=0<L]

nooo My moeo (R4 )" /nl n—oo n 41
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l n
Thus, the series > 7, (=+2) converges uniformly on {z € C : r < |z| < R} by the Weierstrass M-test.

n!
To see that the series is continuous on C*, note that for every point zp € C* wecan find 0 < r < R < o0
such that r < |zg| < R. Since the series converges uniformly on {z € C : r < |z| < R}, this shows that the
series converges locally uniformly on C*. Thus by a theorem from class, since all the terms of the series are
continuous on C*, the limit function is continuous.

o n
Prove that Z 1520 converges uniformly on |z| < r, for any r < 1. Prove it also converges uniformly on
z
n=1
|z| > R, for any R > 1. Conclude that the infinite series defines a continuous function inside and outside
the unit circle. What is the situation on the unit circle?

If |z| < r for some r < 1, then |1 + 22"| > 1 — 72", Therefore, for |z| < r

n n

.
=12

z
1+ 220

The series | ﬁ is convergent (by the ratio test). So, by the Weierstrass M-test, the series is uniformly
convergent on the set {z € C: |z| <r}, forany r < 1.

If |z| > R (for R > 1), then

n

z
1+ z2n

1 ’ 1 1 R?

(1/z2"+1)| ~ R"1—1/R¥ R —1'

You can use now the same arguments as above to conclude that the series converges uniformly on |z| > R,
for any R > 1.

To see that the series is continuous inside the unit disc, note that for every point zyp € D we can find
0 < r < 1 such that |zp| < r, and so zp € B,(0). Since the series converges uniformly on the open ball
B,.(0) and each function f,, is continuous, the limit function is continuous at z.

[Note that here we have really used locally uniform convergence - we have found an open set B,.(0) con-
taining 2y, on which the series converges uniformly. |

Similarly, for |zp| > 1 there is an R > 1 such that |zp| > R so that zg is in the open set {z € C : |z| > R},
on which the series converges uniformly. Thus the series is continuous on {z € C : |z| > 1}.

On the unit circle the series does not even converge pointwise. For example, take z = 1.



