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4 Möbius transformations 47
4.1 Definition and first properties of Möbius transformations . . . . . 47
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A.2 Möbius transformations . . . . . . . . . . . . . . . . . . . . . . . 93
A.3 Biholomorphic domains - revisited . . . . . . . . . . . . . . . . . . 97

1These notes are based on the original notes of Jens Funke from many years ago. Chapters
1-5 evolved through Stephen, Michael Magee, Sabine Bögli, Katie Gittins, and Amit Einav.
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Chapter 1

The Complex Plane and Riemann
Sphere

1.1 Complex numbers

A complex number z is a quantity of the form z = x + iy, where x, y are real numbers
and i is the imaginary unit. We denote by C the set of all complex numbers.

Algebra

We can add, subtract and multiply complex numbers: If z1 = x1+ iy1 and z2 = x2+ iy2
then

z1 ± z2 := (x1 ± x2) + i(y1 ± y2),

z1z2 := (x1x2 − y1y2) + i(x1y2 + x2y1).

Notice that addition simply corresponds to adding the individual components. In gen-
eral we denote by Re(z) = x the real part of z, and by Im(z) = y the imaginary part
of z. By the definition of multiplication we have i2 = −1, and using this we see that
multiplication corresponds to ‘multiplying out the brackets’: (x1 + iy1)(x2 + iy2) =
(x1x2 + i2y1y2) + i(x1y2 + x2y1).

We can also divide complex numbers. For z2 ̸= 0 (here we use the shorthand
0 = 0 + 0i) we have

z1
z2

=
x1 + iy1
x2 + iy2

=
(x1 + iy1)(x2 − iy2)

(x2 + iy2)(x2 − iy2)
=

x1x2 + y1y2
x22 + y22

+ i
x2y1 − x1y2
x22 + y22

∈ C.

The quantity we used to make the denominator real is important. In general, for
z = x+ iy we call z̄ := x− iy the complex conjugate of z.
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We immediately have a multiplicative inverse

z−1 :=
1

z
=

x

x2 + y2
− i

y

x2 + y2
.

WARNING: While most of the nice properties of R hold in C, we do not have notions
of ≤ <, ≥ or >; the set C is not ‘ordered’ and expressions like z1 < z2 have no meaning.

How do we visualise the complex numbers?

There are various ‘models’ for the complex numbers. The most commonly used/most
intuitive is to think of C as a copy of R2 equipped with a map

R2 × R2 → R2 : ((x1, y1), (x2, y2)) 7→ (x1x2 − y1y2, x1y2 + x2y1).

So, a copy of R2 with a way of multiplying1 (and dividing) vectors! Indeed there is an
obvious bijection f : R2 → C given by f((x, y)) = x + iy. As a result, we often draw
complex numbers on the usual (x, y)-plane: such a picture is called an Argand diagram
(see Figure 1.1).

Figure 1.1: Argand diagram.

On R2 there is a natural notion of size, and we use it in C: we call the quantity
|z| :=

√
x2 + y2 the modulus or absolute value of z (= x+ iy).

Lemma 1.1 (Important Properties of Complex numbers).

1. z1z2 = 0 ⇐⇒ z1 = 0 or z2 = 0,

2. |z| =
√
zz̄,

3. Re(z) = z+z̄
2 and Im(z) = z−z̄

2i ,

1The multiplication of complex numbers is commutative and associative. The fact that such a
multiplication exists in 2 dimensions is truly remarkable: there is no such multiplication on R3, not
even if we relax the condition that it is commutative! The search for an associative multiplication on
R3 lead Hamilton to discover (a non-commutative) one on R4 instead which was his famous discovery
of the quaternions.
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4. z−1 = z̄
|z|2 .

Remark 1.2. Property 1. is very important, and makes C an integral domain (see Algebra
II).

Polar form/coordinates of a complex number

Now we have a notion of distance, as in R2 we can implement a change of variables
z(x, y) → z(r, θ). Let r = |z| and let θ denote the anticlockwise angle measured from
the real axis. (Angles measured clockwise will be considered negative.) We call θ the
argument of z (for z ̸= 0) and write arg(z) = θ. We then have the following polar
coordinates for z:

z = r(cos θ + i sin θ),

which we write in shorthand as z = reiθ (see Figure 1.2).

Figure 1.2: Polar coordinates.

For example, i = eiπ/2 and 1 + i =
√
2eiπ/4. We have | − 1/

√
2− i

√
3/
√
2| =

√
2, so

−1/
√
2− i

√
3/
√
2 =
√
2(−1/2− i

√
3/2) =

√
2e−i2π/3.

Note that arg(z) is only defined up to multiples of 2π; for example i = eiπ/2 = ei5π/2 =
e−i3π/2. Strictly speaking arg(i) = π/2+2πk, for any k ∈ Z (and so arg is a one-to-many
function!). As a result, we need to be careful; we choose a fixed interval in which to
express the argument: the principal value of arg(z) is the value in the interval (−π, π]
and will be denoted Arg(z). So Arg(i) = π/2 and Arg(−1) = π for example.

Lemma 1.3 (Properties of argument). We have the following properties of the argu-
ment:

1. arg(z1z2) = arg(z1) + arg(z2) mod 2π

2. arg(1/z) = − arg(z) mod 2π

3. arg(z̄) = − arg(z) mod 2π .
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When we say two real numbers are equal mod2π we mean they differ by an integer
multiple of 2π.

It is nice to have a geometric picture of what the algebraic operations on complex
numbers mean.

Lemma 1.4. Geometrically, multiplication in C is given by a dilated rotation; i.e., if
z1 = r1e

iθ1 and z2 = r2e
iθ2 then

z1z2 = r1r2 (cos(θ1 + θ2) + i sin(θ1 + θ2)) = r1r2e
i(θ1+θ2).

In particular, multiplying by z2 constitutes an (anticlockwise) rotation of z1 by θ2 de-
grees, followed by a dilation with factor r2. Furthermore, addition represents a transla-
tion and conjugation represents a reflection in the real axis. Taking the real or imaginary
part of a complex number z represents a projection of z onto the real or imaginary axis
respectively.

Proof. By the standard double angle formula we have

z1z2 = r1r2 (cos θ1 + i sin θ1) (cos θ2 + i sin θ2)

= r1r2 ((cos θ1 cos θ2 − sin θ1 sin θ2) + i(sin θ1 cos θ2 + sin θ2 cos θ1))

= r1r2 (cos(θ1 + θ2) + i sin(θ1 + θ2)) .

The geometric interpretations of addition, conjugation, and real/imaginary parts are
fairly obvious (see Figure 1.3).

Figure 1.3: Geometric interpretation of conjugation and taking real and imaginary
parts.

Corollary 1.5. 1. |z1z2| = |z1| |z2|,

2. De Moivre’s formula: (cos θ + i sin θ)n = cos(nθ) + i sin(nθ).

The modulus also has the following important properties.
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1. (Triangle inequality) |z1 + z2| ≤ |z1|+ |z2|

2. |z| ≥ 0 and |z| = 0 ⇐⇒ z = 0

3. max(|Re(z)|, |Im(z)|) ≤ |z| ≤ |Re(z)|+ |Im(z)|

Remark 1.6. The first two properties above along with Corollary 1.5 make the modulus
a norm on C (see later, Definition 2.2).

Simple complex functions and geometry (examples)

• We can also use functions to define regions in the complex plane. Consider the
set of points z which satisfy the inequality |z − i| < |z + i|. This is precisely the
points in C whose distance to i is strictly smaller than their distance to −i. Thus,
the inequality represents the upper half plane H := {z ∈ C : Im(z) > 0}.

• Note that the equation |z − i| = 1 represents a circle centred at i of radius 1.

1.2 Exponential and trigonometric functions

Definition 1.7 (Complex exponential). We define the complex exponential func-
tion exp : C→ C by

exp(z) := ex(cos y + i sin y). (z = x+ iy)

As shorthand we write exp(z) = ez.

Remark 1.8. We will see later that ez =
∑∞

n=0
zn

n! as in real analysis. We could have
started with this as the definition instead.

Proposition 1.9. We have the following properties of the complex exponential function:

1. ez ̸= 0 for all z ∈ C,

2. ez1+z2 = ez1ez2,

3. ez = 1 ⇐⇒ z = 2πik for some k ∈ Z,

4. e−z = 1/ez,

5. |ez| = eRe(z).

Proof. Most are straightforward to check. 3. is very important: exp(z) = 1 ⇐⇒
ex cos y = 1 and ex sin y = 0. Since ex > 0, the latter is equivalent to sin y = 0 and so
y = nπ for some n ∈ Z. Thus we have exp(z) = 1 ⇐⇒ ex cos(nπ) = 1 ⇐⇒ ex(−1)n =
1 ⇐⇒ n is even and ex = 1 ⇐⇒ x = 0 and y = 2kπ (k ∈ Z).
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Corollary 1.10. We have exp(2πi) = 1 and exp(πi) = −1. The latter is Euler’s
formula.

Corollary 1.11. The complex exponential function is 2πi-periodic; that is, exp(z +
2kπi) = exp(z) for any k ∈ Z.

Remark 1.12. The above implies exp is determined entirely by the values it takes in any
horizontal strip of width 2π in the complex plane. Note also that exp is ‘unbounded’,
since by 5. the modulus | exp(z)| gets arbitrarily large as Re(z) increases.

Definition 1.13 (Trigonometric functions). All as functions from C→ C, we define

sin(z) :=
1

2i
(eiz − e−iz) cos(z) :=

1

2
(eiz + e−iz)

sinh(z) :=
1

2
(ez − e−z) cosh(z) :=

1

2
(ez + e−z)

(For z = x real these coincide with the real functions. We will eventually get power
series expressions for them from the one for the exponential function.)

Remark 1.14. All the usual double angle formulae and equations relating the functions
hold: e.g., cos2(z)+sin2(z) = 1. Additionally, notice that we have cosh(iz) = cos(z) and
cos(iz) = cosh(z), while sinh(iz) = i sin(z) and sin(iz) = i sinh(z). All four functions
are unbounded.

1.3 Logarithms and complex powers

We use the notation C∗ = C− {0}, i.e. the set of nonzero complex numbers.

Lemma 1.15. [Inverting the exponential function] For every w ∈ C∗, the equation

ez = w (1.1)

has a solution z. Furthermore, if we write w = |w|eiϕ with ϕ = Arg(w), then all
solutions to (1.1) are given by

z = log |w|+ i(ϕ+ 2kπ) for k ∈ Z. (1.2)

Here, log |w| is the usual natural logarithm of the real number |w|. Note that there are
infinitely many solutions.

Proof. If z is of the form as in (1.2) for some given k ∈ Z, then

ez = elog |w|+i(ϕ+2kπ) = elog |w|ei(ϕ+2kπ) = elog |w|ei(ϕ) = |w|ei(ϕ) = w,
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by Proposition 1.9, Part 2. and Corollary 1.10. Thus, z is a solution.
To see all solutions are of the given form, first write z = x+ iy and assume ez = w.

Since exeiy = ez = w = |w|eiϕ, we have |ez| = ex = |w|. Thus x = log |w|. Moreover,
dividing both sides by |w| we have eiy = eiϕ and so ei(y−ϕ) = 1. It follows from
Proposition 1.9, Part 3. that all solutions are given by i(y − ϕ) = 2kπi for some k ∈ Z;
in other words, y = ϕ+ 2kπ.

We now come to an important topic called branch cuts.
First we give a high-level description of why branch cuts are necessary. We have just

described for fixed w0 ̸= 0, exactly what the possible numbers are such that ez = w0.
These values of z could all reasonably be called log(w0). Can we make this choice of
solution to ez = w0 vary nicely as we move w0 a little bit? 2. Of course, we will run
into trouble at 0, since ez = 0 has no solutions. Bearing this in mind, could we at
least define a ‘log’ function that is ‘continuous’ on C \ {0}? Since we don’t know the
definition of continuous yet, let us just ask that the function should not jump abruptly
when we move from a point to a nearby one.

The answer is no, and let’s see why by trying to come up with one.
Let’s suppose w0 = 1 and we pick a solution to ez = w0. The obvious one is z = 0

so let’s pick that. Now let w be close to 1. If we’ve found a solution to ez = w then we
know from Lemma 1.15 that it must be of the form

z = log |w|+ i(Arg(w) + 2πk)

for some k ∈ Z. Since w is close to 1, we know log |w| is close to 0 and Arg(w) is close
to 0. Now, if k is not zero, then z will not be close to 0 (any integer that is not zero has
absolute value at least one!). So k must be zero for z to be close to 0. We just argued
that if we move w a little, and if we want log to be ‘continuous’, we must choose the
argument of w ‘continuously’.

Now let’s take our idea a little further. If we move w on a path beginning at 1,
following the unit circle anticlockwise, until we reach 1 again, what happens to our
solutions to ez = w if we are choosing them continuously as above? In other words,
what happens to the argument of w? Since we are moving anticlockwise and we are
choosing the argument continuously, it is increasing as we go around the unit circle.
So just before we complete the circle, the argument of w is just below 2π. This is a
big problem, since it means there are values of w just below 1 on the unit circle where
we have been forced to set log(w) very close to 2πi. On the other hand, we began by
assuming log(1) = 0. So the way we have tried to do things, our log function is going
to have a jump discontinuity below 1.

No matter what way we try to define log continuously on C \ {0}, we will run into
a similar problem. On the other hand, if Rθ is any ray of the form

2To be precise, we would like the solution to ez = w to vary as a continuous function of w; see later
for the precise definition of continuous function.
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Rθ = {reiθ : r ∈ R, r ≥ 0} ⊂ C

then it is possible to define a continuous function log(z) on C \ Rθ. (One can think of
cutting out this ray as cutting out the points where log will have a jump discontinuity).

Definition 1.16 (Complex logarithm functions). For any two real numbers θ1 < θ2
with θ2 − θ1 = 2π, let arg be the choice of argument function with values in (θ1, θ2].
Then the function

log(z) := log |z|+ i arg(z)

is called a branch of logarithm . It has a jump discontinuity along the ray Rθ1 = Rθ2 .
This ray is called a branch cut .

If we choose arg(z) = Arg(z) ∈ (−π, π], then we obtain a branch of logarithm called
the principal branch of log . We write Log for this principal branch: it is given by
the formula

Log(z) := log |z|+ iArg(z).

The principal branch of logarithm has a ‘jump discontinuity’ along the ray given by the
non-positive real axis R≤0.

Remark 1.17. • Any time one talks about a function called log, one has to declare
which branch of log we use. This is normally done simply by stating the interval
(θ1, θ2] where arg(z) lives.

• As soon as we define continuous functions, we will easily be able to see that the
branch of log corresponding to arg(z) ∈ (θ1, θ2] is continuous on C \Rθ1 .

• The principal branch, Log, agrees with the natural logarithm log on the real line;
that is, for x > 0 we have Logx = log x. For this reason we will always use the
principal branch unless otherwise stated.

Lemma 1.18. [Properties of logarithms] We have the following properties when using
any given branch of logarithm:

1. elog z = z for any z ∈ C \ {0}, but,

2. in general, log(zw) ̸= log z + logw, and

3. in general, log(ez) ̸= z.

We would now like to define functions giving powers of complex numbers. We already
know from the world of real numbers that to define a function giving for example, a
square root of a positive real number, we have to make a choice of whether to take
the positive or negative root. To take a root of a complex number, we have to make a
similar choice, but we have more freedom.



CHAPTER 1. THE COMPLEX PLANE AND RIEMANN SPHERE 9

Definition 1.19 (Complex powers). For w ∈ C fixed, by choosing any branch of log
we can define a branch of the function z 7→ zw by the expression

zw := exp(w log z).

For example, if w = 1/n and we use the principal branch we get

z1/n = e(log |z|+iArg(z))/n = |z|1/neiArg(z)/n.

Warning: different branches of log can give different power functions! So we must
always specify which branch of log we are using.

Remark 1.20. Now that we have defined complex powers, we should check that our
exponential function matches up with the concept of ‘raising e to the power z’ for a
suitable choice of log e. The natural choice of log e is 1. Then, e raised to the power z
should agree with computing exp(z log e) = exp(z) as we expected.

Finding values of log and complex powers (examples)

(a) Using the principal branch of log, we find log(1 − i) and (1 − i)1/2. We have
|1− i| =

√
2 and Arg(1− i) = −π/4. Thus, 1− i =

√
2e−iπ/4. Therefore, Log(1− i) =

log |1− i|+ iArg(1− i) = log
√
2− iπ/4, and

(1−i)1/2 = exp

(
1

2
Log(1− i)

)
= exp

(
1

2

(
log
√
2− i

π

4

))
= exp

(
log

4
√
2− i

π

8

)
=

4
√
2e−iπ

8 .

(b) Using the principal branch and the previous example

(1− i)i = exp(iLog(1− i)) = exp
(π
4
+ i log

√
2
)
= eπ/4ei log

√
2.

(c) Again, using the principal branch

21/2 = exp

(
1

2
log 2

)
= exp(log

√
2) =

√
2.

What about the other root? It comes from using a different branch: if we let log be the
branch of logarithm corresponding to arg(z) ∈ (π, 3π] then log(z) = log |z|+ i(Arg(z)+
2π), so we have log(2) = log 2 + i2π and

21/2 = exp

(
1

2
(log 2 + i2π)

)
= exp(log

√
2 + iπ) =

√
2eiπ = −

√
2.

Remark 1.21. All nth roots can be found this way (see Assignments). In particular, for
z ∈ C∗ all nth roots of z are of the form

z1/n = |z|1/n exp
(
i
Arg(z)

n
+

2kπi

n

)
for k = 0, . . . , n− 1.
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Visualizing complex functions

The ‘graph’ of a complex-valued function f : C → C is 4-dimensional, so difficult to
visualise - we certainly can’t draw it. We can employ other techniques to get a grasp
on complex functions:

• We can graph the real-valued function |f | : C → R. For example, consider the
complex function cos z. When z = x is purely real, we have that |f(z)| = | cos(x)|
is obviously just the modulus of the real cosine function. But for z = iy purely
complex we have |f(z)| = | cos(iy)| = | cosh y| = cosh y. So in the imaginary
direction f simply looks like cosh!

• It is often useful to visualise complex functions by considering how they map
regions of the complex plane. Consider the image of the ‘right half-plane’ HR :=
{z ∈ C : Re(z) > 0} under the map f(z) = z2. Note that HR = {z ∈ C : −π/2 <
Arg(z) < π/2}. If z = reiθ ∈ HR then z2 = zz = r2ei2θ has argument 2θ ∈
(−π, π). Thus, f maps HR to C \ R≤0, where R≤0 denotes the negative real axis
(including 0), see Figure 1.4. The map is onto, since for every w = seiϕ ∈ C \R≤0

(so ϕ ∈ (−π, π)) we can find z ∈ HR such that f(z) = w; namely we can choose
z =
√
seiϕ/2 ∈ HR.

Figure 1.4: Geometric picture of how f(z) = z2 transforms the right half-plane.

Similarly, the left half plane HL = {z ∈ C : Re(z) < 0} is mapped to C \ R≤0.
Moreover, f maps both the strictly positive imaginary axis iR>0 and the strictly
negative imaginary axis iR<0 (given by iR>0 = {iy ∈ C : y > 0} and iR<0 =
{iy ∈ C : y < 0} respectively) to the strictly negative real axis R<0.

Adding the observation that f(0) = 0, we have that f(z) = z2 in essence maps
C to two copies of itself (except for the origin, which is only attained once in the
image - remember this different behaviour at the origin later!)

• Branches of log. Let log be the branch of logarithm corresponding to arg(z) ∈
(θ1, θ2]. Then log maps C \Rθ1 to the infinite horizontal strip

{z ∈ C : θ1 < Im(z) ≤ θ2}.
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Infinite rays emanating from 0 map to horizontal lines, and circles centred at zero,
minus their interection with Rθ1 , map to vertical line segments (see Figure 1.5).

Figure 1.5: Geometric picture of how f(z) = log(z) transforms rays and circles.

1.4 The Riemann Sphere and extended complex plane

It is very useful at various points of the course to extend the complex plane by adding a
point ‘at infinity’. To do this, we create a new object called ‘infinity’, denoted ∞, and
consider the set

Ĉ := C ∪ {∞}.

At the moment, we have accomplished nothing really. What will be useful later is that
we can think of the point ∞ as being glued ‘nicely’ onto C. The correct way to do this
is by introducing the Riemann sphere.

The Riemann sphere

Consider the unit sphere S2 := {(x, y, s) ∈ R3 : x2 + y2 + s2 = 1} in R3 and consider
a copy of C embedded in R3 by identifying C = R2 with the (x, y)-plane. Explicitly, a
point x+ iy ∈ C corresponds to the point (x, y, 0) ∈ R3.
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Let N = (0, 0, 1) ∈ S2 denote the ‘north pole’. For any point v ∈ S2\{N}, there is a
unique straight line LN,v passing through N and v. Since v ̸= N , this line is not parallel
to the (x, y)-plane. Hence it intersects the (x, y)-plane in a unique point (x, y, 0). This
corresponds to the point x + iy ∈ C. We have defined a map P : S2 \ {N} → C by
P (v) = x + iy in the notation of the preceding discussion. The map P is called the
stereographic projection (from the north pole).

What is the formula for stereographic projection? Let (x, y, s) ∈ S2 \ {N}. Note
that s ̸= 1. The equation of the line passing through the point (x, y, s) ∈ S2 and the
North Pole N = (0, 0, 1) ∈ S2 is given by

γ(t) = N +

x
y
s

−N

 t =

0
0
1

+

 x
y

s− 1

 t, (t ∈ R).

This clearly intersects the plane when t = 1
1−s . Thus

P : (x, y, s) 7→ x

1− s
+

iy

1− s
.

It is possible to find an inverse to P : given any point z ∈ C, draw the straight line
passing through N and z (thinking of C as the (x, y)-plane as before). This straight line
passes through S2 in exactly one point. Hence P is a bijection that identifies S2 \ {N}
with C.

Now we have identified C with S2 \ {N} via the map P , it gives us a natural way
to view the added point ∞ of Ĉ. It should correspond to adding back in the north pole
to S2 \ {N}. In other words, we should think of Ĉ simply as the entire sphere S2!

In fact, one can show that we have the following correspondences/mappings:

In S2 In Ĉ (1.3)

N ←→ ∞
S ←→ 0

Equator ←→ Unit circle {z ∈ C : |z| = 1}
(open) Southern hemisphere ←→ D := {z ∈ C : |z| < 1}
(open) Northern hemisphere ←→ Ĉ \B1(0) = Ĉ \ {z ∈ C : |z| ≤ 1}

Algebraically:

(x, y, s) ←→ x+ iy

1− s
(Stereo. Proj.)

1

|z|2 + 1

(
2Re(z), 2Im(z), |z|2 − 1

)
←→ z (Inverse Stereo. Proj.)

Remark 1.22. Note that we could have used the south pole S = (0, 0,−1), rather thanN ,
to define the projection. In that case we would have the correspondence (x, y, s) 7→ x+iy

1+s

(and you can check that the map f(z) = 1/z̄ takes x+iy
1−s to x+iy

1+s ).



CHAPTER 1. THE COMPLEX PLANE AND RIEMANN SPHERE 13

Definition 1.23. The Riemann sphere is the unit sphere S2 ⊂ R3 along with the
stereographic projections from the north and south pole.

Remark 1.24. Later in your studies you might learn that the Riemann sphere is a
special example of a Riemann surface. The purpose of considering the two stereographic
projection maps as part of the definition is that any point in S2 is in the domain of one
of the projections, so informally speaking, the maps allow us to think of a region nearby
to any point in S2 as a region inside C.



Chapter 2

Metric Spaces

2.1 Metric spaces

Now we have another way of thinking about Ĉ - as a sphere in R3 - it looks like there
might be (at least!) two natural ways to measure the distance between two points z
and w in the extended complex plane (or indeed in C).

• The modulus |z − w| of their difference in C.

• The distance in R3 between their stereographic representatives on the sphere S2.

In both cases, the set is the same, but there is a different notion of distance. A metric
space is a set together with a ‘distance’ function that satisfies certain axioms.

Definition 2.1 (Metric spaces). A metric space is a set X together with a function
d : X ×X → R≥0 such that for all x, y, z ∈ X

• (D1) Positivity. d(x, y) ≥ 0 and d(x, y) = 0⇐⇒ x = y;

• (D2) Symmetry. d(x, y) = d(y, x);

• (D3) Triangle inequality. d(x, y) ≤ d(x, z) + d(z, y).

The function d is called a metric and we will often denote a metric space by (X, d).

Examples of Metrics

1. The metric induced by the modulus function | . | on R or C. We can define a
distance function d on R × R or C × C by the formula d(x, y) = |x − y|. This
metric satisfies (D1)-(D3) by the properties 1. and 2. of the modulus we gave just
after Corollary 1.5.

14
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2. The Euclidean norm on Rn or Cn For vectors x in Rn (or Cn), the function

d(x,y) := ∥x− y∥2 =

√√√√ n∑
i=1

|xi − yi|2

is a metric. It is easy to check properties (D1)− (D3). Note that this norm comes
from an inner-product. For example, for n = 2, the real Euclidean norm on R2

comes from the usual dot product ∥x∥2 =
√
x · x and the complex Euclidean norm

on C2 comes from the inner product ⟨z, w⟩ = z1w̄1+ z2w̄2; that is ∥z∥2 =
√
⟨z, z⟩.

3. • (a) Metrics induced from inner products in vector spaces

More generally, given any finite dimensional real vector space V with a (pos-
itive definite) inner product ⟨ . ⟩, then

d(v, w) := ∥v − w∥ =
√
⟨v − w, v − w⟩ (v, w ∈ V )

is a metric. Properties (D1) and (D2) are obvious, property (D3) follows
from Cauchy-Schwarz: | ⟨v, w⟩ | ≤ ∥v∥ · ∥w∥ - see Assignments.

• (b) Metrics induced from norms in vector spaces

Even more generally, so long as a vector space has a ‘nice’ notion of the ‘size’
of each vector, we can define a metric in the obvious way. Such a notion is
in generality referred to as a norm:

Definition 2.2. [Norms and normed vector spaces] Given any real or com-
plex vector space V , a function ∥ . ∥ : V → R≥0 is a norm if it satisfies (for
v, w ∈ V )

– (N1) ∥v∥ ≥ 0 and ∥v∥ = 0 ⇐⇒ v = 0;

– (N2) ∥λv∥ = |λ| · ∥v∥ for λ ∈ R or C;
– (N3) ∥v + w∥ ≤ ∥v∥+ ∥w∥ (the triangle inequality).

Note that (N3) implies ∥v−w∥ ≥ | ∥v∥ − ∥w∥ | (the reverse triangle inequal-
ity). A vector space equipped with a norm is called a normed vector space.
The metric given by d(v, w) := ∥v − w∥ then always defines a metric (it is
easy to check properties (D1)-(D3)). In particular, since the modulus func-
tion on C is a norm, the metric we get from the modulus function comes
from a norm.

4. ℓp-norm on Rn or Cn (p ≥ 1)

The above suggests that a vector space could be home to many different norms
(so many different metrics). But, not all norms arise from an inner product as in
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(3a); for example, for vectors x in Rn or Cn, the function

∥x∥p := p

√√√√ n∑
i=1

|xi|p

defines a norm for every p ≥ 1, called the ℓp-norm. But, for p ̸= 2 (the Euclidean
norm) it does not arise from an inner product. When p = 1, the ℓ1-norm is simply
given by the sum of the size of the components ∥x∥1 =

∑n
i=1 |xi| and is sometimes

referred to as the Taxicab norm.

5. ℓ∞-norm on Rn (or Cn)

The function
∥x∥∞ := max

i=1,...,n
|xi|

also defines a norm, called the ℓ∞-norm (or the sup-norm), thus it also defines
a metric. It is in some sense the ‘limiting notion’ of the ℓp norms.

6. Riemannian (chordal) metric on Ĉ

Let f : Ĉ→ S2 be the (inverse of the) stereographic projection. Then the function

d(z, w) := ∥f(z)− f(w)∥2 (z, w ∈ Ĉ),

where ∥ . ∥2 is Euclidean norm in R3 (so, the ℓ2-norm), is a metric on Ĉ. It is
called the Riemannian metric (or chordal metric). Note that with respect to
this metric, the distance from 0 to i is the same as the distance from i to ∞, for
example!

7. Discrete metric

Let X be a non-empty finite set. Then (for x, y ∈ X) the function

d(x, y) :=

{
0 if x = y,

1 if x ̸= y,

defines a metric, called the discrete metric. It is easy to check (D1)-(D3). In
this case, (X, d) is called a discrete metric space.

8. Function spaces

There are many of these, such as the space X = C([a, b]) of continuous functions
on an interval [a, b]. The function

∥f∥ := max
x∈[a,b]

|f(x)|

defines a norm, and thus a metric (see Analysis III for more examples).
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9. Subspace metric

Any non-zero subset Y ⊂ X of a metric space X is itself a metric space with
respect to the same metric (this is easy to check). Unless mentioned otherwise,
this will always be the metric we will use on Y .

2.2 Open and closed sets

Since we have a general notion of distance in any metric space X, we can define balls
in the space. These will be the key to understanding the topology of the space.

Definition 2.3 (Balls in a metric space). Let (X, d) be a metric space, x ∈ X and let
r > 0 be a real number. Then:

• The open ball Br(x) of radius r centred at x is

Br(x) := {y ∈ X : d(x, y) < r}.

• The closed ball B̄r(x) of radius r centred at x is

B̄r(x) := {y ∈ X : d(x, y) ≤ r}.

Visualizing balls (examples)

1. Let X = C and d(z, w) = |z − w|, then B1(0) = D = {z : |z| < 1} as before.
More generally Br(z0) is the usual ball of radius r around z0, not including its
boundary circle. B̄r(z0) is the ball of radius r around z0, including its boundary
circle. This is the most important example from the point of view of Complex
Analysis.

2. Let us consider the unit ball B1(0) in R2 with respect to the ℓp-norms, for p = 1, 2
and ∞.

For p = 2 the unit ball B1(0) is the usual Euclidean ball - so the inside of the unit
circle centred at the origin. For p =∞, the equation max{|x|, |y|} < 1 (for (x, y) ∈
R2) clearly defines the interior of a square with vertices (1, 1), (−1, 1), (1,−1) and
(−1,−1).
For the ℓ1-norm a little care is needed. We are interested in the points (x, y) ∈ R2

with |x|+ |y| < 1. In the 1st quadrant this means y < 1− x, in the 2nd it means
y < 1 + x, in the 3rd we have y > −1− x and in the 4th its y > x− 1. Thus, the
unit ball is the interior of a diamond with vertices (1, 0), (0, 1), (−1, 0) and (0,−1).
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Definition 2.4. [Open/closed sets in a metric space] Let (X, d) be a metric space.
Then:

• A subset U ⊆ X is open (in X) if for every point x ∈ U there exists ϵ > 0 such
that Bϵ(x) ⊂ U .

• A subset U ⊆ X is closed (in X) if its complement U c := X \ U is open.

Remark 2.5. Sets in a metric space can be open and closed at the same time! For
example, the empty set ∅ and the whole metric space X are both open and closed. Such
sets are referred to as ‘clopen’.

Lemma 2.6. [Open balls are open] In a metric space, the open ball Br(x) is open!

Proof. Let y ∈ Br(x) with d(x, y) = s (and so s < r). We need to show there exists
ϵ > 0 such that Bϵ(y) ⊆ Br(x). Simply take ϵ = r − s > 0. Then for every z ∈ Bϵ(y)
we have

d(x, z)
(D3)

≤ d(x, y) + d(y, z) < s+ ϵ = r.

Thus, z ∈ Br(x) as required.

Remark 2.7. It can also be shown that in a metric space the closed ball Br(x) is closed
(see Assignments).

Open sets (examples/warnings)

1. All of the previously encountered subsets H,D,C∗ and C \ R≤0 of the com-
plex plane are open (see Assignments). The 1st quadrant Ω1 := {z ∈ C :
Re(z) > 0, Im(z) > 0} is open. To see this, for z ∈ Ω1 consider the ball Br(z)
where r = min(Re(z), Im(z))/2.

2. Let X be a discrete metric space, so d(x, y) :=

{
0 if x = y.

1 if x ̸= y.
Then, for

x ∈ X and r > 0 we have

Br(x) :=

{
{x} if r ≤ 1.

X if r > 1.

Therefore, (by Lemma 2.6) every singleton {x} is an open set with respect to the
discrete metric. Moreover, the complement X \ {x} is also open, since for any
y ∈ X \ {x} (that is, any y ̸= x in X) and any r < 1 the open ball Br(y) = {y}
is contained in X \ {x}. Thus, all balls are clopen with respect to the discrete
metric! In fact, any subset Y ⊆ X of a discrete metric space is clopen!
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3. Sets don’t have to be either open or closed. For example, [0, 1) is neither open
nor closed in R (with respect to the standard metric | . |) - simply check the point
x = 0 in [0, 1) and the point x = 1 in the complement (−∞, 0)∪ [1,∞). However,
recall that any subset of a metric space is itself a metric space (w.r.t the same
metric) - the subspace metric. Thus the pair ([0, 1), | . |) is a metric space - but
then (by the remark after Definition 2.4) the set [0, 1) is open!

Key: Open and closed sets are really relative notions, depending on the ambient
space (as well as the metric).

Notation: When we say a subset of R or Rn or C are open/closed, we will mean
with respect to the standard norms | . | and ∥ . ∥2 and | . | respectively. Most sets
we encounter do not simply look like open/closed balls, so it will be useful to have
rules for union and intersection:

Lemma 2.8. [Unions and intersections of open sets] Let (X, d) be a metric space.
Then:

1. Arbitrary unions of open sets are open; that is⋃
i∈I

Ui is open, for any (possibly infinite) collection of open sets Ui.

2. Finite intersections of open sets are open; that is

n⋂
i=1

Ui is open, for any finite collection of open sets Ui.

Proof. 1. Let x ∈
⋃

i∈I Ui. Then, by definition, it must be contained in the set Uj

for some j ∈ I. Since Uj is open there must exist a ball Bϵ(x) centred at x lying
in Uj . But then Bϵ(x) ⊆ Uj ⊆

⋃
i∈I Ui as required.

2. Let x ∈
⋂n

i=1 Ui. By definition x ∈ Ui for every i = 1, . . . , n. But, since they are
all open, for every Ui there must exist ri > 0 such that Bri(x) ⊂ Ui. Now simply
take ϵ = min

i=1,...n
(ri). Then for every i we have Bϵ(x) ⊆ Bri(x) and so

Bϵ(x) ⊆
n⋂

i=1

Bri(x) ⊆
n⋂

i=1

Ui.
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Corollary 2.9 (Unions and intersections of closed sets). Let (X, d) be a metric space.
Then:

1. Finite unions of closed sets are closed.

2. Arbitrary intersections of closed sets are closed.

Proof. De Morgan’s laws together with Lemma 2.8.

We have the following remarks about open and closed sets.

• An infinite intersection of open sets is not necessarily open (see Assignments).
Similarly, an infinite union of closed sets is not necessarily closed: e.g., the union
of closed intervals in R,

∞⋃
i=1

[
1

i
, 1− 1

i

]
= (0, 1) is open in R.

• The next generalisation of a metric space you will encounter (see Topology III)
is called a Topological space T . There, the only stipulations are the existence of
open sets such that

(i) ∅ and T are open ; (ii) Lemma 2.8 holds.

We have a hierarchy:

Inner-product space =⇒ Normed space =⇒ Metric space =⇒ Topological space.

• Why have we been looking at examples in R2 rather than C? It turns out that
both these spaces are ‘topologically equivalent’, that is, they have the same open
sets - this is obvious since the complex modulus is essentially just the Euclidean
norm on R2.

As we have seen, some sets are neither open nor closed. It will be useful to ask what
the largest possible open set is inside a given set. Similarly, what is the smallest closed
set containing a given set?

Definition 2.10 (Interior points, closure, boundary, exterior). Let A be a subset of a
metric space (X, d).

• The interior A0 of A is defined by

A0 := {x ∈ A : there exists an open set U ⊆ A such that x ∈ U}.
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• The closure Ā of A is the complement of the interior of the complement:

Ā :=
(
(Ac)0

)c
= {x ∈ X : U ∩A ̸= ∅ for every open set U with x ∈ U}.

• The boundary ∂A of A is the closure without the interior:

∂A := Ā \A0
[
=
(
A0
)c ∩ ((Ac)0

)c
=
(
A0 ∪ (Ac)0

)c]
• Don’t confuse closure with conjugation! Closure concerns sets in any metric space,
conjugation concerns points in C.

• Clearly the interior and exterior are open and clearly the boundary is closed. The
closure is also closed (see Assignments) - in fact, it is often defined more simply
as Ā := X \ (X \A)0, from which the closedness is obvious - it is the complement
of an open set.

• The boundary matches our naive notion. Broadly speaking, the interior of a set
consists of all the points that are not on its ‘edge’, and to form the closure of
a set you simply add all the missing edge points. Indeed, we have the following
additional properties of a subset A ⊂ X (see Assignments):

(a)A is open ⇐⇒ ∂A ∩A = ∅ ⇐⇒ A = A0; In fact A0 =
⋃
U⊆A
U open

U ;

(b)A is closed ⇐⇒ ∂A ⊆ A ⇐⇒ A = Ā; In fact Ā =
⋂
A⊆F

F closed

F ;

That is, the interior A0 is the largest open set contained in A and the closure Ā
is the smallest closed set containing A. Convince yourself that all the definitions
reflect your intuitive notions, say, for the plane!

• There is a nice “geometric” description for the boundary of a set

∂A = {x ∈ X : for all open sets U containing x, there exist y, z ∈ U with y ∈ A and z ∈ Ac}.

• In Rn or Cn for simple sets we only have to replace strict inequality with equality
(or vice versa) to obtain the closure (or interior). For example, for A = {z ∈ C :
1 < |z| ≤ 3}, we have A0 = {z ∈ C : 1 < |z| < 3}, Ā = {z ∈ C : 1 ≤ |z| ≤ 3}, and
∂A = {z ∈ C : |z| = 1} ∪ {z ∈ C : |z| = 3} (see Figure 2.1).

Similarly

{z ∈ C : 1 < Re(z) ≤ 3, |Im(z)| < 1} = {z ∈ C : 1 ≤ Re(z) ≤ 3, |Im(z)| ≤ 1}
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Figure 2.1: The set A with its interior and closure.

and

{z ∈ C : 1 < Re(z) ≤ 3, |Im(z)| < 1}0 = {z ∈ C : 1 < Re(z) < 3, |Im(z)| < 1}.

In fact, Br(x) = B̄r(x) for any ball in Rn or Cn.

However, this is not true in every metric space (see Assignments) - there are metric
spaces for which Br(x) ̸= B̄r(x); that is, the smallest closed set containing the
open ball Br(x) is not the closed ball B̄r(x)! [Hint: what if the open ball is already
closed!?]

2.3 Convergence and continuity

With our general notion of distance (a metric) comes a natural notion of convergence.

Definition 2.11. [Limits and convergence in a metric space] We say a sequence {xn}
in a metric space (X, d) converges to x ∈ X if we have

lim
n→∞

d(xn, x) = 0.

That is,

for every ϵ > 0 there exists N ∈ N such that d(xn, x) < ϵ for every n > N.

We write “xn → x as n→∞”, or “ lim
n→∞

xn = x”.
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Convergent sequences (example)

As mentioned, the chordal metric on Ĉ is d(z, w) = ∥f(z)− f(w)∥2, where ∥ . ∥2 is the
Euclidean norm on R3 and f is the inverse Stereographic projection given by

f(z) =

(
2Re(z)

|z|2 + 1
,
2Im(z)

|z|2 + 1
,
|z|2 − 1

|z|2 + 1

)
.

Show that with respect to this metric the sequence {ki}k∈N in Ĉ converges to ∞ ∈ Ĉ.
Since |ki| = k and f(∞) = (0, 0, 1) we have

d(ki,∞) = ∥f(ki)− f(∞)∥2 =

∥∥∥∥(0, 2k

k2 + 1
,
k2 − 1

k2 + 1

)
− (0, 0, 1)

∥∥∥∥
2

=

∥∥∥∥(0, 2k

k2 + 1
, − 2

k2 + 1

)∥∥∥∥
2

=

√(
2k

k2 + 1

)2

+

(
−2

k2 + 1

)2

→ 0 as k →∞.

Thus, the sequence indeed converges to ∞. This is quite an odd notion as we are
used to saying sequences ‘diverge’ if they tend to infinity. The key is that convergence
depends on the metric being used.

Limits in C with the standard metric (Very important!).

The above definition of limit in a metric space also gives us an example of limits in C
with the standard metric. This says that if zn is a sequence of complex numbers, then
limn→∞ zn = z if and only if

‘for all ϵ > 0, there exists N > 0 such that for all n ≥ N , |zn − z| < ϵ’.
Note this is the same definition as in Analysis I, but replacing the absolute value on

the real line by the modulus on C. Importantly, by the same proofs as in Analysis I,
limits in the complex plane follow the COLT rules.

Furthermore there is a very important link between convergence in the complex
plane and real convergence (see Analysis I for the proof). Let {zn}n∈N be a sequence of
complex numbers zn = xn + iyn. Then, for any fixed z0 = x0 + iy0 ∈ C we have

lim
n→∞

zn = z0 ⇐⇒ lim
n→∞

xn = x0 and lim
n→∞

yn = y0.

In other words, the sequence {zn} converges iff the real sequences {Re(zn)} and {Im(zn)}
converge (see Assignments).

Let’s return to our general setting of metric spaces and prove some properties of
limits.

Lemma 2.12. [Limits and open sets] Let (X, d) be a metric space. Then:
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1. A sequence can have at most one limit.

2. We have

lim
n→∞

xn = x ⇐⇒ ∀ open U with x ∈ U, ∃N ∈ N such that ∀n > N xn ∈ U.

Hence the notion of a limit in a metric space can be stated in terms only of its
open sets.

Proof. 1. Assume lim
n→∞

xn = x and lim
n→∞

xn = y. Then we have for each n, by the

triangle inequality d(x, y) ≤ d(x, xn) + d(xn, y), so taking the limit as n → ∞
gives

d(x, y) ≤ lim
n→∞

d(x, xn) + lim
n→∞

d(xn, y) = 0 + 0 = 0,

so d(x, y) = 0, hence x = y by property (D1) of metric spaces.

2. (⇒): Assume lim
n→∞

xn = x and that U is open with x ∈ U . By definition there

exists r > 0 such that Br(x) ⊆ U and an N ∈ N such that d(xn, x) < r for every
n > N . Thus, xn ∈ Br(x) ⊆ U for every n > N .

(⇐): Let ϵ > 0. We wish to find N ∈ N such that d(xn, x) < ϵ for n > N . Consider
the ball Bϵ(x). It is open and contains x, and so there exists N ∈ N such that
xn ∈ Bϵ(x) for every n > N . This is precisely the statement that d(xn, x) < ϵ for
n > N .

Remark 2.13. The key to completing proofs of this type is to write down the definitions
in your assumptions and also write precisely what you need to prove. Usually, doing
this leads very quickly to the proof.

Sequences in metric spaces also give a nice criterion to check if a set is closed. We will
show soon that F ⊆ X is closed if and only if every sequence in F which converges in
X has its limit point in F . That is, if {xn}n∈N is in F and limn→∞ xn = x for some
x ∈ X then x ∈ F .

We can now define what it means for a function between two metric spaces to be
continuous (this will incorporate many of the functions we have already encountered;
e.g., f : C→ C; R→ C; or C→ R).

Definition 2.14 (Continuity). A map f : (X1, d1) → (X2, d2) between two metric
spaces is called continuous at x0 ∈ X1 if

∀ ϵ > 0 ∃ δ > 0 such that ∀x ∈ X1 we have d1(x, x0) < δ ⇒ d2(f(x), f(x0)) < ϵ.

We say a function f is continuous on X1 if it is continuous at every point x0 ∈ X1.
[Note that this is exactly the same as in Analysis I.]
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Remark 2.15. Equivalently, one could write

∀ ϵ > 0 ∃ δ > 0 such that x ∈ Bδ(x0)⇒ f(x) ∈ Bϵ(f(x0)),

where the first ball is in X1 and the second ball is in X2.

Lemma 2.16. [Basic properties of continuous functions]

1. Products, sum, quotients of real/complex valued continuous functions on a metric
space X are continuous. E.g., if f : X → C and g : X → C are continuous, then
f + g and fg and f/g are continuous (where defined).

2. Compositions of continuous functions are continuous. I.e., if f : X1 → X2 and
g : X2 → X3 are continuous maps between metric spaces, then g ◦ f : X1 → X3 is
continuous.

Proof. Almost word-for-word from Analysis I.

Examples of continuous functions on the complex plane (with the stan-
dard metric)

• The identity function is continuous.

• Constant functions are continuous.

• The functions Re, Im : C→ R are continuous.

• The complex conjugation z 7→ z̄ is continuous as a map from C→ C.

• The modulus function z 7→ |z| is continuous as a map from C→ R.

• All of exp, sin, cos, sinh and cosh are continuous on C, as are all polynomials.

• If arg is the choice of argument function with values in (θ1, θ2] then arg is contin-
uous on C\R

θ1
(recall Rθ1 is the ray with angle θ1)

• If log is a branch of log corresponding to an argument function as above, then log
is continuous on C\Rθ1 .

As with limits, it will be useful to restate continuity in terms of open sets. First, recall
that for any function f : X1 → X2 and any set U ⊆ X2 we define the preimage f−1(U)
of U under f by f−1(U) := {x ∈ X1 : f(x) ∈ U}.

Theorem 2.17. [Continuity via open sets] Let X1 and X2 be metric spaces. Then:

f : X1 → X2 continuous ⇐⇒ f−1(U) is open in X1 for every open set U in X2

⇐⇒ f−1(F ) is closed in X1 for every closed set F in X2.



CHAPTER 2. METRIC SPACES 26

Proof. For open sets:

• (⇒): Let U be open in X2, and pick x ∈ f−1(U). Since U is open there exists
ϵ > 0 such that Bϵ(f(x)) ⊆ U (since f(x) ∈ U). But f is continuous, so by
definition there exists δ > 0 such that if y ∈ Bδ(x) we have f(y) ∈ Bϵ(f(x)).
Thus f(y) ∈ U , and so y ∈ f−1(U); since this is true for every y ∈ Bδ(x) we have
shown Bδ(x) ⊆ f−1(U) and so the set f−1(U) is open.

• (⇐): Let x ∈ X1 and ϵ > 0. We need to find a δ > 0 such that y ∈ Bδ(x) ⇒
f(y) ∈ Bϵ(f(x)). First notice that (by Lemma 2.6) the ball Bϵ(f(x)) is open. By
assumption, the preimage f−1(Bϵ(f(x))) of this ball is also open. The point x
must be in this preimage (because the centre f(x) is certainly in Bϵ(f(x))). Then,
since the preimage is open there must exist an open ball Bδ(x) around x contained
in f−1(Bϵ(f(x))). But, this is precisely the statement that y ∈ Bδ(x) ⇒ f(y) ∈
Bϵ(f(x)) as required.

For closed sets see Assignments.

Remark 2.18. • From the proof we see that we can be slightly more precise than
the statement of the theorem. We have, for example

f : X1 → X2 continuous ⇐⇒ f−1(U) is open in X1 for every open set U inX2

at x ∈ X1 containing f(x)

• Note that for the (⇐) direction we only actually needed the fact that f−1(B) was
open for any open ball B in X2. It turns out that the open balls ‘generate’ all the
open sets (via Lemma 2.8) - see Topology/Analysis III!

• Note that, by the second part of Theorem 2.17, if a function f : X1 → X2 is
continuous then f−1({x}) is closed for any x ∈ X2.

As with limits, it turned out that continuity depends only upon the open sets in the
respective metric spaces. This means we can use the continuity of known functions to
prove the openness of very complicated sets.

Showing sets are open using continuity (examples)

• Show the following set is open:

U = {(x, y) ∈ R2 : (x2 + y2) sin3(
√

x2 + 7) > 2}.

Well, the function

f : R2 → R : (x, y) 7→ (x2 + y2) sin3(
√

x2 + 7)
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is continuous by Lemma 2.16, because it is the product/composition of real valued
continuous functions. Moreover,

U = {(x, y) ∈ R2 : f((x, y)) > 2} = f−1((2,∞)).

Since (2,∞) is open in R (see Assignments), the set U is the preimage of an open
set under a continuous map and by Theorem 2.17 it is therefore open.

• We can actually do a little more using the following useful properties of the preim-
age (from Analysis I):

Useful properties of preimage

– f−1(A ∪B) = f−1(A) ∪ f−1(B).

– f−1(A ∩B) = f−1(A) ∩ f−1(B).

– f−1(A \B) = f−1(A) \ f−1(B).

Show the following set is open:

U = {(x, y) ∈ R2 : xy > 1, x2 + y2 > 3}.

Both
f(x, y) = xy and g(x, y) = x2 + y2

are continuous as functions R2 → R, and U = f−1((1,∞)) ∩ g−1((3,∞)).

Since f and g are continuous and both (1,∞) and (3,∞) are open in R, the
preimages f−1((1,∞)) and g−1((3,∞)) are open (by Theorem 2.17). By Lemma
2.8 we have that U is open, since it is the intersection of two open sets.

Showing functions are not continuous using open sets (example)

• We can also use openness to prove a function is not continuous. Indeed, for
f : X1 → X2, if there exists an open set U in X2 such that f−1(U) is not open in
X1, then f is not continuous. For example, the function f : R2 → R defined by

f(x, y) =

{
xy

x2+y2
, if (x, y) ̸= 0,

0 otherwise,

isn’t continuous at (0, 0). Why? Consider the preimage f−1((−ϵ, ϵ)). Claim:
This preimage is not open for ϵ sufficiently small.

First note that the preimage in question contains (0, 0) since f((0, 0)) = 0. To
show the preimage is not open it is enough to show that any open ball in R2

centred at (0, 0) is not contained in f−1((−ϵ, ϵ)): Let ϵ < 1/4, say, and for any
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δ > 0 consider the ball Bδ((0, 0)) centred at (0, 0). The point (δ/2, δ/2) is in

Bδ((0, 0)) since ∥( δ2 ,
δ
2)− (0, 0)∥2 = ∥( δ2 ,

δ
2)∥2 =

√
δ2

4 + δ2

4 = δ√
2
< δ. But

f

((
δ

2
,
δ

2

))
=

δ
2 ·

δ
2

δ2

4 + δ2

4

=
1

2
> ϵ,

so (δ/2, δ/2) is not in f−1((−ϵ, ϵ)). Thus, for any δ > 0 the ball Bδ((0, 0)) is not
contained in f−1((−ϵ, ϵ)) and so this preimage is not open.

Since (−ϵ, ϵ) is open in R it follows from Theorem 2.17 that f is not continuous.

Why preimages?

Note that the use of preimages in Theorem 2.17, rather than images, is important.
The same result is not true of images. E.g., the function f(z) = |z| is continuous as a
function C → R, but it maps an open set in the complex plane f : D → [0, 1) to an
interval that is neither open nor closed in R.

Note that this f is actually a bijection from R≥0 to R≥0, and in R≥0 the interval
[0, 1) is open! So, is the problem that we need the function to be bijective? No. For
example, consider the metric spaces X1 = [0, 1) ∪ [2, 3] and X2 = [0, 2] with the usual
(subspace) metric coming from the absolute value on R. Define

f : X1 → X2 : x 7→

{
x, if x ∈ [0, 1).

x− 1, if x ∈ [2, 3].

It is easy to check that f is a bijection and is continuous on its domain: (Continuity
is trivial for x ̸= 2. For x = 2, pick ϵ > 0, then for any 0 < δ < 1 we have Bδ(2) =
[2, 2+ δ). Note that f(2) = 1 and so Bϵ(f(2)) = (1− ϵ, 1+ ϵ). To show f is continuous
we must therefore find a δ so that f(x) ∈ (1− ϵ, 1+ ϵ) if x ∈ [2, 2+ δ). Simply pick any
δ < ϵ, for then:

x ∈ [2, 2 + δ) ⇒ f(x) = x− 1 ∈ [1, 1 + δ) ⊂ (1− δ, 1 + δ) ⊂ (1− ϵ, 1 + ϵ),

as required.) But, the set [2, 3] is open in X1 (see Assignments) and its image f([2, 3]) =
[1, 2] is not open in X2.

Thus, we genuinely do need to use preimages. When can we use images of contin-
uous functions to preserve properties of the sets in question? When can we find the
maximum/minimum value taken by a function on a set? It turns out a key concept is
that of sequential compactness.
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2.4 Sequential Compactness and Compactness

Definition 2.19 (Sequential Compactness). A non-empty subsetK of a metric spaceX
is called sequentially compact if for any sequence {xk}k∈N in K there exists a
convergent subsequence {xnk

}k∈N with limit in K.

Note that the initial sequence in the definition does not have to converge. But what
if it does? What is the link between a convergent sequence and its subsequences?

Lemma 2.20. If {xk}k∈N is a convergent sequence in a metric space X, then any
subsequence converges to the same limit.

Proof. Assume xk → x. Let {xnk
}k∈N be a subsequence (here n1 < n2 < · · · ). We

know that for every ϵ > 0 there exists N ∈ N such that xk ∈ Bϵ(x) for every k > N . So
simply note that nk > k, whence xnk

∈ Bϵ(x) for k > N . Thus, xnk
→ x.

It seems quite daunting to have to check every sequence in a set for convergent
subsequences, so it will be useful to re-express sequential compactness in terms of our
basic building blocks; that is, open and closed sets. However, exploring openness doesn’t
seem particularly fruitful; for example, consider the set (0, 1) in R; the sequence {1/n}
lies in (0, 1), but its limit is 0 /∈ (0, 1). Moreover, any subsequence must have the same
limit 0 by Lemma 2.20, and so (0, 1) is not sequentially compact. Let’s try closedness.

Proposition 2.21. [Closed sets and limits of sequences] We have

F ⊂ X is closed ⇐⇒ Every sequence in F which converges in X has its limit point in F.

(that is, if xn ∈ F and xn → x for some x ∈ X, then x ∈ F.)

Proof.

• (⇒): Assume F is closed and let {xn}n∈N be a sequence with xn ∈ F that converges
to x ∈ X. We wish to show x ∈ F . For a contradiction, assume x /∈ F ; that is,
assume x ∈ X \ F . We know X \ F is open, so by definition there must exist an
open ball Bϵ(x) centred at x and contained in X \F . But xn → x, so there exists
N ∈ N such that xn ∈ Bϵ(x) for n > N . Thus xn ∈ X \ F for n > N (that is,
xn /∈ F for n > N), which is a contradiction.

• (⇐): We need to show X \ F is open. Let x ∈ X \ F . We wish to show we can
always find a ball Bϵ(x) centred at x and contained in X \F . If for some n ∈ N we
have B1/n(x) ⊆ X \F we are done. Otherwise, pick an element xn ∈ B1/n(x)∩F
for each n. But then xn → x and xn ∈ F , but by assumption x /∈ F . This
contradicts the premise of the proof.
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Corollary 2.22. [Relationship between sequential compactness and closedness]

1. Sequentially compact sets are closed.

2. Any closed subset of a sequentially compact subset is sequentially compact.

Proof. 1. If F is sequentially compact and {xk}k∈N is a convergent sequence with
xk ∈ F and limit x ∈ X, then by definition there must exist a convergent subse-
quence {xnk

}k∈N with limit x0 ∈ F . But, by Lemma 2.20, these limits must be
the same; i.e., x = x0. Thus x ∈ F and by Proposition 2.21 the set F is closed.

2. Assume F ⊆ K is closed and K is sequentially compact. Let {xk}k∈N be any
sequence in F . Since each xk ∈ K there must exist a convergent subsequence
{xnk

}k∈N with limit x ∈ K. But, by Proposition 2.21 this limit must be in F .
This shows F is sequentially compact.

Are all closed sets sequentially compact? No: e.g., [0,∞) is closed in R, but xn = n
has no convergent subsequence. The problem here is that [0,∞) is unbounded.

Definition 2.23 (Bounded sets). A subset A ⊆ X of a metric space X is bounded if

there exists R > 0 and x ∈ X such that A ⊆ BR(x).

Lemma 2.24. [Sequentially compact sets are bounded] Let K ⊆ X be a sequentially
compact subset of a metric space X. Then K is bounded.

Proof. We employ a contrapositive argument. Assume K is not bounded and fix x ∈ K.
For each k ∈ N we can therefore find a point xk ∈ K such that d(xk, x) ≥ k (since
Bk(x) does not contain K). However, the sequence {xk}k∈N cannot have a convergent
subsequence; given any potential limit point x0 of xnk

we have

d(xnk
, x0)

(D3)

≥ d(xnk
, x)− d(x, x0) ≥ nk − d(x, x0) →∞ as k →∞.

So, we know that sequentially compact sets are closed and bounded. Is that enough?
Recall, the theorem of Bolzano-Weierstrass from Analysis I. It states precisely that
the closed and bounded intervals [a, b] in R are sequentially compact.

Theorem 2.25. [Heine-Borel for Rn]

A subset K of Rn is sequentially compact ⇐⇒ K is closed and bounded.

Remark 2.26. Heine-Borel does not hold for arbitrary metric spaces.
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The proof is simply induction on n, starting from the base ‘n = 1’ case for subsets
of R. For this reason (and since this is a Complex Analysis course), we will prove it for
C and leave the proof in higher dimensions for the enthusiastic reader - the statement
for C corresponds to that of R2 in the statement of Theorem 2.25, since C with its
standard metric can be identified with R2 with its standard metric.

Theorem 2.27 (Heine-Borel for C).

A subset K of C is sequentially compact ⇐⇒ K is closed and bounded.

Proof. • (⇒): This has been done via Corollary 2.22 and Lemma 2.24.

• (⇐): Applying Bolzano-Weierstrass, we see that Heine-Borel holds for subsets of
R.

Next, let K ⊆ C be a closed and bounded subset of C. It is very easy to show that
if K is bounded then there exists R > 0 such that K ⊆ BR(0). Let R > 0 be such
a number (so that |z| < R for every z ∈ K) and let {zk}k∈N be a sequence in C with
zn = xn+ iyn. Note that |xn| < R and |yn| < R. We wish to show there is a convergent
subsequence with limit in K.

The real interval [−R,R] is closed and bounded, so by Heine-Borel for R the interval
[−R,R] is sequentially compact. Notice that xk ∈ (−R,R) ⊂ [−R,R]. Since {xk}k∈N is
a sequence in [−R,R] there must be a convergent subsequence {xnk

}k∈N with limit in
[−R,R], say xnk

→ x ∈ [−R,R].
Consider the corresponding complex subsequence {znk

}k∈N, where znk
= xnk

+ iynk
.

Its imaginary part, the real sequence {ynk
}k∈N, also lies in the sequentially compact set

[−R,R]. So, it also must have a convergent subsequence {ynmk
}k∈N (so a subsequence

of a subsequence!!) which converges to some y ∈ [−R,R].
Finally, take the (sub)subsequence {znmk

}k∈N, where znmk
= xnmk

+ iynmk
. The

imaginary part converges to y and, by Lemma 2.20, the real part converges to x. Then,
by the facts we discussed about convergence of complex sequences, the subsequence
{znmk

}k∈N converges with limit x + iy. Since K is closed by assumption, it follows
from Proposition 2.21 that this limit x + iy is in K. This proves K is sequentially
compact.

Remark 2.28. • The complex plane C is not sequentially compact with respect to
the standard metric; e.g., the sequence {ik}k∈N has no convergent subsequence.
(Neither is Rn.)

• The Riemann sphere S2 in R3 is sequentially compact as a subset of R3 (with
the usual Euclidean metric). Hence Ĉ = C ∪ {∞} is sequentially compact with
respect to the chordal metric. (One way to prove this formally will be Theorem
2.30 below).
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• The orthogonal group O(n) and the unitary group U(n) are sequentially compact;
SLn(R) and GLn(R) are not (the same holds for matrices with entries in C).

Finally, before stating the connection between continuous functions and sequentially
compact sets, we restate continuity in terms of convergent sequences:

Lemma 2.29. A function f : X → Y between two metric spaces is continuous at x ∈ X
if and only if

lim
n→∞

f(xn) = f(x) for every convergent sequence {xn}n∈N in X with xn → x.

Proof. See Assignments.

Recall (from Analysis I) that non-empty sequentially compact sets in R have a mini-
mal and maximal element. [This is because f(x) = |x| is continuous - the statement you
have seen says continuous functions on sequentially compact sets attain their max/min.]

Theorem 2.30 (Extreme Value Theorem). Let f : X → Y be a map between two
metric spaces. Then,

K ⊂ X is sequentially compact and f is continuous

=⇒ the image f(K) is sequentially compact in Y.

In particular, for Y = R, any continuous real-valued function on a metric space X
attains minima and maxima on sequentially compact sets.

Proof. Let {yk}k∈N be a sequence in f(K), say with f(xk) = yk. We wish to show
it has a convergent subsequence with limit in f(K). Since K is sequentially compact,
there must be a convergent subsequence {xnk

}k∈N (of the sequence {xk}k∈N) with some
limit x in K. Since f is continuous, we have by Lemma 2.29 that xnk

→ x implies
ynk

= f(xnk
)→ f(x). Thus {ynk

}k∈N has limit f(x), and because x ∈ K we must have
f(x) ∈ f(K).

Remark 2.31. It follows that ifK is a sequentially compact subset of C, then Re(z), Im(z)
and |z| all attain maximum and minimum values on K. In term 2, we will find out a
stronger statement under the additional assumptions that f is (complex) differentiable
and K is ‘nice’; then the maximum modulus of a function occurs on the boundary of
K. This is called the maximum modulus theorem.

As was mentioned before (just after the definition of sequential compactness) - it
would be desirable to have a definition for sequential compactness that somehow revolves
around open sets (as we saw how important they are). This is not straightforward but
still possible. It goes through a more general notion of compactness:
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Figure 2.2: An “infinite” open cover of a set K on the left, and the finite open sub-cover
of it on the right.

Definition 2.32. Let X be a metric space. We say that a subset K is compact if
whenever {Ui : i ∈ I} is a collection of open subsets Ui ⊆ X with K ⊆

⋃
i∈I Ui, then

there exists a finite subset J ⊆ I with K ⊆
⋃

i∈J Ui.

The meaning of compactness is that any open cover admits a finite subcover. We
have the following theorem (see Assignments)

Theorem 2.33. Let X be a metric space and let K be a subset of X. Then K is
sequentially compact if and only if K is compact.



Chapter 3

Complex Differentiation

3.1 Complex differentiability

Differentiation of a complex function is defined in a similar way to that in R, except
using complex limits.

Definition 3.1 (Complex differentiability). A function f : U → C defined on an open
set U in C is (complex) differentiable at z0 ∈ U if

lim
z→z0

f(z)− f(z0)

z − z0
exists.

We call this limit the derivative of f at z0 and write f ′(z0) for the limit, i.e.

f ′(z0) = lim
h→0

f(z0 + h)− f(z0)

h
.

Remark 3.2. • In the second formulation the quantity h is a complex number (not
a real number), so the limit must exist from every direction. The second is often
the more useful expression of the two.

• Note that if a function f is complex differentiable at z then it is continuous at z.

Differentiating complex functions from first principles (examples)

1. Rules for differentiating polynomials are the same. For example, consider f(z) =
z2 on C. For any z ∈ C we have

lim
h→0

(z + h)2 − z2

h
= lim

h→0

z2 + 2hz + h2 − z2

h
= lim

h→0
(2z + h) = 2z.

Thus, f is differentiable on C and f ′(z) = 2z as expected.

34
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2. Consider f(z) = z̄. For it to be differentiable we must obtain the same limit from
every direction. But, considering limits from the purely real and purely imaginary
directions, for every z ∈ C we have

lim
h→0
h∈R

z + h− z̄

h
= lim

h→0
h∈R

h

h
= 1,

yet

lim
h→0
h∈R

z + ih− z̄

ih
= lim

h→0
h∈R

−ih
ih

= −1.

Since z was arbitrary this shows f is not differentiable anywhere.

3. As in the real case, sums/products/quotients of complex differentiable functions
are complex differentiable where defined (e.g., all polynomials/rational functions).
In particular, the product and quotient rules hold for complex derivatives.

4. Composition of differentiable functions are complex differentiable where defined.
In particular, the chain rule holds for complex derivatives. The proofs of 3.
and 4. here are almost identical to those from Analysis I, so are excluded.

5. Generally, non-constant purely real/imaginary functions are not complex differen-
tiable ; e.g., Re(z), Im(z), |z| are nowhere differentiable as functions from C→ C.

3.2 Cauchy-Riemann equations

We have a basic way of determining whether a function is complex differentiable, but
for more complicated functions we wish to find some nicer conditions. We consider a
complex valued function f , defined for z = x + iy in some set U ⊆ C, as a function of
the two real variables x and y. We write

f(z) = u(x, y) + iv(x, y)

and call Re(f) = u(x, y) the real part of f and Im(f) = v(x, y) the imaginary part of f .
For example, if f(z) = z2 then z2 = (x+ iy)2 = x2− y2 + i2xy, so u(x, y) = x2− y2

and v(x, y) = 2xy.
When considered as real functions R2 → R there are naturally two partial derivatives

associated with each of u and v:

ux(x, y) =
∂

∂x
u(x, y) := lim

h→0

u(x+ h, y)− u(x, y)

h
, uy(x, y) := lim

h→0

u(x, y + h)− u(x, y)

h
,

vx(x, y) := lim
h→0

v(x+ h, y)− v(x, y)

h
, vy(x, y) := lim

h→0

v(x, y + h)− v(x, y)

h
.

Note that the limits above are standard real limits in R (so h is real).
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Proposition 3.3. [Cauchy-Riemann equations] Let f = u+iv be complex differentiable
at z0. Then the real partial derivatives ux, uy, vx, vy exist at z0 and satisfy the Cauchy-
Riemann equations:

ux(z0) = vy(z0) uy(z0) = −vx(z0).

Furthermore, the derivative of f at z0 can be written as

f ′(z0) = ux(z0) + ivx(z0) = vy(z0)− iuy(z0)

= ux(z0)− iuy(z0) = vy(z0) + ivx(z0).

Proof. Since f is complex differentiable at z0 = x0+ iy0, the limit in the definition must
exist and agree no matter which way we approach z0. Choosing the purely real and
purely imaginary directions we have

lim
h→0
h∈R

f(z0 + h)− f(z0)

h
= f ′(z0) = lim

h→0
h∈R

f(z0 + ih)− f(z0)

ih
.

We may split each limit into real and imaginary parts, by standard properties of complex
limits. Since, when h is real,

f(z0 + h) = f((x0 + h) + iy0) = u(x0 + h, y0) + iv(x0 + h, y0), and

f(z0 + ih) = f(x0 + i(y0 + h)) = u(x0, y0 + h) + iv(x0, y0 + h),

the above reads

lim
h→0

u(x0 + h, y0)− u(x0, y0)

h
+ i lim

h→0

v(x0 + h, y0)− v(x0, y0)

h
= f ′(z0)

=
1

i
lim
h→0

u(x0, y0 + h)− u(x0, y0)

h
+

i

i
lim
h→0

v(x0, y0 + h)− v(x0, y0)

h
.

In other words, ux(z0) + ivx(z0) = f ′(z0) = (1/i)uy(z0) + vy(z0). Since 1/i = −i the
statement follows by comparing real and imaginary parts.

Returning to the function f(z) = z2, note that the C-R equations indeed hold: We
have u(x, y) = x2 − y2 and v(x, y) = 2xy and so

ux = 2x, vy = 2x, uy = −2y, vx = 2y.

Remark 3.4. [Warning] Note that Proposition 3.3 provides a way of showing a function is
not differentiable at a given point. It cannot be used to prove a function is differentiable.
I.e., it is only a necessary condition, not a sufficient one.
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It turns out, by considering a complex function f : C → C as a real function
f : R2 → R2 : (x, y) 7→ (u(x, y), v(x, y)), that we have precisely

f is complex differentiable ⇐⇒ f is real differentiable + C-R equations hold;

so indeed we do have a converse:

Theorem 3.5. Let f = u + iv be defined on an open subset U of C. Assume the
partial derivatives ux, uy, vx, vy exist, are continuous, and satisfy the Cauchy-Riemann
equations at z0 ∈ U . Then f is complex differentiable at z0.

Proof. Omitted. (If you’re interested to see a proof of this theorem, then you can find
one in Section 5.6, page 59, of the book “Introduction to Complex Analysis” by H. A.
Priestley, Second Edition, Oxford University Press, 2009.)

Determining complex differentiability via Cauchy-Riemann (examples)

1. Let f(z) = exp(z) = ex cos y + iex sin y. Then

ux = ex cos y, vy = ex cos y, uy = −ex sin y, vx = ex sin y.

All these functions are continuous as real functions (see Calculus I/AMV II) and
the C-R equations hold. Thus, by Theorem 3.5, exp is differentiable everywhere
in C and by Proposition 3.3

exp′(z) = ux + ivx = ex cos y + iex sin y = exp(z).

2. By the chain rule, f(z) = eiz is differentiable and f ′(z) = ieiz. Since they are just
sums of exp, all of the functions sin, cos, sinh, cosh are differentiable everywhere
in C and you can verify

sin′(z) = cos z, cos′(z) = − sin z, sinh′(z) = cosh z, cosh′(z) = sinh z.

Similarly, all polynomials/rational functions are differentiable with the usual for-
mulae: e.g., for a0 . . . an complex;

(anz
n + · · ·+ a2z

2 + a1z + a0)
′ = nanz

n−1 + · · ·+ 2a2z + a1.

For the branch of log corresponding to arguments in (θ1, θ2], the function log(z) is
differentiable in C \Rθ1 , i.e. at all points outside the branch cut. At these points,
the derivative is given by log′(z) = 1/z (see Sheet 4 Q7 where this is proved for
the principal branch).
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3. f(z) = sin(z)/z2 is differentiable everywhere except z = 0, since it is the quo-
tient of two complex differentiable functions (and is not defined when z2 = 0).
Furthermore,

[
sin(z)/z2

]′
=

(cos z)(z2)− (sin z)(2z)

(z2)2
=

z cos z − 2 sin z

z3
.

4. Let f(z) = f(x+ iy) = (x3+3x2y−y3−x2−2y2)+ i(−x3+3xy2−y3+4xy+3y).
Then,

ux = 3x2 + 6xy − 2x, vy = 6xy − 3y2 + 4x+ 3,

uy = 3x2 − 3y2 − 4y, vx = −3x2 + 3y2 + 4y.

Thus, the partial derivatives exist and are continuous everywhere. We have uy =
−vx everywhere, but ux = vy if and only if 3x2 − 2x = −3y2 + 4x + 3; that is,
when (x − 1)2 + y2 = 2. So, f is differentiable only on the circle of radius

√
2

centred at 1 in the complex plane!

Holomorphicity

In example 4. above, the function is only differentiable on a 1-dimensional subset of C.
This is a similar situation to a real function on R being differentiable only at a single
point - not a very interesting function to work with from an analytical perspective. It
will be useful for us to consider functions that are differentiable on genuine 2-dimensional
sets in C, for this will allow us to (later) express the functions using Taylor series. Such
functions will turn out to have some quite remarkable properties.

Definition 3.6 (Holomorphic functions). A function f : U → C defined on an open set
U ⊂ C is holomorphic on U if it is complex differentiable at every point in U .

We say f is holomorphic at z0 ∈ U if it is holomorphic on some open ball Bϵ(z0);
(in other words, if there exists ϵ > 0 such that f is complex differentiable at every point
in Bϵ(z0)).

Remark 3.7. • By the previous examples, exp, trig functions, and polynomials are
holomorphic on all of C. Logarithms and complex powers are holomorphic at
points outside their branch cuts.

• The function in the previous example 4. is nowhere holomorphic despite being
differentiable on a circle. To see this, simply note that any (open) ball in C
centred at a point z on this circle must contain a point w not on the circle. The
function is not complex differentiable at w, so is not holomorphic at z. Thus, being
holomorphic is a strictly stronger property than being complex differentiable.
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3.3 Connected sets and zero derivatives

We explore what it means for the derivative to be zero for a complex function. Consider,
for example, the function f : U → C, where U = {z ∈ C : |z| ≠ 1} and

f(z) =

{
1 if |z| < 1,

2 if |z| > 1.

The set U is open, the function f is clearly holomorphic on U and has zero derivative
on U . However, it takes two different values - it is not constant. The problem is that
f lives on two ‘unconnected’ subsets of the complex plane. We wish to find conditions
on the set U under which we can conclude f is constant (as we are used to for real
functions).

First, we need some terminology:

Definition 3.8. [Paths & path-connectedness]

1. A path or curve from z ∈ C to w ∈ C is a continuous function γ : [0, 1] → C
with γ(0) = z and γ(1) = w. We say the path/curve is closed if z = w (in this
case, the endpoints of the path join up).

2. A path/curve is said to be continuously differentiable, or C1, if its real part
and imaginary parts are continuously differentiable on [0, 1]. At the end point 0
and 1 this means that real part and imaginary parts have right-sided derivatives
at 0 and left-sided derivative at 1, and that the derivatives are continuos from the
right at 0 and from the left at 1.
In that case we define

γ′(t) = (Re (γ(t)))′ + i (Im (γ(t)))′ .

3. We say a subset U ⊆ C is C1 path-connected if for every pair of points z, w ∈
U there exists a C1 path from z to w such that γ(t) ∈ U for all t ∈ [0, 1].
For simplicity, we will sat path-connected instead of C1 path connected in the
remaining of this module.

In general paths can be defined from an interval [a, b] instead of [0, 1]. It makes no
difference since we can always reparametrise the paths. For instance, if γ1 : [a, b]→ X
is a given function we just define γ : [0, 1]→ X by

γ (t) = γ1

(
t− a

b− a

)
.

Conversely for γ : [0, 1]→ X we define γ1 : [a, b]→ X by

γ1 (t) = γ ((b− a) t+ a) .
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Note that the continuity or differentiability of the maps is identical, as well as their
image, so our definition of paths and C1 paths remains intact.

Remark 3.9. • [Advanced/Warning] Usually people use ‘path-connected’ to mean
you can connect two points simply by a continuous curve. We used a stronger
definition to make our life easier.

Intuitively, a subset is path-connected if it has ‘one piece’; i.e., if you can draw a line
between any two points in the set without the pencil leaving the subset (or the paper!).

Definition 3.10 (Domains). A domain D is an open, path-connected subset of C.
Some people call domains regions.

Showing sets are domains (examples)

1. We know both C and Br(z) (for any z ∈ C and r > 0) are open. They are
also path-connected: Simply choose the line segment between a and b given by
γ(t) = a+ (b− a)t. This is clearly a smooth path, so C and Br(z) are domains.

2. The set C \ R≤0, on which the principal branches of log and complex powers are
defined, is path-connected: Choose arbitrary a, b ∈ C \ R≤0. If a lies on the
positive real axis then the line segment again works (since it avoids the negative
real axis). Otherwise, we could try letting

γ1(t) = |a|eiArg(a)(1−t), γ2(t) = |a|+ (b− |a|)t.

The first path takes a to |a|, avoiding R≤0 by tracing around the circle of radius
|a| centred at the origin. The second joins |a| to b via a straight line. See Figure
3.1. (You can reparametrize to make t run from 0 to 1 on the combined path if
you like.) But the combined path running through γ1 then γ2 is not differentiable
at the point where the paths γ1 and γ2 meet! One possibility for a differentiable
path joining the points a and b would be the arc of the circle through a and b that
does not cross R≤0.

We know C \ R≤0 is also open, so it is a domain.

3. The set {z ∈ C : |z| ≠ 1} is not a domain. It is open, but it is not path-connected.
Pick a point a with |a| < 1 and b with |b| > 1. We cannot draw a continuous path
from a to b without crossing the circle |z| = 1; i.e., you cannot draw a continuous
path between the points without leaving the set.

Previously we have seen that there is a chain rule for the composition of two complex
differentiable functions. There is also the chain rule for the composition of a complex
differentiable function and a smooth path:
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Figure 3.1: A depiction of the paths when a is on the real line, and when a is not on
the real line.

Lemma 3.11. [Chain rule] Let U ⊂ C be an open set, f : U → C be a holomorphic
function on C and γ : [0, 1]→ U be a smooth path. Then for t0 ∈ [0, 1] we have

(f ◦ γ)′(t0) = f ′(γ(t0))γ
′(t0).

Proof. Similar to the proof of the chain rule in Analysis I.

Theorem 3.12. Let f : D → C be holomorphic on a domain D ⊆ C. If f ′(z) = 0 for
every z ∈ D then f is constant on D.

Proof. Since D is path-connected, it is enough to show f is constant on any smooth
path γ lying in D. In other words we wish to show f ◦ γ is a constant function of t.

We have (f ◦ γ)′(t) = f ′(γ(t))γ′(t) = 0 by the chain rule. Since f = u+ iv, we have

0 = (f ◦ γ)′(t) = (u ◦ γ)′(t) + i(v ◦ γ)′(t),

which means both (u ◦ γ)′(t) and (v ◦ γ)′(t) are equal to 0 for all t. Hence u and v are
constant along γ, so f is too.

Remark 3.13. The same statement holds if “f ′ = 0” is replaced with “f is purely
real/imaginary”, or “f has constant real/imaginary part”, or “f has constant modulus”
(see Sheet 4). So none of Re(z), Im(z), |z| or Arg(z) are holomorphic anywhere (since
they are non-constant real-valued functions).

3.4 The angle-preserving properties of holomorphic func-
tions

Given a smooth path γ : [0, 1] → C, we can talk about the tangent vector to γ at a
point z0 = γ(t0) on the path.
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Definition 3.14 (Conformal maps). We say a (real differentiable) map f : D → C on
a domain D ⊆ C is conformal at z0 if it preserves the angle and orientation between
any two tangent vectors at z0. This is exactly the same as saying that it preserves the
angle and orientation between any two smooth curves passing through z0. We say that
f is conformal if it is conformal at all points in D.

It turns out that there is a close relationship between holomorphic and conformal
maps.

Lemma 3.15. [Holomorphic maps are conformal] A holomorphic map f with f ′(z0) ̸= 0
is conformal at z0.

Proof. Take a smooth path γ : [0, 1] → C that passes through z0, and consider the
tangent vector to γ at the point z0 = γ(t0) on the path. What happens to this tangent
vector under the application of a holomorphic function f?

The path f ◦ γ is the path obtained by mapping γ under f . So to calculate what
happens to the tangent vector γ′(t0) under f , we should calculate the tangent vector
(f ◦ γ)′(t0). This is done using the chain rule:

(f ◦ γ)′(t0) = f ′(γ(t0))γ
′(t0) = f ′(z0)γ

′(t0).

This describes what happens to tangent vectors geometrically: f transforms the tangent
vector γ′(t0) by multiplying it by the complex number f ′(z0).

But we understand what multiplication by complex numbers means geometrically:
if f ′(z0) ̸= 0 then multiplcation by f ′(z0) is dilation (by |f ′(z0)|) followed by a rotation
(by Arg(f ′(z0))).

We now notice the following: both dilations and rotations preserve the angles and
orientations between vectors! This completes the proof.

Determining where maps are conformal (examples)

• Let f(z) = z2. Here, f ′(z) = 2z so f ′(z) = 0 ⇐⇒ z = 0 and so f is conformal on
C∗ = C \ {0} (since it is holomorphic everywhere). We don’t yet know whether f
is conformal at the origin, but we can check: we know that f ′(z) = 2z so f ′(0) = 0
and hence the action of f on tangent vectors at the origin is to multiply by 0,
hence sending any tangent vector to zero.

• Let f(z) = 2
3z

3 + 1
2(1− 2i)z2− iz+2− 1. This function is clearly holomorphic as

it is just a polynomial. We have

f ′(z) = 2z2 + (1− 2i)z − i = (2z + 1)(z − i),

which has zeros at −1
2 and i, so f is conformal on C \ {−1

2 , i}. [Note, we can
explicitly check what f does to tangent vectors at each point in this set: For
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example, at z = i/2 we have f ′(i/2) = (i + 1)(−i/2) = (1 − i)/2 = 1√
2
e−iπ/4.

Thus, at z = i/2 the function f rotates tangent vectors by Arg(f ′(i/2)) = −π/4
degrees, then dilates by a factor of |f ′(z)| = 1/

√
2.]

Rather than having to then check two paths through z = 1/2 and z = i respec-
tively, to determine whether f is conformal there, it will be convenient to have
a complete description in terms of holomorphicity. The converse to Lemma 3.15
holds:

Proposition 3.16. [Conformal maps are holomorphic] Let D be a domain. If f is
conformal at z0 ∈ D then f is complex differentiable at z0 and f ′(z0) ̸= 0. Therefore, if
f is conformal on D, then f is holomorphic on D and f ′(z) ̸= 0 for all z ∈ D. Thus

f is conformal on D ⇐⇒ f is holomorphic with f ′(z) ̸= 0 for all z ∈ D.

Proof. (Non-examinable) Sketch: we know f = u + iv is real differentiable when con-

sidered as a map f : ( xy ) 7→
(

u(x,y)
v(x,y)

)
. The total differential of this map at a point

z0 = x0 + iy0 (see AMV II) is the Jacobian matrix Dz0 =
(

ux(x0,y0) uy(x0,y0)
vx(x0,y0) vy(x0,y0)

)
. To pre-

serve angles it must be of the form c
(
cos θ − sin θ
sin θ cos θ

)
for some c ∈ R ̸=0. Thus Dz0 is of the

form
(
a −b
b a

)
and the C-R equations are satisfied at z0. Since f is real differentiable by

assumption, C-R equations are actually enough to show that f is complex differentiable
at z0 (we have not stated exactly this result before, but it holds). Since detDz ̸= 0 we
have f ′(z0) = ux(x0, y0) + ivx(x0, y0) ̸= 0.

Remark 3.17. [Advanced] The idea of this proof, in reverse, can be adapted to give a
more sophisticated proof of the CR equations!

Determining where maps are conformal (examples continued)

• Let f(z) = xy+ iy2. Then ux = y, vy = 2y, uy = x, vx = 0. So, the C-R equations
only hold at y = x = 0. Hence f is not conformal at any point z0 ̸= 0, since it
cannot be complex differentiable at z0 (as C-R. equations fail to hold), and hence
it is not conformal at z0 by Proposition 3.16. What happens for z0 = 0? There,
f ′(0) = ux(0, 0) + ivx(0, 0) = 0 + i0 = 0. So f cannot be conformal at 0 either by
Proposition 3.16. Thus, f is nowhere conformal.

Visualising conformal maps

Here is a useful result, helpful in visualising the action of conformal maps:

Corollary 3.18. Any conformal map maps orthogonal grids in the (x, y)-plane to or-
thogonal grids.
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Remark 3.19. [Important warning] We must allow our grids to be made up of
arbitrary smooth curves, not necessarily straight lines (Corollary 3.18 is false if they are
required to be made of straight lines).

How to visualise conformal maps (examples)

• Let f(z) = z2 = x2 − y2 + i2xy and consider the simple grid in the (x, y)-plane
made up of lines parallel to the real/imaginary axes, separated by distance 1.

Given a line (not passing through the origin) in such a grid, say x = a (̸= 0),
the function f takes this line to the points (a2 − y2, 2ay) in the (u, v)-plane. If
u = a2 − y2 and v = 2ay, then v2 = 4a2y2 and so u = a2 − ( v

2a)
2 and the image

defines a parabola.

Similarly, the line y = b (̸= 0) is taken to the parabola u = ( v
2b)

2− b2 in the (u, v)-
plane. By sketching these on the same axes we see that the parabolas indeed cross
at right angles.

Figure 3.2: The image of the perpendicular lines x = 1, y = 1 is a pair of parabolas
that cross at right angles.

• For the same example, consider the level curves u(x, y) = a and v(x, y) = b with
a, b ̸= 0. These trace out the curves y2 = x2 − a and y = b

2x respectively. By
sketching these curves on a graph (for, say, u = ±1, v = ±1) we see that they are
perpendicular. (They have to be, since f(z) is conformal on C − {0} and they
map to perpendicular straight lines.)

3.5 Biholomorphic maps

We wish to build a dictionary of conformal maps as a way of getting back and forth
between domains of the complex plane. To do this, we need our maps to be invertible.
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Definition 3.20 (Biholomorphic maps). Let D and D′ be domains. We say that
f : D → D′ is biholomorphic if f is holomorphic, a bijection, and the inverse f−1 :
D′ → D is also holomorphic. A biholomorphic map f is called a biholomorphism.
When f as above exists, we say that the domains D and D′ are biholomorphic and
write f : D

∼−→ D′.

Remark 3.21. [Advanced] It is possible to prove that if f as above is holomorphic and
bijective, then it is automatic that its inverse is holomorphic.

Finding biholomorphisms (examples)

1. The function exp : C → C∗ is not biholomorphic since it is not injective (e.g.,
ez = ez+2nπi). How can we make it biholomorphic? We simply need to restrict it
to a smaller domain where it will be injective. It is not too hard to check that

exp(z1) = exp(z2)

if and only if Re(z1) = Re(z2) and Im(z1) − Im(z2) ∈ 2πZ. So if we rule out
different z1 and z2 whose imaginary parts differ by an non-zero integer multiple
of 2π then we might be ok. We can do this by setting

D := {z ∈ C : Im(z) ∈ (−π, π) }.

If z = x + iy ∈ D then exp(z) = exeiy so the principal argument of exp(z) is
never equal to π. On the other hand, it is not hard to check that exp maps D
onto C − R≤0. Moreover, by our choice of D, exp is injective on D. So exp is
a bijection between D and C − R≤0. Therefore it has an inverse function, and
we already know what it is: the principal branch of Log. The function Log maps
C−R≤0 to D and is differentiable at every point of C−R≤0, so it is holomorphic
on C− R≤0. In summary, when restricted to D, exp is biholomorphic and hence
D and C− R≤0 are biholomorphic.

2. Let f(z) = z2. We have seen that this function is holomorphic on C. However, as
in the previous example, it is not injective since e.g. f(1) = f(−1) = 1. Note that
f(z1) = f(z2) with z1 ̸= z2 if and only if z1 = ±z2, so we may be able to create
a biholomorphic function by restricting f to a domain that never simultaneously
contains z and −z. Such a domain is the right half plane HR := {z ∈ C : Re(z) >
0}. We saw in a previous example that f maps HR to C− R≤0. In fact this is a
bijection, with inverse given by

f−1 : C− R≤0 → HR, f−1(z) := exp(
1

2
Log(z)).

Thus f−1 is holomorphic, since it is a composition of holomorphic functions, and
hence f gives a biholomorphism f : HR

∼−→ C− R≤0.
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3. The ‘affine’ linear maps z 7→ az+ b (for a ∈ C∗, b ∈ C) are biholomorphic C ∼−→ C.

As expected we can compose biholomorphic maps to construct new ones.

Lemma 3.22 (Automorphism groups). Let D ⊂ C be a domain. The set of all biholo-
morphic maps f : D

∼−→ D from D to itself forms a group under composition. We call
this group the automorphism group of D and denote it by Aut(D).

Proof. We need only check the group properties:

• The identity map Id : z 7→ z is always in Aut(D), and is clearly biholomorphic.

• We know composition of functions is associative, so f ◦ (g ◦ h) = (f ◦ g) ◦ h, for
holomorphic maps.

• f−1 is the inverse of f since f ◦ f−1 = Id = f−1 ◦ f . Moreover, f−1 is in
Aut(D) since it is itself holomorphic by assumption and has holomorphic inverse
(f−1)−1 = f .

• Aut(D) is closed: (f ◦ g) is holomorphic (by the chain rule) and its inverse
(f ◦ g)−1 := g−1 ◦ f−1 is also the composition of two holomorphic functions,
so holomorphic.

Remark 3.23. Note that example 1. shows conformal maps are not necessarily biholo-
morphic. On the other hand, it turns out (see Sheet 5) that all biholomorphic maps are
conformal. [Whilst the converse is not true in general, conformal maps turn out to be
‘locally’ biholomorphic.]



Chapter 4

Möbius transformations

4.1 Definition and first properties of Möbius transforma-
tions

In this chapter we study a very special class of functions that play a truly fundamental
role in mathematics, and have many beautiful properties. Recall that GL2(C) is the
collection of matrices

GL2(C) =
{(

a b
c d

)
: a, b, c, d ∈ C, ad− bc ̸= 0

}
= {2× 2 complex matrices with nonzero determinant}.

Also recall the extended complex plane Ĉ = C ∪ {∞} from Chapter 1.

Definition 4.1 (Möbius transformations). Given any matrix T =

(
a b
c d

)
∈ GL2(C)

we can define a function

MT : C→ Ĉ

by the formula

MT (z) =
az + b

cz + d

if cz + d ̸= 0, and if cz + d = 0 we set MT

(
−d

c

)
=∞ when c ̸= 0. The function MT is

called a Möbius transformation.

Remark 4.2. • [Advanced] The reason for excluding matrices for which detT = 0 is
because if detT = 0 and at least one of c and d is non-zero, so that the definition
makes sense, then T has rank 1, and this implies that (a, b) = λ(c, d) for some
λ ∈ C. But this would give that for z with cz+ d ̸= 0, we would have MT (z) = λ,

47
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so the transformation would be constant. This is not a very interesting function
to think about!

• For T ∈ GL2(C), by taking complex square roots, we can find a number such that
k2 = detT . Then

MT (z) =
az + b

cz + d
=

az
k + b

k
cz
k + d

k

= M 1
k T (z)

and

det(
1

k
T ) =

1

k2
detT = 1.

Thus, we may scale any T ∈ GL2(C) to obtain T ′ = T
k such that detT ′ = 1, and

MT = MT ′ .

It is slightly annoying that at the moment, the domain of a Möbius transformation
is not the same as its codomain. This would prevent us from composing two Möbius
transformations. However, it is possible to extend the definition to describe where
∞ ∈ Ĉ gets mapped to: we declare that

MT (∞) =

{
a
c if c ̸= 0

∞ if c = 0
.

Now we have MT : Ĉ→ Ĉ.

Example 4.3. 1. f(z) = z−1 is a Möbius transformation corresponding to the ma-

trix

(
0 1
1 0

)
. Note that |z| < 1 and z ̸= 0 if and only if |f(z)| = |z−1| = |z|−1 >

1, so f maps the punctured unit ball B1(0) − {0} onto the outside of the closed
unit ball. We have f(0) =∞ and f(∞) = 0, so f interchanges these two points.

Figure 4.1: Image of B1(0)− {0} under f .
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2. The Cayley map f(z) = z−i
z+i corresponds to the matrix

(
1 −i
1 i

)
. We have

f(z) ∈ B1(0) ⇐⇒ |f(z)| < 1 ⇐⇒ |z+i| > |z−i| ⇐⇒ z ∈ H = {z ∈ C : Im(z) > 0}.

Hence f maps the upper half plane to the open unit ball centered at 0. Moreover,
f(∞) = 1 and f(−i) =∞.

Figure 4.2: Image of upper half-plane under Cayley map.

Lemma 4.4. The set of Möbius transformations form a group under composition. Fur-
thermore,

1. MT1 ◦MT2 = MT1T2 .

2. (MT )
−1 = MT−1 .

3. MT = Id ⇐⇒ T = t

(
1 0
0 1

)
(t ∈ C∗).

Proof. See Assignments.

Remark 4.5. Recall from Linear Algebra that GL2(C) forms a group under matrix
multiplication. Lemma 4.4 says more than that the Möbius transformations form a
group. It says that the mapping

T 7→MT

is a group homomorphism between GL2(C) and the Möbius transformations! In other
words, composing Möbius transformations is basically just multiplying matrices!

Lemma 4.6. Let T =

(
a b
c d

)
∈ GL2(C). If c = 0, the Möbius transformation MT

gives a biholomorphic map
MT : C ∼−→ C.

If c ̸= 0, then MT gives a biholomorphic map

MT : C−
{
−d
c

}
∼−→ C−

{a
c

}
.
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Proof. If c = 0 then a, d ̸= 0 since detT ̸= 0. Hence

MT (z) =
az + b

d
=

a

d
z +

b

d

is just an affine linear map which is holomorphic. It is a bijection with inverse given
by (MT )

−1 = d
az −

b
a , which is holomorphic by the same token. So MT gives a

biholomorphic map C ∼−→ C.
If c ̸= 0 let’s check that MT is complex differentiable at every z ̸= −d

c . We can
calculate

M ′
T (z) =

a(cz + d)− c(az + b)

(cz + d)2
=

det(T )

(cz + d)2
.

Therefore the derivative exists at all points of C−
{−d

c

}
and hence MT is holomorphic

there. It is bijective with the inverse given by the inverse Möbius transformation,
which is holomorphic by the same argument. Hence MT is a biholomorphism from
C−

{−d
c

} ∼−→ C−
{
a
c

}
.

Corollary 4.7. A Möbius transformation MT is conformal at all z ∈ C with MT (z) ̸=
∞.

Proof. We know that biholomorphic maps are conformal, and MT is a biholomorphism
on C minus the points that map to ∞. Alternatively, one can check that in both cases
of the proof of Lemma 4.6, the derivative never vanishes.

Corollary 4.8. Any Möbius transformation is a bijection from Ĉ to Ĉ.

Proof. By Lemma 4.4 MT has an inverse MT−1 , so that MTMT−1 = MT−1MT as maps
from Ĉ to Ĉ, so MT is a bijection.

4.2 Fixed points, the cross-ratio, and the three points
Theorem

Let T ∈ GL2(C) and MT be a Möbius transformation. Then a point z is a fixed point
of MT if MT (z) = z.

Lemma 4.9. Let T ∈ GL2(C). If MT : Ĉ → Ĉ is not the identity map, then MT has
at most 2 fixed points in Ĉ. In other words, if a Möbius transformation has three fixed
points in Ĉ, then it is the identity.

Proof. We split into two cases.
First suppose MT (∞) = ∞. From the definition, this can only happen if c = 0, so

MT preserves C, and for z ∈ C, MT (z) = a
dz + b

d with a, d ̸= 0 (because detT ̸= 0).
Such an affine linear map has at most one fixed point as follows:
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• If a = d then b ̸= 0 since we assume MT is not the identity. Then MT is a
translation by b/d which has no fixed points.

• If a ̸= d then MT has a unique fixed point in C given by z0 = b/(d− a).

Now suppose MT (∞) ̸= ∞. Then any fixed points of MT are in C. Suppose z0 ∈ C is
such that MT (z0) = z0. We have

M a b
c d

(z0) = z0 ⇐⇒ az0 + b

cz0 + d
= z0 ⇐⇒ cz20 + (d− a)z0 − b = 0.

There are at most two roots of this quadratic equation, so at most two fixed points of
MT in Ĉ.

We introduce an important quantity called the cross-ratio.

Definition 4.10. Given four distinct points z0, z1, z2, z3 ∈ C, the cross-ratio of these
points is defined by

(z0, z1; z2, z3) :=
(z0 − z2)(z1 − z3)

(z0 − z3)(z1 − z2)
=

z0−z2
z0−z3
z1−z2
z1−z3

.

We will denote the cross ratio of z0, z1, z2, z3 by (z0, z1; z2, z3). We can extend the
definition to the case that one of the points is ∞ by removing all differences involving
that point, for example,

(∞, z1; z2, z3) :=
(z1 − z3)

(z1 − z2)
.

We can use the cross ratio to prove that a Möbius transformation is uniquely deter-
mined by how it acts upon any three given points in Ĉ.

Theorem 4.11. [Three points Theorem] Let {z1, z2, z3} and {w1, w2, w3} be two sets of
three ordered distinct points in Ĉ. Then there exists a unique Möbius Transformation
f such that f(zi) = wi for i = 1, 2, 3.

Proof.

Existence: Consider the functions

F (z) := (z, w1;w2, w3), G(z) := (z, z1; z2, z3).

These are Möbius transformations with the properties that F (w1) = 1, F (w2) = 0, F (w3) =
∞, and G(z1) = 1, G(z2) = 0, G(z3) =∞. Therefore F−1 ◦G maps each zi to wi.
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Uniqueness: Assume that there are two such maps, say f and f̃ . Then the Möbius

transformation H := f−1 ◦ f̃ satisfies H(zi) = f−1(f̃(zi)) = f−1(wi) = zi. This shows H
has three fixed points, z1, z2, z3, and by Lemma 4.9 it must therefore be trivial. Thus,
f = f̃ .

One has the following beautiful and fundamental fact about Möbius transformations:

Proposition 4.12. [Möbius transformations preserve cross-ratio] Möbius transforma-
tions preserve the cross ratio: if z0, z1, z2, z3 are four distinct points in Ĉ, and f is a
Möbius transformation, then

(f(z0), f(z1); f(z2), f(z3)) = (z0, z1; z2, z3). (∗)

Proof. Let wi = f(zi). Let F and G be the functions defined in the proof of Theorem
4.11. Recall that F−1 ◦ G mapped each zi to wi. So does f . Since there is a unique
Möbius transformation with this property, we must have f = F−1 ◦ G. Rearranging,
F ◦ f = G. But this is just the identity stated after applying both functions to z0 :

(f(z0), f(z1); f(z2), f(z3)) = F ◦ f(z0) = G(z0) = (z0, z1; z2, z3).

Finding a Möbius transformation from three points (example)

Find the unique Möbius transformation f : Ĉ→ Ĉ mapping the points {1,−1, i} to the
points {0,∞, 1}. Our method is simply to rearrange (∗): Notice that

lim
|w|→∞

f(z)− w

w1 − w
= lim

|w|→∞

f(z)
w − 1
w1
w − 1

=
−1
−1

= 1,

so (∗) reduces to

1 · w1 − w3

f(z)− w3
=

(
z − z2
z − z3

)(
z1 − z3
z1 − z2

)
⇐⇒ 0− 1

f(z)− 1
=

(
z − (−1)
z − i

)(
1− i

1− (−1)

)
⇐⇒ f(z)− 1 =

−2(z − i)

(z + 1)(1− i)

⇐⇒ f(z) =
(−1− i)z + (1 + i)

(1− i)z + (1− i)

⇐⇒ f(z) =

(
−1− i

1− i

)(
z − 1

z + 1

)
⇐⇒ f(z) =

−iz + i

z + 1
.
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Möbius transformations methods

This leads us to a general strategy to find a Möbius transformation from how it acts on three points:
Simply notice that since the cross ratio is preserved,(

f(z)− w2

f(z)− w3

)(
w1 − w3

w1 − w2

)
=

(
z − z2
z − z3

)(
z1 − z3
z1 − z2

)
,

and to find f we need only rearrange this equation.
There is also a general strategy to find the image of a region D under a Möbius transformation MT :

1. Find the image MT (∂D) of the boundary ∂D.

2. Find the image MT (z0) of a point z0 ∈ D in the interior.

3. The region D′ bounded by MT (∂D) and containing MT (z0) is precisely the image
of D under MT , and

MT : D
∼−→ D′ = MT (D).

4.3 Circles and lines

The following property of Möbius transformations is very useful when deciding how
they map different regions of the complex plane.

Proposition 4.13. Möbius transformations map circles and lines in Ĉ to circles and
lines in Ĉ.

Remark 4.14. [Technical] We consider any line to pass through infinity, so that the
above makes sense. By circles in Ĉ we mean simply circles in C.

In order to talk about what happens to circles and lines under Möbius transforma-
tions we need to know the equations of circles and lines. Of course, we already know
the equation of a circle or line, but it turns out these can both be described by the same
type of equation using complex numbers.

A circle of centre α and radius r is given by the equation

|z − α|2 = r2

which can be rewritten as

r2 = (z − α)(z̄ − ᾱ) = zz̄ − αz̄ − ᾱz + αᾱ.

Introducing a new parameter β = αᾱ− r2 ∈ R we have the equation

zz̄ − αz̄ − ᾱz + β = 0.
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This is the general equation of a circle, given by parameters α ∈ C and β ∈ R such that
|α|2 − β = r2 > 0.

What about lines? Well a line can always be written as a bisector:

ℓ = {z ∈ C : |z − w1| = |z − w2|}

with w1 ̸= w2 ∈ C. This means

(z − w1)(z̄ − w̄1) = (z − w2)(z̄ − w̄2)

or

zz̄ − w1z̄ − w̄1z + w1w̄1 = zz̄ − w2z̄ − w̄2z + w2w̄2.

Rearranging this, and writing α = w1 − w2 ̸= 0 and β = w1w̄1 − w2w̄2 ∈ R, we have

−αz̄ − ᾱz + β = 0.

This is the general equation of a line in C, given by parameters α ∈ C and β ∈ R such
that α ̸= 0.

Therefore we have proved

Lemma 4.15. [Equation of circles and lines in C] Given γ, β ∈ R and α ∈ C, the
equation

γzz̄ − αz̄ − ᾱz + β = 0

describes a circle if γ ̸= 0 and |α|2−βγ > 0, and a line if γ = 0 and α ̸= 0. Conversely,
any circle or line can be described by an equation of this form. l

Proof of Proposition 4.13. Consider an arbitrary Möbius transformationMT where T =(
a b
c d

)
. We can assume by previous remarks that detT = 1. If c = 0, then MT is

affine linear and is easily seen to preserve circles and lines (since rotations, dilations,
and translations obviously do). So we can assume c ̸= 0.

Note that

MT (z) =
az + b

cz + d
=

caz + cb

c(cz + d)
=

a(cz + d)

c(cz + d)
+

cb− ad

c(cz + d)
=

a

c
− 1

c(cz + d)
=

a

c
−
(

1

c2

)(
1

z + d
c

)
.

Thus MT is just some linear maps composed with the function f(z) = 1/z, called an
inversion. Since linear maps preserve circles and lines, it is therefore enough to consider
the action of f(z) = 1/z on lines and circles. Moreover, we have f−1(z) = 1/z = f(z)
so it is enough to consider one direction.
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Let X be a circle or line. By Lemma 4.15, X is described by an equation γzz̄ −
αz̄− ᾱz+ β = 0 with γ, β ∈ R. We claim that f(X) is described by a similar equation.
Indeed, if z ∈ f(X) and z ̸= 0, then f(z) = f−1(z) ∈ X and this happens if and only if

γ

(
1

z

)(
1

z

)
− α

(
1

z

)
− ᾱ

(
1

z

)
+ β = 0 ⇐⇒ βzz̄ − αz − ᾱz̄ + γ = 0.

Finally, let’s check this is the equation of a circle or a line.
First consider the case β = 0. If we started with a line we have α ̸= 0. If we started

with a circle we know |α|2 = |α|2 − β > 0 so we have α ̸= 0 again. Therefore, the new
equation describes a line.

Next, consider the case β ̸= 0. Then we can divide by β to get zz̄− α
β z−

ᾱ
β z̄+

γ
β = 0.

This looks like the equation of a circle, but we have to check

||α
β
||2 − γ

β
> 0 (4.1)

If we began with a line, then γ = 0 and α ̸= 0 so this is clearly true. If we began with a
circle, then γ = 1. If β < 0 then (4.1) is obvious since both terms are nonnegative and
γ/β < 0. If β > 0 then (4.1) follows from |α|2 − β > 0.

We we use the term circline to refer to an object that is either a circle or line.
Hence the previous Proposition could have been stated ‘Möbius transformations pre-
serve circlines’. The fact that Möbius transformations preserve circles and lines is very
powerful when combined with:

Remark 4.16. Any three distinct non-colinear points z1, z2, z3 ∈ C uniquely determine
a circle in C passing through those points. Any two distinct points uniquely determine
a line passing through those points.

So to find out where a circle is mapped under a Möbius transformation, one simply
needs to check where three points on the circle are mapped!

Finding the image of regions under Möbius transformations (example)

Find the image of the unit disc D := B1(0) = {w ∈ C : |w| < 1} under the Möbius

transformation corresponding to the matrix T =

(
2 + 2i −2− 6i

1 −1− 2i

)
. To determine

the image we look at what happens to the boundary: we first find the image of the unit
circle centred at the origin. Consider what happens to the four points on the unit circle,
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1, i,−1,−i under the map MT (z) =
(2+2i)z−(2+6i)

z−(1+2i) . Under MT :

1 7→ (2 + 2i)− (2 + 6i)

1− (1 + 2i)
=
−4i
−2i

= 2;

i 7→ (2 + 2i)i− (2 + 6i)

i− (1 + 2i)
=
−4− 4i

−1− i
= 4;

−1 7→ −(2 + 2i)− (2 + 6i)

−1− (1 + 2i)
=
−4− 8i

−2− 2i

By Proposition 4.13 the unit circle must be mapped to a circle, and the three calculations
above tell us that the image of the unit circle must be the circle centred at z = 3 of
radius 1. Note, the action of MT is not something so simple as a rotation; for example
we have

−i 7→ −(2 + 2i)i− (2 + 6i)

−i− (1 + 2i)
=

−8i
−1− 3i

=
12 + 4i

5
, which is near the image of -1 !!

What about the interior of this circle? Let’s pick a point in the unit disc and see
where it is taken. The point z = 0 is an obvious choice. We have

MT (0) =
(2 + 2i)0− (2 + 6i)

0− (1 + 2i)
=

2 + 6i

1 + 2i
=

(2 + 6i)(1− 2i)

5
=

14 + 2i

5
,

which lies inside this circle in question. Thus, by continuity MT maps D to the interior
of the circle centred at z = 3 of radius 1 (it cannot map another point z0 ∈ D to
somewhere outside this circle as the image of the path from 0 to z0 would have to
cross the boundary, but Möbius transformations are conformal). Continuity (and the
existence of an inverse) tell us the map must be onto and so

MT : D ∼−→ {z ∈ C : |z − 3| < 1}.

4.4 The Riemann sphere, revisited

Since we saw earlier that we can identify Ĉ with the Riemann sphere S2 by stereo-
graphic projection from the north pole, we can now think of Möbius transformations as
bijections from S2 to S2! In fact, our definitions were carefully chosen so that Möbius
transformations give continuous bijections from S2 to S2.

This is a very fruitful perspective that can unify our picture of Möbius transfor-
mations. I encourage you to try to think about Möbius transformations in this way
whenever you can!

Remark 4.17. It turns out that the definition of holomorphicity can be extended1 to
functions from S2 to S2. In fact, Möbius transformations give biholomorphic maps from

1The trick is to use the stereographic projection maps to transfer your function to C, and use the
definition of holomorphicity there.
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S2 to S2. Even better: the Möbius transformations give all the biholomorphic maps
from S2 to S2.

What do circles and lines in Ĉ correspond to in the Riemann sphere? The answer
is just circles! We can now add some more to our table of correspondences in (1.3):

In S2 In Ĉ
N ←→ ∞
S ←→ 0

Geometrically:

Circle not through N ←→ Circle

Circle through N ←→ Line

This also justifies our earlier convention that we think of all lines as passing through
infinity.

Remark 4.18. [Advanced] One other nice fact is that stereographic projection itself is
conformal! This means two tangent vectors to the sphere at the same point are mapped
to two tangent vectors in C (at the same point) with the same angle.

Example 4.19. Consider the map f : Ĉ → Ĉ, f(z) = i z−i
z+i . Using stereographic

projection, we can think of this as a transformation f̂ of the sphere S2. What is it?
We have that f̂(N) should correspond to f(∞) = i , f̂(0, 1, 0) should correspond to

f(i) = 0 and f̂(0, 0,−1) should correspond to f(0) = 1
i = −i. So f̂ mapsN, (0, 1, 0), (0, 0,−1)

to (0, 1, 0), (0, 0,−1), (0,−1, 0). We might guess that f̂ is simply a rotation of 90 de-
grees about the x-axis taking the ‘back’ hemisphere to the bottom/south hemisphere,
and this turns out to be correct!

To see why this is true, let’s cheat slightly and assume that the rotation that we’ve
guessed corresponds to a Möbius transformation. Then the Möbius transformation is
determined by what it does to three points, and we’ve already checked that our guess
agrees with the map f at three points ∞, i and 0.

4.5 Möbius transformations preserving the upper half plane
or unit disc

Notation: For a domainD ⊂ C, denote by Mob(D) the set of all Möbius transformations
f such that f(D) = D, i.e. f maps D to D.

Proposition 4.20. [H2H] Every Möbius transformation mapping H to H is of the form
MT with T in the group

SL2(R) := {T ∈ Mat2(R) : detT = 1}.
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Conversely, every such Möbius transformation maps H to H, and hence gives a biholo-
morphism from H to H.

In more concise terms, we have

f ∈ Mob(H) ⇐⇒ f = MT with T ∈ SL2(R).

Remark 4.21. This gives us a group homomorphism SL2(R)→ Mob(H) mapping T 7→
MT and hence also a group homomorphism SL2(R)→ Aut(H).

Proof. Any Möbius transformation f : H → H must map the boundary of H to the
boundary of H. Since this boundary is precisely the real line, f : R ∪ {∞} → R ∪ {∞}.
In particular, it must take the ordered set {1, 0,∞} to {x1, x2, x3} for some xi ∈ R∪{∞}.
Consider the cross-ratio; assuming xi ̸=∞ we have(

f(z)− x2
f(z)− x3

)(
x1 − x3
x1 − x2

)
=

(
z − 0

z −∞

)(
1−∞
1− 0

)
= z

⇐⇒ (f(z)− x2)(x1 − x3) = z(f(z)− x3)(x1 − x2)

⇐⇒ f(z) =
x3(x1 − x2)z + x2(x3 − x1)

(x1 − x2)z + (x3 − x1)
.

Thus, all coefficients are real, so T ∈ GL2(R).

Furthermore, if T =

(
a b
c d

)
∈ GL2(R) and z = x+ iy, then

Im (MT (z)) = Im

(
az + b

cz + d

)
= Im

(
(az + b)(cz̄ + d)

|cz + d|2

)
= Im

(
adz + bcz̄

|cz + d|2

)
=

(ad− bc)y

|cz + d|2
=

y detT

|cz + d|2
.

We have z ∈ H ⇐⇒ y > 0 so

MT (z) ∈ H ⇐⇒ T ∈ GL2(R), detT > 0

and so we can replace T by a real matrix of determinant 1 by scaling T by a real
number.

Proposition 4.22. [D2D] Every Möbius transformation from the unit disk D to itself
is of the form MT with T in the set

SU(1, 1) :=

{
T =

(
α β
β̄ ᾱ

)
: α, β ∈ C, detT = |α|2 − |β|2 = 1

}
.
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Conversely, every such Möbius transformation maps D to D and hence gives a biholo-
morphic automorphism of D.

In more concise terms, we have

f ∈ Mob(D) ⇐⇒ f = MT with T ∈ SU(1, 1).

Remark 4.23. • We obtain a group homomorphism

SU(1, 1)→ Mob(D) T 7→MT

and hence also a group homomorphism SU(1, 1)→ Aut(D).

• [Advanced] The group SU(1, 1) is not the Special Unitary Group SU(2). It is
actually the set of matrices T which preserve the quadratic form ⟨z, w⟩ = z1w1 −
z2w2 over C; so ⟨Tz, Tw⟩ = ⟨z, w⟩ for T ∈ SU(1, 1) and z, w ∈ C.

Proof. (⇒): Let MT : D→ D be a Mob trans and consider the following picture:

H f→ H
MC

↓
MC

↓

D MT→ D

where MC is the Cayley Map, so C =

(
1 −i
1 i

)
.

We have that f := MC−1 ◦MT ◦MC is a Möbius transformation from H to H. By Prop
4.20 (H2H) we have f = MS with S ∈ SL2(R), and by Lemma 4.4 we have S = C−1TC.

Let S =

(
a b
c d

)
with ad− bc = 1 and a, b, c, d ∈ R. Then you can calculate that

T = CSC−1 =
1

2

(
(a+ d) + i(b− c) (a− d)− i(c+ b)
(a− d) + i(c+ b) (a+ d)− i(b− c)

)
.

Clearly this is of the required form. Finally, we have

detT = det(CSC−1) = (detC)−1 · detS · detC = detS = 1

as required.

(⇐): Conversely, if T ∈ SU(1, 1) then the same calculation in reverse shows that the

matrix S := C−1TC is in SL2(R). Thus MS : H → H is a Möbius transformation by
Prop 4.20 (H2H), and by Lemma 4.4 the map MT := MC ◦MS ◦M−1

C is a Möbius
transformation H→ H.

We can actually say much more about what they look like:
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Corollary 4.24 (D2D*).

1. Every Möbius transformation f from the unit disk D to itself can be written

f(z) = eiθ
z − z0
z0 z − 1

,

for some angle θ and z0 ∈ D the unique point such that f(z0) = 0.

2. All Möbius transformations of the unit disk to itself for which f(0) = 0 are rota-
tions about 0.

Remark 4.25. The map g(z) := z−z0
z0 z−1 in the above swaps 0 and z0 and is an “involution"

(see Assignments; that is, g ◦ g = Id. Furthermore, the map z 7→ eiθz is a rotation.
So all Möbius transformations of the unit disk are given by an involution followed by a
rotation.

Proof. 1. By Proposition D2D we have

f(z) =
az + b

b̄z + ā
=

(
−a

ā

)  z −
(
− b

a

)(
− b̄

ā

)
z − 1

 ,

so z0 = −b/a. Moreover, since
∣∣−a

ā

∣∣ = 1, we must have −a
ā = eiθ for some

θ ∈ (−π, π]. All that remains is to check that z0 ∈ D. Since |a|2 − |b|2 = 1, we
have

|z0|2 − 1 =

∣∣∣∣− b

a

∣∣∣∣2 − 1 =
|b|2

|a|2
− 1 = − 1

|a|2
< 0,

and so |z0| < 1 as required.

2. We have

f(0) = 0 ⇐⇒ eiθ
(
−z0
−1

)
= 0 ⇐⇒ z0 = 0 ⇐⇒ f(z) = −eiθz,

and so f is a rotation.

Finding automorphisms (example)

Find a Möbius transformation f from the closed unit disc onto the closed unit disc
taking i

2 to 0 and −i to 1. Since i
2 7→ 0, by Corollary D2D* with z0 =

i
2 we have

f(z) = eiθ

(
z − i

2

− i
2z − 1

)
= eiθ

(
2z − i

−iz − 2

)
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for some θ. Since −i 7→ 1, we have

1 = eiθ
(
−2i− i

−1− 2

)
⇐⇒ 1 = eiθi ⇐⇒ eiθ = −i.

Thus

f(z) = −i
(

2z − i

−iz − 2

)
= i

(
2z − i

iz + 2

)
=

2z − i

z − 2i
(multiplying top and bottom by − i).

Finding the image of geometric shapes under Möbius transformation (ex-
ample)

Let F be the geometric figure made up of a line segment from 0 to −1, a clockwise
circular arc (tracing out the unit circle) from −1 to i, then a line segment from i to 0.
Find the image of F under the Cayley Map MC(z) =

z−i
z+i .

Each section is a segment of a circle or a line, so must be taken to a segment of a
circle or a line by Proposition 4.13. First, let us check where the three ‘vertices’ go. We
have

0 7→ −i
i

= −1; −1 7→ −1− i

−1 + i
=

(1 + i)2

2
= i; i 7→ i− i

i+ i
= 0.

Let’s look at where the line segment from 0 to i goes:

i

2
7→

i
2 − i
i
2 + i

=
−3i
i

= −1

3
,

so the line segment from 0 to i must map to the circle/line from −1 to 0, passing through
−1

3 ; that is, it is the line segment from −1 to 0 on the real axis.
Now, if we wanted we could do the same for the other two sections; pick a point on

each remaining line/circular arc and see where it maps to, thus determining whether
each image is a line segment or a circular arc. However, there is a much quicker method:
We know Mob trans are conformal and so preserve angles/orientation - so tracing round
the shape we must have the same angles in the image of the figure. So, travelling from
MC(0) = −1, when we reach MC(i) = 0 we must turn anticlockwise π/2 degrees and
head towards MC(−1) = i. Thus, the next section must simply be the straight line
from 0 to i. Similarly, the final section must be a circular arc from i back to −1. Thus,
the image is just F . Actually, letting D = {z ∈ D : π/2 < Arg(z) < π} be the interior
of F , one can check that D maps to D and and so MC−1 (and therefore MC) is actually
in Aut(D).

4.6 Finding biholomorphic maps between domains

1. Find a biholomorphism from D := {z ∈ D : Im(z) < 0} to H. We build the map
in various stages from simpler known maps.
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• Step 1: We know the Cayley transform MC is a map from H to D, so its
inverse MC−1 maps D to H. This is a good thing to start with as it has the
right image. To find the image of D under MC−1 first consider how it acts
on two segments of the boundary:

– The line segment from −1 to 1 (through 0). We have MC−1 = iz+i
−z+1 so

MC−1(−1) =
−i+ i

1 + 1
= 0, MC−1(1) =

i+ i

−1 + 1
=∞, MC−1(0) =

0 + i

0 + 1
= i.

Thus, the line segment from −1 to 1 (through 0) is taken to the line
segment from 0 to ∞ (through i); so, the nonnegative imaginary axis.
[You could also have just checked that “−d/c” = −1 is on the line, so it
must be taken to another line.]

– The circular arc from −1 to 1 (through −i). We have

MC−1(−i) =
−i2 + i

i+ 1
= 1.

Thus, the circular arc from −1 to 1 (through −i) is taken to the line
segment from 0 to ∞ (through 1); so, the real axis. [Instead, we could
just have used conformality to deduce that this was the image - the angle
and its orientation at z = −1 must be preserved, so the positive real axis
had to be the image.]

Combined, this tells us that the image of D under MC−1 is the first quadrant
Ω = {w ∈ C : 0 < Arg(w) < π/2} - by conformality the interior must stay
on the ‘same side’ of each line segment. [You could instead explicitly check
what happens to an element in D, say z = −i/2.]

• Step 2: We now need a biholomorphic map from Ω to H. We already know

of one from earlier: the map g : z 7→ z2 : Ω
∼−→ H. Since compositions of

biholomorphic maps are biholomorphic, this gives us the map we want; let
f := g ◦MC−1 then

f : D
∼−→ H.

We can write down the map f explicitly by composing the formulae of the func-
tions:

f(z) = g ◦MC−1(z) = g

(
iz + i

−z + 1

)
=

(
iz + i

−z + 1

)2

.
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Figure 4.3: The sequence of transformations to obtain f .

2. Find the image of D\R≤0 := {z ∈ D : −π < Argz < π} under the map h(z) = z1/2.
Thus, find a biholomorphic map from D \ R≤0 to the unit disc D.
We have (using the principal branch)

z = reiθ(θ ∈ (−π, π), 0 < r < 1) ⇐⇒ z1/2 =
√
reiθ/2

(
θ

2
∈ (−π

2
,
π

2
), 0 <

√
r < 1

)
.

We know the complex power function is biholomorphic on C− R≤0, so

h : D \ R≤0
∼−→ {z ∈ D : −π/2 < Argz < π/2}

maps D \ R≤0 biholomorphically to the (open) right half of the unit disc.

We also know rotations are biholomorphic on C and so r(z) = e−π/2 z = −iz maps
the right half of the unit disc biholomorphically to the lower half of the unit disc.

Using the previous example f from 1. we can now write down a biholomorphic
map from D := {z ∈ D : Im(z) < 0} to H, and then map H (via the Cayley Map)
to D. Namely, since MC(z) =

z−i
z+i : H

∼−→ D we have f̃ : D \ R≤0
∼−→ D, where

f̃(z) : = (MC ◦ f ◦ r ◦ h)(z) =

(
i(−iz1/2)+i

−(−iz1/2)+1

)2
− i(

i(−iz1/2)+i

−(−iz1/2)+1

)2
+ i

=
(z1/2 + i)2 − i(iz1/2 + 1)2

(z1/2 + i)2 + i(iz1/2 + 1)2
,

which you can simplify further if you wish.

3. Translations are biholomorphic on C so for example

f(z) = z − i : {w ∈ C : Im(w)− 1 > Re(w)} ∼−→ {w ∈ C : Im(w) > Re(w)}.

Since

g(z) = e−iπ
4 z =

1− i√
2
z : {w ∈ C : Im(w) > Re(w)} ∼−→ H
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Figure 4.4: The sequence of transformations to obtain f .

we have that f̃ := g ◦ f satisfies

f̃(z) = {w ∈ C : Im(w)− 1 > Re(w)} ∼−→ H.

Explicitly, f̃(z) =
(
1−i√

2

)
(z − i).



Chapter 5

Notions of Convergence in
complex analysis and power series

5.1 Pointwise and uniform convergence

Now we have good knowledge of basic continuous/holomorphic functions and their prop-
erties, we would like to be able to construct new continuous functions from them by
taking limits.

Given a sequence {fn}n∈N of functions fn on a subset of a metric space (say, on a
region in C), we want the limit function f(x) := limn→∞ fn(x) (if it exists) to behave
“nicely"; i.e., we want it to carry over useful properties of the functions fn. One
important case is that of an infinite series of functions

∞∑
n=0

fn := lim
N→∞

N∑
n=0

fn;

for example, a power series
∞∑
n=0

an(z − z0)
n in C. First we need a concrete notion of

what it means for a sequence of functions between two metric spaces to converge. Our
initial naive idea is the following version:

Definition 5.1 (Pointwise convergence). Let (X, dX) and (Y, dY ) be two metric spaces.
A sequence of functions {fn}n∈N : X → Y converges pointwise (on X) to f if every
x ∈ X the limit function f(x) := limn→∞ fn(x) exists in Y . In other words, we have

∀ x ∈ X and ∀ ϵ > 0, there exists N ∈ N such that ∀ n > N, dY (fn(x), f(x)) < ϵ.

Note that N depends on x ∈ X.

65
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Remark 5.2. Note that for any given x ∈ X we have that fn(x) is just a sequence of
points in Y . This definition is precisely what we get by applying Definition 2.11 to the
sequence fn(x) at every point x ∈ X independently.

The problem with pointwise convergence (examples)

1. Consider the sequence of functions fn = xn on [0, 1]. It is easy to see that sequence
is pointwise convergent on [0, 1] with limit

f(x) =

{
0, if x < 1.

1, if x = 1.

This is a sequence of continuous, differentiable functions on a compact set, but
the limit function is not continuous!

2. We encounter this issue again in the complex plane. Let fn : C → C : z 7→ zn.
We split into three cases.

|z| < 1: Pick z ∈ D and ϵ > 0. Then, we can certainly find N ∈ N such that |z|N < ϵ
(for example, take any N > log ϵ/ log |z|). Thus, for every n > N we have

|fn(z)− 0| = |z|n < |z|N < ϵ,

and so limn→∞ fn(x) = 0 in D.
|z| = 1: When |z| = 1 the point z rotates around the unit circle ∂D by Arg(z) every

iteration. For any z ̸= 1 this sequence clearly doesn’t converge, but for z = 1
we have limn→∞ fn(z) = limn→∞ 1 = 1.

|z| > 1: Here, the value |z|n is unbounded, so the limit does not exist.

To conclude, the sequence fn(z) is not pointwise convergent on C, however, notice
that it is pointwise convergent on D ∪ {1} with limit function

f(z) =

{
0, if z ∈ D.
1, if z = 1.

Again, this is not continuous.

3. Was the problem that the region where the function converges wasn’t open? From
the previous examples it seems like this could be the case (it was fine on the
interior of balls). No! For example, the sequence of continuous functions fn(x) =
arctan(nx) converges pointwise on all of R to the not-continuous function

f(x) =


π/2, if x > 0.

0, if x = 0.

−π/2, if x < 0.
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Key: Pointwise convergence does not preserve continuity. We need a better notion.

Definition 5.3 (Uniform convergence). We say a sequence of functions {fn}n∈N : X →
Y converges uniformly (on X) to (the limit function) f if we have

∀ ϵ > 0, ∃N ∈ N such that ∀n > N d(fn(x), f(x)) < ϵ, ∀x ∈ X.

Note that N here does not depend on the specific choice of x ∈ X - the same N works
for all of them!

Remark 5.4. Uniform convergence trivially implies pointwise convergence (to the same
limit).

The following is a generalization of a theorem from Analysis I.

Theorem 5.5. [Uniform limits of continuous functions are continuous] Let (X, dX)
and (Y, dY ) be two metric spaces and let {fn}n∈N : X → Y be a sequence of continuous
functions that converges uniformly to f on X. Then f is continuous on X.

Proof. We will show f is continuous at any given x0 ∈ X. Let ϵ > 0. Since fn → f
uniformly we have that

∃N ∈ N such that ∀ n > N dY (f(x), fn(x)) <
ϵ

3
∀ x ∈ X. (5.1)

We know each fn is continuous at x0, therefore there exists δ > 0 such that

∀ x with dX(x, x0) < δ, we have dY (fn(x), fn(x0)) <
ϵ

3
. (5.2)

Pick some fixed n > N . Then, for any x with dX(x, x0) < δ we have

dY (f(x), f(x0))
(D3)

≤ dY (f(x), fn(x)) + dY (fn(x), f(x0))

(D3)

≤ dY (f(x), fn(x)) + dY (fn(x), fn(x0)) + dY (fn(x0), f(x0))

(5.1)
<

ϵ

3
+ dY (fn(x), fn(x0)) +

ϵ

3
(5.2)
<

ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ.

Thus f is continuous at x0.

We would like to develop criteria to determine when sequences of complex valued
functions converge uniformly. Here is the first, if we already know the sequence converges
pointwise:
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Lemma 5.6. [Test for uniform convergence] Let fn : X → C be a sequence of functions
converging pointwise to a limit function f .

1. If |fn(x) − f(x)| ≤ sn for every x ∈ X, where {sn}n∈N is some sequence in R≥0

(independent of x) with limn→∞ sn = 0, then fn converge uniformly to f on X.

2. If there exists a sequence xn ∈ X such that |fn(xn)− f(xn)| ≥ c for some positive
constant c, then fn does not converge uniformly to f on X.

Proof. Very easy.

1. Let ϵ > 0 and x ∈ X. Since sn → 0 there exists N ∈ N with sn < ϵ for n > N .
Thus, for n > N we have |fn(x)− f(x)| ≤ sn < ϵ.

2. The statement obviously implies the negation of uniform continuity; it states that
there exists ϵ (= c) such that for all sufficiently large n ∈ N there is a point
x (= xn) ∈ X for which |fn(x)− f(x)| ≥ ϵ.

Checking for uniform convergence (example)

Consider the sequence of functions fn(z) = ez + 1
n and gn(z) = ez + z

n . It is easy to see
that both functions converge pointwise to the exponential function f(z) = ez: for every
fixed z ∈ C we have limn→∞(ez + 1

n) = ez = limn→∞(ez + z
n).

Notice that fn → f uniformly because for every z ∈ C we have

|fn(z)− f(z)| =
∣∣∣∣(ez + 1

n

)
− ez

∣∣∣∣ = 1

n
;

so we may take sn = 1/n in Lemma 5.6 part 1..
However gn ̸→ f uniformly - the giveaway is that in writing

|gn(z)− f(z)| =
∣∣∣(ez + z

n

)
− ez

∣∣∣ = |z|
n
;

the difference depends on |z|, and |z| is unbounded in C. So, we simply notice that
upon taking zn = n that |gn(zn) − f(zn)| = 1 and by Lemma 5.6 part 2. there is no
uniform convergence.

However, for ρ > 0 the sequence gn does converge uniformly in any ball Bρ(0) in
the complex plane. For then |gn(z)− f(z)| = |z|/n < sn := ρ/n.

As mentioned, we are mainly interested in the convergence of infinite series.
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Theorem 5.7. [Weierstrass M-test] Let fn : X → C be a sequence of functions such
that |fn(x)| ≤Mn for all x ∈ X and some sequence of non-negative numbers {Mn}n∈N
such that

∞∑
n=1

Mn <∞.

Then SN (x) =
∑N

n=1 fn(x) converges uniformly on X to some limit function S : X → C
which we denote by

S(x) =

∞∑
n=1

fn(x).

In particular, if all the functions fn(x) are continuous on X then S(x) =
∑∞

n=1 fn(x)
is also continuous on X.

Proof. Excluded - see similar proof from Analysis I. Instead, we will prove a stronger
result later.

Determining the convergence of series via the M-test (example)

Show that
∞∑
n=1

|2z|3n

32n n2

converges uniformly on D and let f(z) be its limit function. Is f(z) continuous on D?
Note that when |z| ≤ 1 we have

|2z|3n

32n n2
≤ 23n

32n n2
=

(
8

9

)n ( 1

n2

)
<

1

n2
.

We know
∑

n∈N 1/n2 converges, so taking Mn = 1/n2 the Weierstrass M-test implies
the function converges uniformly to some limit function f . Furthermore, since every fn
was continuous, then so is f (by Theorem 5.5).

Have we found our ideal definition of convergence? Indeed, we record one other
crucial property of uniform convergence from Analysis I:

Theorem 5.8. Assume a sequence of functions fn : [a, b]→ R converge uniformly on
an interval [a, b] to some function f , and that {fn} are all continuous. Then

lim
n→∞

∫ c

a
fn(x) dx =

∫ c

a
f(x) dx, for all c ∈ [a, b].

In particular, if
∑∞

n=1 fn(x) converges uniformly on an interval [a, b] and if {fn}n∈N
are continuous for all n ∈ N then for any c ∈ [a, b] we have that:∫ c

a

( ∞∑
n=1

fn(x)

)
dx =

∞∑
n=1

∫ c

a
fn(x) dx.
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Remark 5.9. If the convergence is not uniform all bets are off! We will heavily use this
in term 2 for contour integrals.

Everything looks good, but there is a slight issue to think about.

The problem with uniform convergence (an important example)

Let us return to the sequence of functions fn(z) = zn. We saw that it converges
pointwise on the (open) unit disc D to the function f(z) = 0. Is this convergence
uniform?

Let’s see if we can find a sequence such that |fn(zn) − f(zn)| = c for some c > 0.
For simplicity, let’s just try to find a sequence of positive real numbers: We want

c = |fn(zn)− f(zn)| = |(zn)n − 0| = (zn)
n,

so simply take zn = c1/n. We need this sequence to be in D so let’s set c = 1/2. Then
with zn = (1/2)1/n ∈ D, by construction we have

|fn(zn)− f(zn)| =

∣∣∣∣∣
((

1

2

)1/n
)n

− 0

∣∣∣∣∣ =
(
1

2

)n/n

=
1

2
.

It follows from Lemma 5.6 part 2. that the convergence is not uniform. BUT, notice
that the limit function f(z) = 0 is trivially continuous on all of D - our notion can’t
even conclude that the constant function is continuous for a very basic example - we
have in some sense been too restrictive!

Key: Uniform convergence is actually too restrictive in terms of preservation of conti-
nuity.

5.2 Locally uniform convergence

Definition 5.10 (Locally uniform convergence). Let {fn}n∈N be a sequence of functions
in a metric space X. We say {fn} converges locally uniformly (on X) to (the
limit function) f , if for every x ∈ X there exists an open set U ⊂ X containing x on
which {fn}n∈N converges uniformly to f .

Theorem 5.11. Let {fn}n∈N be a sequence of continuous functions, which converges
locally uniformly on X to a limit function f . Then f is continuous on X.

Proof. Locally uniform convergence gives for any x ∈ X that the sequence converges
uniformly on some open U containing x. Hence f is continuous on U by Theorem 5.5.
Hence f is continuous at x. Since x was arbitrary, f is continuous.

Remark 5.12. This is in many ways the “right" notion for convergence of a sequence of
functions. It was championed by Weierstrass. In term 2, we will see that the limit of a
locally uniform convergent sequence of holomorphic functions is again holomorphic!!
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Locally uniform but not uniform convergence (example)

Again, consider fn(z) = zn. We know this sequence converges pointwise to f = 0 on
the (open) unit disc D, but not uniformly. However, the convergence is locally uniform.

For w ∈ D, we can find r < 1 such that w ∈ Br(0) (this will be our open set U).
Then for all z ∈ Br(0), we have |zn| < rn and limn→∞ rn = 0. Hence by Lemma 5.6
part 1. (with sn := rn), we have uniform convergence in Br(0).

Note the ‘counter example’ (1/2)1/n from above fails since limn→∞(1/2)1/n = 1, so
at some point the sequence (1/2)1/n leaves the ball Br(0).

Remark 5.13. Proving locally uniform convergence on every ball Br(0) in D (for 0 <
r < 1) is enough to prove that the limit function f is continuous on all of D. In fact,
to show a limit function f is continuous on a set X, it turns out to be enough to prove
uniform convergence on all compact sets in X:

Theorem 5.14. [Local M-test] Let X be a metric space and let fn : X → C be a
sequence of continuous functions such that for any y ∈ X, there is an open U ⊂ X
containing y and constants Mn > 0 with

∑∞
n=1Mn < ∞ and |fn(x)| ≤ Mn for all

x ∈ U . Then
∑∞

n=1 fn converges locally uniformly to a continuous function on X.

Proof. [Hard but worthwhile!] If we prove
∑∞

n=1 fn converges locally uniformly on X,
then it converges to a continuous function on X by Theorem 5.11. So we need to show
that if Fk =

∑k
n=1 fn, then the sequence Fk converges locally uniformly on X, i.e. we

want to prove:
There is a function F : X → C such that for any y ∈ X there is an open U with

y ∈ U ⊂ X and with Fn converging uniformly to F on U .
Step 1. The sequence is pointwise convergent. Given y ∈ X, the hypothesis implies

that there are constants Mn > 0 such that |fn(y)| ≤Mn and
∑∞

n=1Mn converges. Note
that

|Fk(y)| =

∣∣∣∣∣
k∑

n=1

fn(y)

∣∣∣∣∣ ≤
k∑

n=1

|fn(y)| ≤
k∑

n=1

Mn

Since as k → ∞, the RHS converges, it must be bounded, say by L, so for all k,
|Fk(y)| ≤ L and hence the sequence Fk(y) is bounded. Hence it is contained in some
large closed ball, which is compact by Heine-Borel, and hence there is a subsequence
Fkj (y) that converges to some value F (y). We want to prove the whole sequence also
converges to F (y).

Also note that for kj ≥ k

|Fkj (y)− Fk(y)| =

∣∣∣∣∣∣
kj∑

n=k+1

fn(y)

∣∣∣∣∣∣ ≤
kj∑

n=k+1

|fn(y)| ≤
kj∑

n=k+1

Mn.
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Taking the limit as j →∞, both the LHS and RHS converge, and we get

|F (y)− Fk(y)| ≤
∞∑

n=k+1

Mn.

Now taking the limit as k →∞ of both sides, the RHS goes to zero (any sequence that
converges must have tails that go to 0) and we obtain

lim
k→∞

|F (y)− Fk(y)| = 0.

So Fk(y)→ F (y) as k →∞. Repeating this for all y, we get that Fk → F pointwise on
X. (I.e. we didn’t need the subsequences.)

Step 2. Locally uniform convergence. Given y as in the statement we want to
prove, let U be the open set provided by hypothesis of the Theorem, and Mn be the
provided constants for this U .

By the same estimate as we used before, we have for all x in U (this is the key
point!) and for all ℓ > k

|Fℓ(x)− Fk(x)| ≤
ℓ∑

n=k+1

Mn.

Taking the limit as ℓ→∞ we obtain |F (x)− Fk(x)| ≤
∑∞

n=k+1Mn for all x ∈ U . Now
since limk→∞

∑∞
n=k+1Mn = 0, the test for uniform convergence (Lemma 5.6 part 1.)

tells us that Fk → F uniformly on U , as required.

5.3 Complex power series

A (complex) power series is an expression of the form

∞∑
n=0

an(z − c)n

with an and c complex numbers. Recall that from Analysis I we have:

Theorem 5.15. There are three cases:

1.

∞∑
n=0

an(z − c)n converges only for z = c. (R = 0)

2. There exists R > 0 (radius of convergence) such that
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•
∞∑
n=0

an(z − c)n converges absolutely for |z − c| < R.

(We call BR(c) the disc of convergence.)

•
∞∑
n=0

an(z − c)n diverges for |z − c| > R.

(Anything can happen on the circle |z − c| = R).

3.
∞∑
n=0

an(z − c)n converges absolutely for all z ∈ C. (R =∞)

Proof. See Analysis I.

Remark 5.16. The radius of convergence can be found using the formula

R =
1

lim supn→∞
n
√
|an|

.

We can replace lim sup by lim when the limit exists.
Moreover, we have the following formula when the limit exist:

R = lim
n→∞

|an|
|an+1|

.

We have the following key result:

Theorem 5.17. A power series

∞∑
n=0

an(z − c)n with radius of convergence 0 < R ≤ ∞

converges uniformly on any ball Br(c) with 0 < r < R. This implies the power series is
locally uniformly convergent on its disc of convergence.

Proof. The second statement follows from the first since every w ∈ BR(c) is contained
in some Br(c) with r < R.

So we will prove the convergence is uniform on Br(c) given r < R. Consider
the point z0 = c + r. We have |z0 − c| = r < R, so z0 ∈ BR(c) and the se-

ries

∞∑
n=1

an (z0 − c)n =

∞∑
n=1

an r
n converges absolutely by Theorem 5.15; in other words

∞∑
n=1

|an| rn <∞. So, withMn = |an| rn it follows that |an(z−c)n| ≤Mn for all z ∈ Br(c)

and

∞∑
n=0

Mn <∞. Thus, the conditions of the M-test (Theorem 5.7) are satisfied and

the series

∞∑
n=1

an (z − c)n converges uniformly on Br(c).
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Remark 5.18. Power series do not converge uniformly in the entire disc of convergence
BR(c). The good news is that this is not necessary because we only need locally uniform
convergence to conclude continuity!

Showing a power series converges (example)

For example, consider the series
∑∞

n=0
zn

n! . Applying the ratio test, we have

L = lim
n→∞

|zn+1|/(n+ 1)!

|zn|/n!
= lim

n→∞

|z|
n+ 1

= 0 < 1,

for every z ∈ C; so R =∞ and the series converges absolutely in C. In fact, by Theorem
5.17 it converges locally uniformly in the whole complex plane to a continuous function.
This series looks familiar, and actually agrees with the exponential function ez we’ve
defined. We’ll be able to prove this later in the course.

Differentiation/integration of power series

Now we have an idea of what it means for a power series to converge, and where it
converges, we would like to know when a power series represents a holomorphic function.
In other words, we want to know when we can differentiate (and integrate) power series.
We have the following generalization of a result from Analysis I for real power series.

Proposition 5.19. [Term by term differentiation or integration preserves the radius of

convergence] Let
∞∑
n=0

an(z − c)n be a power series with radius of convergence 0 < R ≤ ∞.

Then the formal derivatives and anti-derivatives

∞∑
n=1

nan(z − c)n−1 and

∞∑
n=0

an
n+ 1

(z − c)n+1

have the same radius of convergence R.

Remark 5.20. By ‘formal’ we mean that the above series (our guess for the derivative
and anti-derivative) both define convergent series in the disc BR(c).

So, we know the series with the expected formulae for derivative and anti-derivative
both converge, but do they genuinely represent the derivative and anti-derivative of the
original series?

Theorem 5.21. [Power series can be differentiated term by term in their disc of conver-

gence] Let

∞∑
n=0

an(z − c)n be a power series in C, with radius of convergence 0 < R ≤ ∞,
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and let f : BR(c)→ C be the resulting limit function. Then f is holomorphic on BR(c)
with

f
′
(z) =

∞∑
n=1

nan(z − c)n−1 (5.3)

for z ∈ BR(c).

Proof. For simplicity, assume c = 0 (the case of general c is essentially the same).

We wish to show for each w ∈ BR(c) that lim
z→w

f(z)− f(w)

z − w
exists and agrees with

the expression in (5.3). Since convergence of f(z) is absolute in the disc of convergence
(meaning we can reorder sums), we have

f(z)− f(w) =
∞∑
n=1

an (z
n − wn) =

∞∑
n=1

an (z − w) qn(z),

where qn(z) =

n−1∑
k=0

wk zn−1−k. So, for z ̸= w

f(z)− f(w)

z − w
=

∞∑
n=1

an qn(z) =: h(z).

Note the series makes sense even at w, so we view h as being defined there too.
We claim that the series defining h(z) converges to a continuous function on BR(0).

We’ll prove this using the local M-test. Given z0 ∈ BR(0), choose r < R such that
w, z0 ∈ Br(0). We need constants Mn for this set Br(0) that control the terms anqn(z)
defining h. We have for z ∈ Br(0)

| an qn(z)| =

∣∣∣∣∣an
n−1∑
k=0

wk zn−1−k

∣∣∣∣∣ ≤ |an|
n−1∑
k=0

|w|k |z|n−1−k

< |an|
n−1∑
k=0

rk rn−1−k = n |an| rn−1 =: Mn.

We have
∑∞

n=1Mn =
∑∞

n=0 n|an|rn−1 which converges, since by Proposition 5.19 the

series

∞∑
n=1

nanz
n−1 has radius of convergence R, and so converges absolutely on BR(0),

in particular at the point r. It follows from the Local M-test that the series defining h
converges locally uniformly to a continuous function on BR(0). Hence
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lim
z→w

f(z)− f(w)

z − w
= lim

z→w
h(z) = h(w) =

∞∑
n=1

an qn(w) =

∞∑
n=1

an

n−1∑
k=0

wk wn−1−k =

∞∑
n=1

nan wn−1

as required.

Corollary 5.22. A power series f as in Theorem 5.21 with positive radius of conver-
gence R can be differentiated infinitely many times and f (k)(z) :=

∑∞
n=k k!

(
n
k

)
an(z −

c)n−k for z ∈ BR(c). This implies f (k)(c) = k! ak.

Corollary 5.23 (Power series can be integrated term by term in their disc of conver-
gence). A power series f as in Theorem 5.21 with positive radius of convergence has
a holomorphic antiderivative F : BR(c) → C, that is, F ′(z) = f(z), and F is given by
F (z) :=

∑∞
n=0

an
n+1(z − c)n+1 for z ∈ BR(c).

Convergence of familiar power series (examples)

1. The expected power series for sin(z), cos(z), sinh(z) and cosh(z) all converge lo-
cally uniformly to continuous functions on C, and the derivatives/anti-derivatives
match those expected. We will see later that the series genuinely do represent the
functions in question.

More generally, when can a holomorphic function be represented via a power
series? What about log(z)? It is only defined (and is holomorphic) on C \ R≤0

(and is not continuous if extended to the negative real line), so certainly cannot
be defined by a power series on D, say. Maybe it works if we change the point
at which the series is expanded about (i.e., change the constant c from zero).

Indeed, one can show that
∞∑
n=1

(−1)n+1 z
n

n
converges on D. We expect this to

be the power series converging to log(1 + z), but what was so special about the
taking a power series about the point c = 1? It turns out, nothing. We will
find out that the holomorphic functions are precisely the functions that can be
locally represented by power series at every point in their domain. As a result,
we will see by Theorem 5.21 that every holomorphic function is infinitely many
times complex differentiable!

2. Consider the geometric series

∞∑
n=1

zn. By the ratio test this sum converges when

|z| < 1, so the radius of convergence is R = 1 and the series converges to a
continuous function on its disc of convergence D. To find the continuous function
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the series converges to we need to consider the pointwise limit. Notice that

∞∑
n=1

zn = lim
N→∞

(
N∑

n=1

zn

)
= lim

N→∞

(
1− zN+1

1− z

)
=

1

1− z
, (for |z| < 1).

This limit function is defined and is continuous on all of C\{1}. So, in some sense
the convergence of the series in the complex plane is limited to the unit disc D
because it can’t pass the ‘pole’ at z = 1.

3. We may determine the convergence of new power series by substitution. For
example, notice that |z| < 1 ⇐⇒ |z2| < 1 ⇐⇒ | − z2| < 1, so by the

substitution z 7→ z2 we have

∞∑
n=1

z2n converges locally uniformly on D to 1
1−z2

,

and similarly, by the substitution z 7→ −z2 we have
∞∑
n=1

(−1)nz2n converges locally

uniformly to 1
1+z2

.

These examples give us real insight into the reasons for convergence of the corre-
sponding real power series. Consider the graph of the real function y = 1/(1−x2).
It appears obvious why its real interval of convergence is the unit interval - there
are asymptotes at x = ±1 that we can’t ‘get past’ continuously. But on the other
hand y = 1

1+x2 is a nice smooth looking graph everywhere on the real line - so
why on earth is its interval of convergence also restricted to the unit interval?
We can now see the answer - the interval of convergence of the real power series
is restricted by the disc of convergence of the corresponding complex power se-
ries!!! The issue being the poles in the complex plane at z = ±i that we couldn’t
see when considering only the real version of the function. So hidden inside the
real power series of nice continuous real function is actually some meaningful and
significant complex analysis.

Key: Complex analysis can give us new information about real functions!



Chapter 6

Complex integration over
contours

6.1 Definition of contour integrals

Our first aim is to give a meaning to the following∫
γ
f(z) dz,

where f : U → C is a complex function on an open set U , and γ is a curve in U . This
will be called the integral of f along the curve γ.

Our first step towards the above is to start by considering complex valued functions
of a real variable. That is,

f : [a, b]→ C

where [a, b] ⊂ R. We note that such a function can be written as

f = u+ iv, ∀t ∈ [a, b],

where u, v : [a, b]→ R and given by u = Re(f) and v = Im(f). Moreover we note that
f is continuous if and only if both u and v are continuous. We then define∫ b

a
f(t) dt :=

∫ b

a
u(t) dt+ i

∫ b

a
v(t) dt ∈ C.

We note that Re
(∫ b

a f(t) dt
)
=
∫ b
a u(t) dt and Im

(∫ b
a f(t) dt

)
=
∫ b
a v(t) dt.

78



CHAPTER 6. COMPLEX INTEGRATION OVER CONTOURS 79

Example 6.1. We consider the function f(t) = t + it. That is u(t) = v(t) = t. We
compute ∫ 1

0
f(t) dt =

∫ 1

0
(t+ it) dt =

∫ 1

0
t dt+ i

∫ 1

0
t dt =

=

[
t2

2

]1
0

+ i

[
t2

2

]1
0

=
1

2
+ i

1

2
.

Before going on we check our definition of integrating complex valued functions of
a real parameter is complex linear (as it should be!).

Lemma 6.2.

1. Let f1 and f2 be continuous functions from [a, b] to C. Then
∫ b
a (f1(t)+ f2(t))dt =∫ b

a f1(t)dt+
∫ b
a f2(t)dt.

2. For any complex number c ∈ C, and continuous function f : [a, b]→ C,
∫ b
a cf(t)dt =

c
∫ b
a f(t)dt.

Proof. (Simple, included for completeness). For part 1, write fj = uj + ivj where uj
and vj are the real and imaginary parts of fj . Then using the definition, and the known
linearity of real integrals,

∫ b

a
(f1(t) + f2(t))dt =

∫ b

a
(u1(t) + iv1(t) + u2(t) + iv2(t))dt

=

∫ b

a
(u1(t) + u2(t) + i(v1(t) + v2(t))dt

=

∫ b

a
(u1(t) + u2(t))dt+ i

∫ b

a
(v1(t) + v2(t))dt

=

∫ b

a
u1(t)dt+

∫ b

a
u2(t)dt+ i

(∫ b

a
v1(t)dt+

∫ b

a
v2(t)dt

)
=

∫ b

a
u1(t)dt+ i

∫ b

a
v1(t)dt+

∫ b

a
u2(t)dt+ i

∫ b

a
v2(t)dt

=

∫ b

a
f1(t)dt+

∫ b

a
f2(t)dt.

For part 2 we write f = u+ iv where u and v are real, and write c = x+ iy. Then
using linearity of real integrals as before,
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∫ b

a
cf(t)dt =

∫ b

a
(x+ iy)(u(t) + iv(t))dt

=

∫ b

a
(xu(t)− yv(t) + i(yu(t) + xv(t)))dt

=

∫ b

a
(xu(t)− yv(t))dt+ i

∫ b

a
(yu(t) + xv(t)))dt

= x

∫ b

a
u(t)dt− y

∫ b

a
v(t)dt+ i

(
y

∫ b

a
u(t)dt+ x

∫ b

a
v(t)dt

)
= (x+ iy)

(∫ b

a
u(t)dt+ i

∫ b

a
v(t)dt

)
= c

∫ b

a
f(t)dt.

Recall from Definition 3.8 that a smooth curve in C is a continuously differentiable
function γ : [0, 1]→ C. In fact we can be more general and consider curves γ : [a, b]→ C.
For short, we will say that such curves are C1.

Remark 6.3. Let us write γ(t) = u(t) + iv(t) with u, v : [a, b]→ R. Then the derivative
γ′ is defined as

γ′(t) := u′(t) + iv′(t).

One needs to be careful for the meaning of the condition on smoothness at the end-
points. That is, there we demand that the one-sided derivative exists and is continuous
from the one side. That is, γ′(b) := limh→0−

u(b+h)−u(b)
h + i limh→0−

v(b+h)−v(b)
h exists

and limt→b− γ′(t) = γ′(b).

Examples.

1. An example of a C1 curve is

γ : [0, 2π]→ C, γ(θ) = reiθ,

where r > 0. (Here we use the letter θ to denote the parameter since it is more
often used to denote angles.) We note that this is nothing else than the circle
with center the origin and radius r. Moreover we note that as the parameter θ
runs from 0 to 2π we run the curve on a anti-clockwise direction. It is easy to see
that this is C1 since

γ′(θ) = (reiθ)′ = (r cos′(θ)) + ir sin′(θ)) = rieiθ.
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2. Another example is given by

γ : [0, 2π]→ C, γ(θ) = re−iθ,

where r > 0. We note the graph of this curve is exactly the same as above, namely
the circle centred at the origin and radius r. However here we run the curve on
the clockwise direction!

3. We now define the curve
γ : [0, 2]→ C,

γ(t) :=

{
t+ it, 0 ≤ t ≤ 1

t+ i 1 ≤ t ≤ 2.

It is easy to see that γ consists of a straight line connecting the origin and the
point 1+ i followed by another line connecting the point 1+ i and the point 2+ i.
Note that this curve is not C1 since the derivative at the point t = 1 does not
exist (from the left it is 1 + i and from the right it is 1).

We are now ready to give the following definition.

Definition 6.4. Let U ⊂ C be an open set, and let f : U → C be a continuous function.
Let γ : [a, b]→ U ⊂ C be a C1-curve. Then we define the integral of f along the curve
γ by ∫

γ
f(z) dz :=

∫ b

a
f(γ(t))γ′(t) dt.

Remark 6.5. Note the function f is of a complex variable z. Moreover f(γ(t)) makes
sense since γ([a, b]) ⊂ U . Furthermore the condition that γ is C1 guarantees the exis-
tence of γ′(t). Finally the function g(t) := f(γ(t))γ′(t) is a function of the real variable

t, so we have already defined
∫ b
a g(t) dt above.

Basic Properties. We now note the following basic properties. Assume f is continu-
ous.

1. We have ∫
γ
(f1(z) + f2(z)) dz =

∫
γ
f1(z) dz +

∫
γ
f2(z) dz
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Indeed we have by using Lemma 6.2,∫ b

a
(f1(γ(t)) + f2(γ(t)))γ

′(t) dt =

∫ b

a
f1(γ(t))γ

′(t) dt+

∫ b

a
f2(γ(t))γ

′(t) dt

=

∫
γ
f1(z) dz +

∫
γ
f2(z) dz.

2. For a c ∈ C we have ∫
γ
cf(z) dz = c

∫
γ
f(z) dz.

Indeed,∫
γ
cf(z) dz :=

∫ b

a
cf(γ(t))γ′(t) dt = c

∫ b

a
f(γ(t))γ′(t) dt = c

∫
γ
f(z) dz

where we used Lemma 6.2 for the middle equality.

3. Given γ : [a, b]→ C we define the curve (−γ) : [−b,−a]→ C, by (−γ)(t) := γ(−t).
Then we have ∫

−γ
f(z) dz = −

∫
γ
f(z) dz.

See Assignments.

Example 6.6.

1. We compute the integral
∫
γ dz, where γ(θ) = reiθ with 0 ≤ θ ≤ 2π, with r > 0.∫

γ
dz =

∫ 2π

0
(reiθ)′ dθ =

∫ 2π

0
rieiθ dθ = ri

∫ 2π

0
eiθdθ =

ri

(∫ 2π

0
cos(θ) dθ + i

∫ 2π

0
sin(θ) dθ

)
= ri(0 + 0) = 0.

2. We consider the curve

γ : [−π/2, π/2]→ C, γ(θ) = 2eiθ

and we compute the integral
∫
γ z̄ dz. We have∫

γ
z̄ dz =

∫ π/2

−π/2
(2eiθ)(2eiθ)′ dθ =

∫ π/2

−π/2
2e−iθ2ieiθ dθ = 4i

∫ π/2

−π/2
dθ = 4πi.
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In the last example we may parametrise the same curve differently. For example we
may consider δ : [0, 1] → C where δ(t) = 2eπi(t−1/2). It is easily seen that both γ
and δ parametrise the very same curve, namely the semi-circle joining −2i and 2i and
lying entirely at the positive part of the x-axis. We may then ask whether

∫
γ f(z) dz =∫

δ f(z) dz. It turns out that this is indeed the case, as the following lemma shows.

Lemma 6.7 (Reparametrisation of curves). Let U ⊂ C be an open set, f : U → C be
continuous, and let γ : [a, b] → U be a C1 curve. If ϕ : [a′, b′] → [a, b] with ϕ(a′) = a
and ϕ(b′) = b is continuously differentiable and we define

δ : [a′, b′]→ C, δ := γ ◦ ϕ (composition),

then we have ∫
γ
f(z) dz =

∫
δ
f(z) dz.

Proof. We have ∫
δ
f(z) dz =

∫ b′

a′
f(δ(t))δ′(t) dt

=

∫ b′

a′
f(γ(ϕ(t)))(γ(ϕ(t))′ dt

=

∫ b′

a′
f(γ(ϕ(t)))γ′(ϕ(t))ϕ′(t) dt

We change the variable s := ϕ(t) and get that ds = ϕ′(t)dt, and we use the fact that
ϕ(a′) = a and ϕ(b′) = b. That is, the integral above is equal to∫ b

a
f(γ(s))γ′(s) ds =

∫
γ
f(z) dz.

In the last example above we have, with ϕ(t) = π(t − 1
2) that δ = γ ◦ ϕ. The next

step is to consider more general curves, and not only C1 curves.

Definition 6.8 (Contours). Let γ : [a, b]→ C be a curve, and suppose that there exist
a = a0 < a1 < a2 < . . . < an−1 < an = b such that the curves γi : [ai−1, ai] → C,
i = 1, 2, . . . , n defined by γi(t) := γ(t) for t ∈ [ai−1, ai] are C1 curves. Then we say that
γ is a piecewise C1-curve, or contour .

For a contour γ as above, we then define∫
γ
f(z) dz =

n∑
i=1

∫
γi

f(z) dz.

This type of integral is called a contour integral. It is the main object of study of
this chapter and plays a cental role in Complex Analysis.
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Remark 6.9. [Technical] Here one should check that the above is well-defined. That is,
we may find a different a = a′0 < a′1 < a′2 < . . . < a′m−1 < a′m = b, and γ′j to establish
that γ is a contour. But then it is easy to show that

n∑
i=1

∫
γi

f(z) dz =
m∑
j=1

∫
γ′
j

f(z) dz.

We will need one more definition regarding curves. We will need to add them. That
is, if γ : [a, b] → C and δ : [c, d] → C are two contours with γ(b) = δ(c) then we define
the contour γ ∪ δ : [a, b+ d− c]→ C

(γ ∪ δ)(t) :=

{
γ(t), a ≤ t ≤ b

δ(t+ c− b), b ≤ t ≤ b+ d− c.

Then it is easy to see that∫
γ∪δ

f(z) dz =

∫
γ
f(z) dz +

∫
δ
f(z) dz.

6.2 The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus in Analysis I tells us that we can calculate
real integrals by finding an antiderivative of the quantity being integrated. There is a
version of this theorem for contour integrals and, as you might expect, it is very useful
in practice.

Theorem 6.10 (Complex Fundamental Theorem of Calculus (FTC)). Let U ⊂
C be an open set and let F : U → C be holomorphic with continuous derivative f . Then
for any contour γ : [a, b]→ U we have∫

γ
f(z) dz = F (γ(b))− F (γ(a)).

In particular if γ is closed, that is γ(a) = γ(b), then we have that∫
γ
f(z) dz = 0.

Proof. First we consider the case of γ being a C1 curve. Write F = u+ iv. We have∫
γ
F ′(z) dz =

∫ b

a
F ′(γ(t))γ′(t) dt
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=

∫ b

a
(F (γ(t)))′ dt =

∫ b

a
(u(γ(t)))′ dt+ i

∫ b

a
(v(γ(t)))′ dt

= [u(γ(t))]ba + i [v(γ(t))]ba = F (γ(b))− F (γ(a)).

where here we note that (F (γ(t)))′ = dF (γ(t))
dt and for the second to last equality we

used the Fundamental Theorem of Calculus from real analysis.
We can now extend the proof to any contour. Indeed all we need to observe is that

(with notation as above)∫
γ
F ′(z) dz =

n∑
i=1

∫
γi

F ′(z) dz =
n∑

i=1

[F (γ(t))]aiai−1
= F (γ(an))−F (γ(a0)) = F (γ(b))−F (γ(a)).

Remark 6.11.

• [Looking ahead] Later we will prove that if a function F is holomorphic, then
its derivative f is automatically continuous. So that assumption can be dropped
from the FTC.

• Note that Theorem 6.10 states that if two curves γ1 : [a, b]→ C and γ2 : [a
′, b′]→ C

have the same endpoints, that is γ1(a) = γ2(a
′) and γ1(b) = γ2(b

′) then∫
γ1

f(z) dz =

∫
γ2

f(z) dz

under the same hypothesis on F as in Theorem 6.10.

Important notation: Given a domain D such that there exists a bijective contour
γ : [a, b]→ ∂D with a continuous inverse γ−1 : ∂D → [a, b] and such that γ′(t) ̸= 0, we
define ∫

∂D
f(z)dz =

∫
γ
f(z)dz.

This notion is well defined and doesn’t depend on γ due to our Reparametrisation of
curves lemma, Lemma 6.7. When the boundary has no “end points”, such as the circle,
we can extend to above definition to the case where γ : [a, b)→ ∂D has the previously
mentioned properties and γ(a) = γ(b).
For example, for D = {z ∈ C : |z − c| < r, r > 0, c ∈ C} we have that

∂D = {z ∈ C : |z − c| = r, r > 0, c ∈ C} ,

which is the bijective image of the C1 curve γ : [0, 2π)→ C

γc,r (θ) = c+ reiθ.
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Consequently ∫
|z−c|=r

f(z)dz =

∫
γc,r

f(z)dz =

∫ 2π

0
f
(
c+ reiθ

)
rieiθdθ.

Example 6.12. (Important) We now compute the integral∫
|z|=r

zn dz :=

∫
γ
zn dz, n ∈ Z

where γ(θ) = reiθ , 0 ≤ θ ≤ 2π. We first consider the case n ̸= −1. Then we have∫
|z|=r

zn dz =

∫
γ
zn dz =

∫
γ

(
zn+1

n+ 1

)′
dz =

[
zn+1

n+ 1

]r
r

= 0,

that is we apply the theorem with F (z) = zn+1

n+1 and take U = C \ {0}, which clearly
contains the curve γ.

However we cannot do the same with n = −1. Indeed, a natural candidate to
consider as F (z) would be the logarithm. But we have to make sure that the open set
U where this is defined does include the curve γ. For example the principal branch of
the logarithm will not do, since we remove the negative real axis, and the contour γ
goes through it. Actually if we turn to the actual definition of the integral we see that∫

γ

1

z
dz =

∫ 2π

0
r−1e−iθrieiθ dθ = i

∫ 2π

0
dθ = 2πi ̸= 0.

Note that the integral is not zero. That is, we can conclude that there is no open set
U that contains γ such that log(z) is well-defined, since if it were so, by the theorem
above we would get that the integral had to be zero, which is not!

Our next step is to address the following question:

Problem 6.13. Given a function f : U → C, provide sufficient conditions such that
there exists a holomorphic function F : U → C, with derivative F ′ = f . Such an F is
usually called the antiderivative or primitive of f . In other words, is there a converse
to the second part of the Fundamental Theorem of Calculus?

For this we need to be able to estimate the modulus of a contour integral, that is,

bound
∣∣∣∫γ f(z) dz∣∣∣ from above. We start with a definition.

Definition 6.14 (Length of a contour). Let γ : [a, b]→ C be a contour. We define the
length of γ by

L(γ) :=

∫ b

a
|γ′(t)| dt.
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We now prove

Lemma 6.15 (The Estimation Lemma). Let f : U → C be continuous and γ : [a, b]→ U
be a contour. Then ∣∣∣∣∫

γ
f(z) dz

∣∣∣∣ ≤ L(γ) sup
γ
|f |,

where
sup
γ
|f | := sup{|f(z)| : z ∈ γ}.

Proof. We start by proving the following: Given a continuous function g : [a, b] → C,
we have that ∣∣∣∣∫ b

a
g(t) dt

∣∣∣∣ ≤ ∫ b

a
|g(t)| dt. (6.1)

Indeed if we write
∫ b
a g(t) dt = reiθ, with r ≥ 0 then we have that∣∣∣∣∫ b

a
g(t) dt

∣∣∣∣ = r = Re(r) = Re

(
e−iθ

∫ b

a
g(t) dt

)

= Re

(∫ b

a
e−iθg(t) dt

)
=

∫ b

a
Re
(
e−iθg(t)

)
dt

≤
∫ b

a

∣∣∣e−iθg(t)
∣∣∣ dt = ∫ b

a
|g(t)| dt

Using (6.1) we can now conclude the proof of the lemma. Indeed,∣∣∣∣∫
γ
f(z) dz

∣∣∣∣ = ∣∣∣∣∫ b

a
f(γ(t))γ′(t) dt

∣∣∣∣ ≤ ∫ b

a

∣∣f(γ(t))γ′(t)∣∣ dt,
where we used the above observation for g(t) = f(γ(t))γ′(t). But then we have that∫ b

a

∣∣f(γ(t))γ′(t)∣∣ dt ≤ sup
γ
|f |
∫ b

a

∣∣γ′(t)∣∣ dt = sup
γ
|f |L(γ).

The definition of a length of a curve is motivated from the analysis of functions of
many variables and the study of integration over curves. There one shows that the
infinitesimal length of a curve is exactly |γ′(t)|dt. This means that if we have a function
g : U → R and a curve γ : [a, b] → U we can define the integral of the real valued
function g along the curve γ as ∫ b

a
g (γ(t)) |γ′(t)|dt.
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We have a special notation for this:
Notation: Let U ⊆ C be a open and let g : U → R be continuous. For any γ : [a, b]→ U
we define ∫

γ
g(z)d|z| :=

∫ b

a
g (γ(t)) |γ′(t)|dt.

In the proof of our estimation lemma we have shown the important inequality:∣∣∣∣∫
γ
f(z)dz

∣∣∣∣ ≤ ∫
γ
|f(z)|d|z|.

Example 6.16. We consider γ : [0, π/2] → C given by γ(θ) = 2eiθ. Then we get an
upper bound for ∣∣∣∣∫

γ

z + 4

z3 − 1
dz

∣∣∣∣
We have L(γ) =

∫ π/2
0 |(2eiθ)′| dθ = π, and for z ∈ γ, that is |z| = 2 we have∣∣∣∣ z + 4

z3 − 1

∣∣∣∣ = |z + 4|
|z3 − 1|

≤ |z|+ 4

||z|3 − 1|
=

6

7
.

Here we used the triangle inequality for the numerator and the reverse triangle inequality
for the denominator. Then, by Proposition 6.15,∣∣∣∣∫

γ

z + 4

z3 − 1
dz

∣∣∣∣ ≤ 6π

7
.

We are now ready to answer the problem stated above. The next theorem gives a
converse to the second part of the FTC.

Theorem 6.17 (Converse to FTC). Let f : D → C be continuous on a domain D. If∫
γ f(z) dz = 0 for all closed contours γ in D, then there exists a holomorphic F : D → C
such that

F ′(z) = f(z).

Proof. We fix a point a0 ∈ D. Then for any other point w ∈ D, by definition of D being
a domain there is always a smooth path connecting a0 and w and we write γw for such
a path. Then we define the following function

F (w) :=

∫
γw

f(z) dz.

Step 1. F (w) doesn’t depend on the contour we use. We first check that F (w) does
not depend on the choice of contour connecting a0 and w. To see this, if γ̃(w) is another
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contour from a0 to w, then we can consider the closed contour C = γ(w) ∪ (−γ̃(w))
obtained by following γ(w) then γ̃(w) in the reverse direction. Then

0 =

∫
C
f(z) dz =

∫
γ(w)∪(−γ̃(w))

f(z) dz =

∫
γ(w)

f(z) dz −
∫
γ̃(w)

f(z) dz

where the first equality is from the hypothesis that integrals of f over closed contours
are zero. This gives ∫

γ(w)
f(z) dz =

∫
γ̃(w)

f(z) dz

showing that F (w) does not depend on the choice of γ(w).
Step 2. F is holomorphic with derivative f . We now claim that F is holomorphic

and moreover its derivative is f , that is, for every w ∈ D we have that F ′(w) exists and
F ′(w) = f(w), i.e.,

lim
h→0

F (w + h)− F (w)

h
= f(w) w ∈ D.

For any given w ∈ D we fix an r > 0 such that Br(w) ⊂ D. This ball exists since D
is open. Then for any h ∈ C with |h| < r we consider the straight line δh that connects
the point w to w + h. A parametrisation of such a line is given by

δh : [0, 1]→ D, t 7→ w + th.

We now consider the contour γw ∪ δh. This is a contour from a0 to w+ h, contained in
D, so

F (w + h) =

∫
γw∪δh

f(z) dz =

∫
γw

f(z) dz +

∫
δh

f(z) dz = F (w) +

∫
δh

f(z) dz.

It is easily seen that
∫
δh
f(w) dz = hf(w) and hence we may rewrite the above equation

as

F (w + h) = F (w) + hf(w) +

∫
δh

(f(z)− f(w)) dz,

or for h ̸= 0
F (w + h)− F (w)

h
− f(w) =

1

h

∫
δh

(f(z)− f(w)) dz.

That is,∣∣∣∣F (w + h)− F (w)

h
− f(w)

∣∣∣∣ = ∣∣∣∣1h
∫
δh

(f(z)− f(w)) dz

∣∣∣∣ = 1

|h|

∣∣∣∣∫
δh

(f(z)− f(w)) dz

∣∣∣∣
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and by Lemma 6.15 (note here it is essential that f is continuous) we have that the
above quantity is bounded by

≤ 1

|h|
L(δh) sup

z∈δh
|f(z)− f(w)|.

But a simple calculation shows that L(δh) = |h| and hence we have that∣∣∣∣F (w + h)− F (w)

h
− f(w)

∣∣∣∣ ≤ sup
z∈δh
|f(z)− f(w)|.

Now we take the limit h→ 0, and we observe that the curve δh becomes just the point
w. (More rigorously, every z ∈ δh has |z − w| ≤ h.) Since f is continuous, we get that

sup z∈δh |f(z)− f(w)| → 0 as h→ 0. Hence we have that
∣∣∣F (w+h)−F (w)

h − f(w)
∣∣∣→ 0 as

h→ 0. That is,

lim
h→0

F (w + h)− F (w)

h
= f(w).

Since w was any point in D we have established the theorem.

Remark 6.18. The above theorem established the existence of a holomorphic anti-
derivative of f . However there may be more than one such F , after all we make quite a
few choices in the construction of F above. For example we could have picked a different
a0. However if there is another F̃ such that F̃ ′(w) = f(w) for all w ∈ D, then we would
have that F ′(w) = F̃ ′(w) or equivalently (F − F̃ )′(w) = 0. But we know from Theorem
3.12 that if a function defined over a domain has a zero derivative we have that the
function is just a constant. That is, there is some c ∈ C such that F̃ = F + c.



Appendix A

Additional lemmas from the
Gappy notes

In this short appendix we write the lemmas which were added to the Gappy note to
help explain complex maps and Möbius transformation (proofs that were given in the
lecture are provided).

A.1 Complex function

Lemma A.1.

• The map zn injectively takes an angular segment of length 2π
n which is open at one

end and closed at the other from a circle of radius r to the entire circle of radius
rn. If the above segment is closed, or its size is larger than 2π

n the image is no
longer injective.

• The map zn injectively takes a ray of angle θ to a ray of angle nθ mod 2π. Con-
sequently, the map zn injectively takes the wedge bounded by rays of angles θ1
and θ2 to the wedge bounded by rays of angles nθ1 mod 2π and nθ2 mod 2π if
n |θ1 − θ2| < 2π. When n |θ1 − θ2| ≥ 2π the image is the entire complex plane
(not invectively).

• We can define n different n−th “roots” which are inverses to the map zn. We can
write them all in the form

z
1
n = |z|

1
n e

i
(

Arg(z)
n

+ 2πk
n

)

with k = 0, . . . , n−1 (we remove the k index from the map, but one need to specify
which k we are talking about). Note that for a fixed k the n−th root of z takes C
into a anti clockwise rotation by π

n of Rn,k−1.

91
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Lemma A.2.

• The map ez injectively takes a segment of length 2π which is open at one end and
closed at the other from the line x = c to the entire circle of radius ec. If the above
segment is closed, or its size is larger than 2π the image is no longer injective.

• The map ez injectively takes the line y = c to the ray of angle c mod 2π without
the origin.

• The map ez injectively takes the set {z ∈ C : θ < Im (z) ≤ θ + 2π} to C∗ where
C∗ := C \ {0}.

Lemma A.3. We have that for z = x+ iy:

sin(z) = sin(x) cosh(y) + i cos(x) sinh(y).

cos(z) = cos(x) cosh(y)− i sin(x) sinh(y).

sinh(z) = −i sin(iz) = sinh(x) cos(y) + i cosh(x) sin(y)

cosh(z) = cos(iz) = cosh(x) cos(y) + i sinh(x) sin(y).

In addition we have that for all z ∈ C

sin(z)2 + cos(z)2 = 1, cosh(z)2 − sinh(z)2 = 1.

Lemma A.4.

• The map sin(z) injectively takes a segment of length 2π which is open at one end
and closed at the other from the line y = c to an ellipse when c ̸= 0. When c = 0
we get the “squished” ellipse [−1, 1]× {0} and the map is injective for a segment
of length π on which the real map sin(x) is injective.

• The map sin(z) injectively takes the line x = c to a one sided hyperbola when
c ̸= πk and c ̸= π

2 +πk for all k ∈ Z. When c = πk or c = π
2 +πk for some k ∈ Z

we get the“squashed” hyperbolas:

– {0} × iR if c = πk. The map is injective in this case.

– [1,∞)×{0} if c = π
2+2πk. The map is injective on

{
z ∈ C : z = π

2 + 2πk + iy, y ≥ 0
}

and
{
z ∈ C : z = π

2 + 2πk + iy, y ≤ 0
}
.

– (−∞, 1]×{0} if c = −π
2+2πk. The map is injective on

{
z ∈ C : z = −π

2 + 2πk + iy, y ≥ 0
}

and
{
z ∈ C : z = −π

2 + 2πk + iy, y ≤ 0
}
.

Similar statements can be done for cos(z) using the identity cos(z) = sin
(
z + π

2

)
(a

shift by π
2 on the x−axis), and sinh(z) and cosh(z) using the identities

sinh(z) = −i sin(iz), cosh(z) = cos(iz)

(rotations by ±π
2 of the variable and image in the complex plane).
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Lemma A.5.

• A branch of the map log (z) injectively takes a ray without the origin of angle
θ ̸= 0, measured with respect to the branch cut, to the line y = θ.

• A branch of the map log (z) takes a concentric circle of radius r, minus the branch
cut, to a segment of length 2π on the line x = log r with its lowest point given by
the angle that define the branch cut.

A.2 Möbius transformations

Lemma A.6.

• The map 1/z injectively takes the set D \ {0} = {z ∈ C : 0 < |z| < 1} to Dc =
{z ∈ C | : |z| > 1}. When considering 1/z over Ĉ we find that it injectively takes
D to Dc ∪ {∞}.
Similarly, 1/z injectively takes the set Dc to D \ {0} and on Ĉ it takes Dc ∪ {∞}
to D.

• The map 1/z injectively takes the ray at angle θ without the origin to the ray at
angle −θ without the origin. On Ĉ the statement remains the same by adding the
origin and ∞ to the rays.

Lemma A.7 (Building blocks of Möbius transformations). Any Möbius transformation
is composition of the following four type of maps:

1. Shift: z → z + b for some b ∈ C.

2. Stretch/Compression: z → λz for some λ ∈ R>0.

3. Rotation: z → eiθz for some θ ∈ (−π, π].

4. Inversion: z → 1
z .

Remark A.8. Note that in terms of matrices we have that:

1. A shift corresponds to the matrix T =

(
1 b
0 1

)
.

2. Stretch/Compression corresponds to the matrix T =

(
λ 0
0 1

)
.

3. Rotation corresponds to the matrix T =

(
eiθ 0
0 1

)
.
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4. Inversion corresponds to the matrix T =

(
0 1
1 0

)
.

Proof. We start by noticing that for any a, b ∈ C

az + b = |a| eiArg(a)z + b

which is a composition of rotation, stretch/compression and shift. In matrix form:(
a b
0 1

)
=

(
1 b
0 1

)(
|a| 0
0 1

)(
eiArg(a) 0

0 1

)
.

This shows that the maps az + b and 1
az+b can be achieved as composition of the given

four maps.
We notice that when a = 0 we have that, as b ̸= 0,

az + b

cz + d
=

1
c
bz +

d
b

which we have just considered. We can assume moving forward that a ̸= 0. We notice
that

1

α
(

1
az+b

)
+ β

=
az + b

aβz + (α+ bβ)

when we don’t have that a = b = 0 and α = β = 0. We want to have

c = aβ, d = α+ bβ.

Since a ̸= 0 we can choose β = c/a and α = d− bc
a = ad−bc

a . In other words when a ̸= 0(
a b
c d

)
=

(
0 1
1 0

)(
ad−bc

a
c
a

0 1

)(
0 1
1 0

)(
a b
0 1

)

Lemma A.9. The map f(z) = 1
z takes a circle that doesn’t pass through the origin to a

circle. Moreover, if B is an open ball whose closure doesn’t contain the origin then f(B)
is once again an open ball. Consequently, if D ⊆ C is a set then for any z0 ∈ D \ {0}
for which there exists ϵ > 0 with Bϵ (z0) ⊆ D we have that there exists δ > 0 such that
Bδ (f(z0)) ⊆ f(D) (i.e. f takes any non-zero interior point of D to an interior point
of f(D)).

Proof. The equation of a general circle in the complex plane is given by

|z − a| = r
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or
(z − a) (z − a) = r2

which is
zz − az − az +

(
|a|2 − r2

)
= 0.

Assuming z ̸= 0 and motivated by trying to recover 1/z we see that by dividing the
above by 1

zz = 1
|z|2 > 0 we get

1− a
1

z
− a

1

z
+
(
|a|2 − r2

) 1

z

1

z
= 0.

If we call w = 1/z we find that the above is:(
|a|2 − r2

)
|w|2 − a w − aw + 1 = 0.

Which looks like an equation for a circle! We just want to divide by |a|2 − r2. This is
allowed since if |a| = r the original circle would have passed through z = 0 which we
didn’t allow. We conclude that

|w|2 − a(
|a|2 − r2

)w − a(
|a|2 − r2

)w +
1(

|a|2 − r2
) = 0.

We conclude that a circle |z − a| = r which doesn’t pass through the origin is mapped
under 1

z to ∣∣∣∣∣∣1z − a(
|a|2 − r2

)
∣∣∣∣∣∣ =

√√√√∣∣∣∣ a

|a|2 − r2

∣∣∣∣2 − 1(
|a|2 − r2

) =
r∣∣∣|a|2 − r2

∣∣∣ ,
which is again a circle. What happens to the ball |z − a| < r? If we assume that D does
not contain the problematic point, z = 0, we must have that r < |a| or |a|2 − r2 > 0.
Following the steps above we see that the open ball is mapped to(

|a|2 − r2
)
|w|2 − a w − aw + 1 < 0

which, since |a|2 − r2 > 0, can be written as

|w|2 − a(
|a|2 − r2

)w − a(
|a|2 − r2

)w +
1(

|a|2 − r2
) < 0

or ∣∣∣∣∣∣1z − a(
|a|2 − r2

)
∣∣∣∣∣∣ < r

|a|2 − r2
,
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i.e. we get another ball!
To show the second part of the lemma we assume that z0 ̸= 0 is an interior point of
D, i.e. there exists ϵ > 0 such that Bϵ (z0) ⊆ D. to show that f (z0) is an interior
point of f(D) we need to find δ > 0 such that Bδ (1/z0) ⊆ f (D). It is enough to show
if |z − z0| < ϵ for ϵ small enough which satisfies ϵ < |z0| (the ball doesn’t encircle the
origin) we can find δ > 0 such that

Bδ

(
1

z0

)
⊆ B ϵ

|z0|2−ϵ2

(
z0

|z0|2 − ϵ2

)
.

Since ∣∣∣∣∣∣ 1z0 − z0(
|z0|2 − ϵ2

)
∣∣∣∣∣∣ = ϵ2

|z0|
(
|z0|2 − ϵ2

)
we see that if

∣∣∣1z − 1
z0

∣∣∣ < δ∣∣∣∣∣∣1z − z0(
|z0|2 − ϵ2

)
∣∣∣∣∣∣ < δ +

ϵ2

|z0|
(
|z0|2 − ϵ2

)

=

δ
(
|z0|2 − ϵ2

)
ϵ

+
ϵ

|z0|

 ϵ

|z0|2 − ϵ2
.

A choice of ϵ and δ such that

δ
(
|z0|2 − ϵ2

)
ϵ

+
ϵ

|z0|
< 1

will be enough to conclude the proof (for instance ϵ < |z0| /2 and δ = ϵ
2(|z0|2−ϵ2)

).

Lemma A.10. Let T =

(
a b
c d

)
∈ GL2 (C) and let D ⊆ C be a open set. Then

MT

(
D \

{
−d

c

})
is open. Together with the fact that Möbius maps are bijections on Ĉ

we have that

MT

(
∂D \

{
−d

c

})
= ∂MT (D) \ {∞} .

When c = 0 we consider −d
c as ∞ which is outside of C and consequently A\{∞} = A

for any A ⊆ C.
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Proof. Using the fact that every Möbius transformation is a composition of shifts,
stretch/compression, rotation, and inversion, we see that we only need to show that
the claim is true for each such map (while being careful with the point −d/c). The
claim is straightforward for shifts, stretch/compression, and rotation - there is also no
point of infinity. We really only need to check inversions which is covered by our previ-
ous lemma.
The claim about the boundary follows from the above but required a bit more care.

A.3 Biholomorphic domains - revisited

Function Maps the domain To the domain Biholomorphic?

zn, n ∈ N {0 < Arg (z) < θ}
⋃
{0}

C, if θ > 2π
n ,

{0 < Arg (z) < nθ}
⋃
{0} , if θ ≤ π

n ,
{0 < Arg (z) ≤ π}

⋃
{−π < Arg (z) < nθ − 2π}

⋃
{0} , if π

n < θ ≤ 2π
n .

When θ ≤ 2π
n .

zn, n ∈ N {θ1 < Arg (z) < θ2} with − π < θ1 < θ2 ≤ π
a rotation by nθ1 of the image of
{0 < Arg (z) < θ2 − θ1} by zn

When θ2 − θ1 ≤ 2π
n .

Principle branch of z
1
n , n ∈ N {θ1 < Arg (z) < θ2}

⋃
{0} with − π < θ1 < θ2 ≤ π

{
θ1
n < Arg (z) < θ2

n

}⋃
{0} Yes

ez {θ1 < Im (z) < θ2}
C∗, if θ2 − θ1 > 2π,

{θ1 mod 2π < Arg (z) < θ2 mod 2π} \ {0} , if θ2 − θ1 ≤ 2π.
When θ2 − θ1 ≤ 2π

Log (z) {θ1 < Arg (z) < θ2} \ {0} with − π < θ1 < θ2 ≤ π {θ1 < Im (z) < θ2} \ {0} Yes

1
z {r1 < |z| < r2}

{
1
r2

< |z| < 1
r1

}
Yes

Cayley map f(z) = z−i
z+i D HL Yes

Cayley map f(z) = z−i
z+i H D Yes

Cayley map f(z) = z−i
z+i H ∩ D = {|z| < 1, Im (z) > 0} HL ∩ D = {|z| < 1, Re (z) < 0} Yes

Cayley map f(z) = z−i
z+i H ∩HR = {Rez > 0, Im (z) > 0} H− ∩ D = {|z| < 1, Im (z) < 0} Yes

Möbius map MT (z) with real matrix T such that detT = 1 H H Yes

f(z) = eiθ z−z0
z0z−1 with θ ∈ (−π, π] and z0 ∈ D D D Yes

General Möbius transformation domains bounded by circlines domains bounded by circline Yes

where we have used the notation of H− := {z ∈ C : Imz < 0} for the lower half plane.
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