- 1 Find parametrisations for the following curves:
 - (a) The line segment from -1 to 1 i,
 - (b) The circle of radius 2 centred at 1 + i,
 - (c) The ellipse $x^2 + 4y^2 = 1$.
- 2 Let $\gamma : [a, b] \to \mathbb{C}$ be a C^1 -curve, and define $(-\gamma) : [-b, -a] \to \mathbb{C}$, by $(-\gamma)(t) := \gamma(-t)$. Show that for any f such that $\int_{\gamma} f(z) dz$ is well defined we have that

$$\int_{-\gamma} f(z) \, dz = -\int_{\gamma} f(z) \, dz$$

3 Let $\gamma: [0,4] \to \mathbb{C}$ be the curve given by

$$\gamma(t) = \begin{cases} t, & 0 \le t \le 1, \\ 1+i(t-1), & 1 \le t \le 2, \\ 3-t+i, & 2 \le t \le 3, \\ i(4-t), & 3 \le t \le 4. \end{cases}$$

Draw this curve in the complex plane and directly compute $\int_{\gamma} e^z dz$ (without using the Fundamental Theorem of Calculus).

- 4 Calculate $\int_{\gamma} |z| dz$ when γ is the straight line from -i to i, and when γ is the segment of the unit circle which joins -i to i in the right hand half-plane.
- 5 Calculate $\int_{\gamma} \frac{1}{z} dz$, where $\gamma(t) = (1+2t)e^{4\pi i t}$ for $0 \le t \le 1$.
- 6 Let γ_{ρ} be the curve $\gamma_{\rho}(\theta) := \rho e^{i\theta}$ with $0 \le \theta \le \pi$. Let $z^{\frac{1}{2}}$ be the branch of square root corresponding to the branch of log with argument in $(-\pi/2, 3\pi/2]$, that is, if $z = \rho e^{i\theta}$ with $\theta \in (-\pi/2, 3\pi/2]$ then $z^{\frac{1}{2}} = \sqrt{\rho} e^{i\theta/2}$. Show that

$$\lim_{\rho \to \infty} \int_{\gamma_{\rho}} \frac{z^{1/2}}{z^2 + 1} = 0.$$

7 Let γ be any piecewise C^1 -curve from -3 to 3 such that, except for the end points, lies entirely in the upper half plane. Calculate the integral

$$\int_{\gamma} f(z) \, dz,$$

where f(z) is the branch of $z^{\frac{1}{2}}$ defined by $\sqrt{r}e^{i\theta/2}$ with $0 < \theta < 2\pi$.