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The following gappy notes are based on the official lecture notes, who have evolved over
the years by Sabine Bögli, Thanasis Bouganis, Jens Funke, Katie Gittins, Stephen Harrap, and
Michael Magee.
The LATEX code of many images presented in this note is a modification of ones found online
(such as in StackExchange) and with the help of ChatGPT.
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CHAPTER 1

Complex numbers

Complex numbers are elements of the form

z = x + i y

where x and y are real numbers (x, y ∈R) and i is the imaginary unit.
We can visualise complex number as points in the plane R2 which we call an Argand dia-

gram:

−1 1 2
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i
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z = x + i y

x

y

Re(z)

Im(z)

The set of all complex numbers is denoted byC. Motivated by the above image, we sometime call
C the complex plane. In the notation z = x + i y we call x the Real part of z and y the Imaginary
part of z which we denote as Re(z) and Im(z) respectively. In other words

Re(z) := x, Im(z) := y,

z = x + i y = Re(z)+ i Im(z) .

Addition. We can add/subtract two complex numbers z1 = x1 + i y1 and z2 = x2 + i y2 in the
following way

z1 ± z2 := (x1 ±x2)+ i (y1 ± y2).

This has a simple geometric meaning in the complex plane - it is like adding two the vectors
(x1, y1) and (x2, y2):
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z1

z2

z1 + z2

Re(z)

Im(z)

Multiplication. Multiplication of complex numbers follows “standard” multiplication on R
with the caveat that i 2 =−1. If z1 = x1 + i y1 and z2 = x2 + i y2 then

z1z2 = (x1 + i y1)(x2 + i y2) =

What about division?

(
x + i y

)(
x − i y

)=

z = x − i y = Re(z)− i Im(z) .

zz = Re(z)2 + Im(z)2 ∈R
We denote by

|z| =
√

zz =
√

Re(z)2 + Im(z)2

and call it the modulus of z.
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z = x + i y

x

y

Re(z)

Im(z)

Using the conjugate we find that

z1

z2
= x1 + i y1

x2 + i y2
= (x1 + i y1)(x2 − i y2)

(x2 + i y2)(x2 − i y2)
= x1x2 + y1 y2

x2
2 + y2

2

+ i
x2 y1 −x1 y2

x2
2 + y2

2

.

z−1 := 1

z
= x

x2 + y2
− i

y

x2 + y2
.

EXAMPLE. Find 3
1+i − (3+2i ).

LEMMA 1.1 (Important Properties of Complex numbers).

(1) z1z2 = 0 ⇐⇒ z1 = 0 or z2 = 0.
(2) |z| =

p
zz.

(3) Re(z) = z+z
2 and Im(z) = z−z

2i .

(4) z−1 = z
|z|2 .

Polar coordinates.
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z = x + i y

Re(z)

Im(z)

where we define for any z ̸= 0

|z| := r =

arg(z) := θ =

θ is called the argument of z (denoted by arg(z)).

Notation: The principal value of arg(z) is the value in the interval (−π,π] and will be denoted
Arg(z).

Using polar coordinates we have

z = r cos(θ)+ i r sin(θ) = r (cos(θ)+ i sin(θ))
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EXAMPLE. Find |z|, Arg(z), and arg(z) for z = 3i and z = i +1.

LEMMA 1.2 (Properties of argument). We have the following properties of the argument:

(1) arg(z1z2) = (
arg(z1)+arg(z2)

)
mod 2π

(2) arg(1/z) =−arg(z) mod 2π
(3) arg(z) =−arg(z) mod 2π .

When we say two real numbers are equal mod2π we mean they differ by an integer multiple of
2π.

LEMMA 1.3. If z1 = r1 (cos(θ1)+ i sin(θ1)) and z2 = r2 (cos(θ2)+ i sin(θ2)) then

z1z2 = r1r2 (cos(θ1 +θ2)+ i sin(θ1 +θ2)) .

PROOF.

□

Our above discussion also motivates the notation

e iθ := cos(θ)+ i sin(θ) .

and we find that

e iθ1 e iθ2 =

COROLLARY 1.4.

1. |z1z2| = |z1| |z2| .
2. De Moivre’s formula:

(cos(θ)+ i sin(θ))n = cos(nθ)+ i sin(nθ) .
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PROOF.

□

The modulus also has the following important properties.

(1) (Triangle inequality) |z1 + z2| ≤ |z1|+ |z2|
(2) |z| ≥ 0 and |z| = 0 ⇐⇒ z = 0.
(3) max(|Re(z)|, |Im(z)|) ≤ |z| ≤ |Re(z)|+ |Im(z)|.

We can use the functions |z|, Re(z), Im(z), and arg(z) to describe various geometric domains
in C. For instance:

Functional expression Domain in C

D := {z ∈C : |z| < 1}

Upper half plane (without the x axis)

HR := {z ∈C : Re(z) > 0}

Left half plane (without the y axis)

arg(z) = π
4

circle centred at i with radius 4

EXAMPLE. What is the set |z − i | = |z + i |?
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The Riemann Sphere.

Complex plane (ζ= 0)

P
(
ξ,η,ζ

)= x + i y
[
the point (x, y,0)

]
(ξ,η,ζ)

N = (0,0,1)
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We can find a formula for P :

P (ξ,η,ζ) = ξ

1−ζ + i
η

1−ζ .

P−1 (z) =
(

2Re(z)

1+|z|2 ,
2Im(z)

1+|z|2 ,
|z|2 −1

1+|z|2
)

.

The stereographic map is a bijection between C and S2 \ {N }.

A few examples to equivalent domains on S2 and Ĉ via the stereographic map:

In S2 In Ĉ

N = (0,0,1)

S = (0,0,−1)

Equator

{z ∈C : |z| < 1}

(open) Northern hemisphere
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DEFINITION 1.5. The Riemann sphere is the unit sphere S2 ⊂ R3 along with the stereo-
graphic projections from the north and south pole

Complex functions.

DEFINITION. Let f : X → R, where X ⊆ R, be a function and let c be an interior point of X .
Then f is called continuous at c ∈ X if

lim
x→c

f (x) = f (c).

That is, for any ε> 0, there exists δ> 0 such that∣∣ f (x)− f (c)
∣∣< ε for all x ∈ X with |x − c| < δ.



CHAPTER 2

Metric spaces

2.1. Metric spaces

DEFINITION 2.1 (Metric spaces). A metric space is a set X together with a function d : X ×
X →R≥0 such that for all x, y, z ∈ X

• (D1) Positivity. d(x, y) = 0 ⇐⇒ x = y .
• (D2) Symmetry. d(x, y) = d(y, x).
• (D3) Triangle inequality. d(x, y) ≤ d(x, z)+d(z, y).

The function d is called a metric and we will often denote a metric space by (X ,d). When the
metric is clear from the context we sometimes only write X .

Examples of Metrics.

12
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DEFINITION 2.2. [Norms and normed vector spaces] Given any real or complex vector space
V , a function ∥ .∥ : V →R≥0 is a norm if it satisfies (for v, w ∈V )

• (N1) ∥v∥ ≥ 0 and ∥v∥ = 0 ⇐⇒ v = 0.
• (N2) ∥λv∥ = |λ| · ∥v∥ for λ ∈R or C.
• (N3) ∥v +w∥ ≤ ∥v∥+∥w∥ (the triangle inequality).

A vector space equipped with a norm is called a normed vector space. Any norm induces a
metric given by

d(v, w) := ∥v −w∥.

EXAMPLE.
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−1 1 2

−1
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2

(2,1)

(0,0)
x

y

REMARK. Any non-zero subset Y ⊂ X of a metric space (X ,d) is itself a metric space with
respect to the same metric (this is easy to check). Unless mentioned otherwise, this will always
be the metric we will use on Y .
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2.2. Open and closed sets

Recall that we say that a subset X ⊆ R is open if for any c ∈ X there exists ε > 0 (that can
depend on c !) such that

(c −ε,c +ε) ⊆ X .

DEFINITION 2.3 (Balls in a metric space). Let (X ,d) be a metric space, x ∈ X and let r > 0 be
a real number. Then:

• The open ball Br (x) of radius r centred at x is

Br (x) := {y ∈ X : d(x, y) < r }.

• The closed ball B r (x) of radius r centred at x is

B r (x) := {y ∈ X : d(x, y) ≤ r }.

EXAMPLE.

The following shows the open balls B1 (0,0) ⊂ R2 for the metrics induced by ∥·∥1, ∥·∥2, and
∥·∥∞:

x

y

As a bonus, here is what the open ball B1 (0,0) ⊂R2 for the metric induced by ∥·∥4 looks like:
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x

y

DEFINITION 2.4. [Open/closed sets in a metric space] Let (X ,d) be a metric space. Then:

• A subset U ⊆ X is open (in X ) if for every point x ∈U there exists ε> 0 such that Bε(x) ⊂
U .

• A subset U ⊆ X is closed (in X ) if its complement U c := X \U is open.

LEMMA 2.5. [Open balls are open] In a metric space, the open ball Br (x) is an open set.

PROOF.

□
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REMARK. It can also be shown that in a metric space the closed ball B r (x) is closed.

Open sets (examples/warnings).

Important observation: Open and closed sets are really relative notions, depending on the am-
bient space (as well as the metric).

Notation: When we say a subset of R, or Rn , or C, is open/closed we mean with respect to the
standard norms | . |, ∥ .∥2 and | . | respectively.

LEMMA 2.6. [Unions and intersections of open sets] Let (X ,d) be a metric space. Then:

1. Arbitrary unions of open sets are open; that is
⋃

i∈I Ui is open for any (possibly infinite) collec-
tion of open sets Ui .

2. Finite intersections of open sets are open; that is
⋂n

i=1 Ui is open for any finite collection of open
sets Ui .

PROOF.
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□

COROLLARY 2.7 (Unions and intersections of closed sets). Let (X ,d) be a metric space. Then:

1. Finite unions of closed sets are closed.
2. Arbitrary intersections of closed sets are closed.

PROOF.
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□

DEFINITION 2.8 (Interior points, closure, boundary). Let A be a subset of a metric space
(X ,d).

• The interior A0 of A is defined by

A0 := {x ∈ A : there exists an open set U ⊆ A such that x ∈U }.

• The closure A of A is the complement of the interior of the complement:

A :=
((

Ac)0
)c = {x ∈ X : U ∩ A ̸=∅ for every open set U with x ∈U }.

• The boundary ∂A of A is the closure without the interior:

∂A := A \ A0
[
= (

A0)c ∩
((

Ac)0
)c =

(
A0 ∪ (

Ac)0
)c]

.

EXAMPLE. Let us consider the set

A = {z ∈C : 1 < |z| ≤ 3}

Re(z)

Im(z)

Then

Re(z)

Im(z)

Re(z)

Im(z)
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Re(z)

Im(z)

Important properties of a set A in a metric space (X ,d):

1. A is open ⇐⇒ ∂A∩ A =∅ ⇐⇒ A = A0.
Moreover,

A0 = ⋃
U⊆A

U open

U

2. A is closed ⇐⇒ ∂A ⊆ A ⇐⇒ A = A.
Moreover,

A = ⋂
A⊆F

F closed

F .

3. ∂A = {x ∈ X : for all open sets U containing x, there exist y, z ∈U with y ∈ A and z ∈ Ac }.

2.3. Convergence and continuity

DEFINITION 2.9. [Limits and convergence in a metric space] We say a sequence {xn}n∈N in a
metric space (X ,d) converges to x ∈ X if we have

lim
n→∞d(xn , x) = 0.

That is, if for every ε> 0 there exists N ∈N such that d(xn , x) < ε for every n > N . We write xn → x
as n →∞, or limn→∞ xn = x.

LEMMA. A sequence of complex numbers {zn} converges in (C, |·|) if and only if the sequences
{Re(zn)} and {Im(zn)} converge in (R, |·|).
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PROOF.
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□

Important remark: Limits in the complex plane follow the COLT rules.

EXAMPLE. Consider the sequence {i k}k∈N in Ĉ and show that it converges to ∞∈ Ĉ with the
chordal metric

d (z, w) = ∥∥P 1(z)−P−1(w)
∥∥

2

where P−1 (z) =
(

2Re(z)
1+|z|2 , 2Im(z)

1+|z|2 , |z|
2−1

1+|z|2
)
.

LEMMA 2.10. [Limits and open sets] Let (X ,d) be a metric space. Then:

1. A sequence can have at most one limit.
2. We have that limn→∞ xn = x if and only if for any open U with x ∈U there exists N ∈N such

that for all n > N we have that xn ∈U .
Hence the notion of a limit in a metric space can be stated in terms only of its open sets.

PROOF.
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□

Sequences in metric spaces also give a nice criterion to check if a set is closed:

LEMMA 2.11. [Closedness criterion in metric spaces] Let (X ,d) be a metric space. Then A is a
closed set if and only if for any sequence {xn}n∈N in A that converges to an element x ∈ X we have
that x ∈ A.

PROOF.

□

Continuity.

DEFINITION 2.12 (Continuity). A map f : (X1,d1) → (X2,d2) between two metric spaces is
called continuous at x0 ∈ X1 if for all ε> 0 there exists δ such that for all x ∈ X1 with d1(x, x0) < δ
we have that d2( f (x), f (x0)) < ε.
We say a function f is continuous on X1 if it is continuous at every point x0 ∈ X1.

LEMMA 2.13 (Continuity via sequences). A function f : X → Y between two metric spaces is
continuous at x ∈ X if and only if

lim
n→∞ f (xn) = f (x)

for every sequence {xn}n∈N in X such that limn→∞ xn = x.

PROOF. □

LEMMA 2.14. [Basic properties of continuous functions]

1. Products, sum, quotients of real/complex valued continuous functions on a metric space X are
continuous. E.g., if f : X → C and g : X → C are continuous, then f + g and f g and f /g are
continuous (where defined).

2. Compositions of continuous functions are continuous. I.e., if f : X1 → X2 and g : X2 → X3 are
continuous maps between metric spaces, then g ◦ f : X1 → X3 is continuous.

PROOF.

□
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Reminder: For any function f : X1 → X2 and any set U ⊆ X1 the preimage of U under f , which
we denote by f −1 (U ), is

f −1 (U ) := {
x ∈ X1 : f (x) ∈U

}
.

THEOREM 2.15. [Continuity via open sets] Let X1 and X2 be metric spaces and let f : X1 → X2

be a give map. Then the following are equivalent

1. f is continuous.
2. f −1 (U ) is open in X1 for every open set U ⊆ X1.
3. f −1 (F ) is closed in X1 for every closed set F ⊆ X1.

PROOF.
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□

EXAMPLE. Show that the set

U = {(x, y) ∈R2 :
(
x2 + y2)sin3

(√
x2 +7

)
> 2}.

is open.
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EXAMPLE. The set
U = {(x, y) ∈R2 : x y > 1, x2 + y2 > 3}

is open.

Useful properties of preimage:

• f −1(A∪B) = f −1(A)∪ f −1(B).
• f −1(A∩B) = f −1(A)∩ f −1(B).
• f −1(A \ B) = f −1(A) \ f −1(B).
• Following from the above

f −1(Ac ) = f −1(Y \ A) = f −1(Y ) \ f −1(A) = X \ f −1(A) = (
f −1 (A)

)c
.

2.4. Sequential Compactness and Compactness

DEFINITION 2.16 (Compactness). A non-empty subset K of a metric space X is called se-
quentially compact if for any sequence {xn}n∈N in K there exists a convergent subsequence {xnk }k∈N
with limit in K .

PROPOSITION 2.17. [Closed sets and limits of sequences] F ⊆ X is closed if and only if ev-
ery sequence in F which converges in X has its limit point in F . That is, if {xn}n∈N is in F and
limn→∞ xn = x for some x ∈ X then x ∈ F .

PROOF.
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□

COROLLARY 2.18. [Relationship between sequential compactness and closedness]

1. Sequentially compact sets are closed.
2. Any closed subset of a sequentially compact subset is sequentially compact.

LEMMA 2.19. If {xn}n∈N is a convergent sequence in a metric space X , then any subsequence of
it converges to the same limit.

PROOF.

□

PROOF OF THE RELATIONSHIP BETWEEN SEQUENTIAL COMPACTNESS AND CLOSEDNESS.
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□

DEFINITION 2.20 (Bounded sets). A subset A ⊆ X of a metric space X is said to be bounded
if there exists R > 0 and x ∈ X such that A ⊆ BR (x).

LEMMA 2.21. [Sequentially compact sets are bounded] Let K ⊆ X be a sequentially compact
subset of a metric space X . Then K is bounded.

PROOF.
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□

THEOREM 2.22. [Heine-Borel for Rn and Cn] A subset K of Rn or Cn is sequentially compact
(with respect to the standard metric) if and only if it is closed and bounded.

PROOF.
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□

THEOREM 2.23 (Extreme Value Theorem). Let f : X → Y be a continuous map between two
metric spaces. Then, if K ⊆ X is sequentially compact the image f (K ) is sequentially compact
in Y . In particular, for Y = R, any continuous real-valued function on a metric space X attains
minima and maxima on sequentially compact sets.

PROOF.

□

COROLLARY 2.24. If K is a closed an bounded set in C then |z|, Re(z), and Im(z) attain maxi-
mum and minimum on K .
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DEFINITION 2.25. Let X be a metric space. We say that a subset K is compact if whenever
{Ui : i ∈ I } is a collection of open subsets Ui ⊆ X with K ⊆⋃

i∈I Ui , then there exists a finite subset
J ⊆ I with K ⊆⋃

i∈J Ui .

Figure. An “infinite” open cover of a set K on the left, and the finite open sub-cover of it on the
right.

THEOREM 2.26. Let X be a metric space and let K be a subset of X . Then K is sequentially
compact if and only if K is compact.



CHAPTER 3

Complex functions and complex differentiation

3.1. Visualising complex valued functions

EXAMPLE. Consider the functions f (z) = |z| and g (z) = arg(z). What are the images of D =
{z ∈C : |z| < 1} under f and g ?

Re(z)

Im(z)

32
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Re(z)

Im(z)

Re(z)

Im(z)

θ = π
4

θ = π
4 θ = π

2
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For instance, in the case that n = 8 we find
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−2 −1 1 2

−i

i

2i
θ = π

4

θ = π
4

1
2 < r < 3

2

−2 −1 1 2

−i

i

2i

θ = π
4

θ = 3π
4

1
8 < r < 27

8

LEMMA.

• The map zn injectively takes an angular segment of length 2π
n which is open at one end

and closed at the other from a circle of radius r to the entire circle of radius r n . If the
above segment is closed, or its size is larger than 2π

n the image is no longer injective.
• The map zn injectively takes a ray of angle θ to a ray of angle nθ mod 2π. Consequently,

the map zn injectively takes the wedge bounded by rays of angles θ1 and θ2 to the wedge
bounded by rays of angles nθ1 mod 2π and nθ2 mod 2π if n |θ1 −θ2| < 2π. When n |θ1 −θ2| ≥
2π the image is the entire complex plane (not invectively).

• We can define n different n−th “roots” which are inverses to the map zn . We can write
them all in the form

z
1
n = |z| 1

n e
i
(

Arg(z)
n + 2πk

n

)
with k = 0, . . . ,n −1 (we remove the k index from the map, but one need to specify which
k we are talking about). Note that for a fixed k the n−th root of z takes C into a anti
clockwise rotation by π

n of Rn,k−1.

θ = π
4

θ = π
4

θ = 3π
4
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3.2. Exponential and trigonometric functions

DEFINITION 3.1 (Complex exponential). We define the complex exponential function exp : C→
C by

exp(z) := ex(cos y + i sin y). (z = x + i y)

As shorthand we write exp(z) = ez .

PROPOSITION 3.2. We have the following properties of the complex exponential function:

1. ez ̸= 0 for all z ∈C.
2. ez1+z2 = ez1 ez2 .
3. ez = 1 if and only if z = 2πi k for some k ∈Z.
4. e−z = 1/ez .
5. |ez | = eRe(z).

PROOF.

□

REMARK. A couple of observations:

• We have exp(2πi ) = 1 and exp(πi ) =−1. The latter is Euler’s formula.
• The complex exponential function is 2πi -periodic; that is, exp(z + 2kπi ) = exp(z) for

any k ∈Z.
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z = 1

z = 1+ i π4

−1

1

2

3

θ = π
4

θ = π
4

z =−1+ i π4 z = 1+ i π4
θ = π

4

LEMMA.

• The map ez injectively takes a segment of length 2π which is open at one end and closed
at the other from the line x = c to the entire circle of radius ec . If the above segment is
closed, or its size is larger than 2π the image is no longer injective.
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• The map ez injectively takes the line y = c to the ray of angle c mod 2πwithout the origin.
• The map ez injectively takes the set {z ∈C : θ < Im(z) ≤ θ+2π} to C∗ where C∗ :=C\ {0}.

DEFINITION 3.3 (Trigonometric functions).

sin(z) := 1

2i
(e i z −e−i z) cos(z) := 1

2
(e i z +e−i z)

sinh(z) := 1

2
(ez −e−z) cosh(z) := 1

2
(ez +e−z)

LEMMA 3.4. We have that for z = x + i y:

sin(z) = sin(x)cosh(y)+ i cos(x)sinh(y).

cos(z) = cos(x)cosh(y)− i sin(x)sinh(y).

sinh(z) =−i sin(i z) = sinh(x)cos(y)+ i cosh(x)sin(y)

cosh(z) = cos(i z) = cosh(x)cos(y)+ i sinh(x)sin(y).

In addition we have that for all z ∈C
sin(z)2 +cos(z)2 = 1, cosh(z)2 − sinh(z)2 = 1.

LEMMA.

• The map sin(z) injectively takes a segment of length 2π which is open at one end and
closed at the other from the line y = c to an ellipse when c ̸= 0. When c = 0 we get the
“squished” ellipse [−1,1]×{0} and the map is injective for a segment of length π on which
the real map sin(x) is injective.

• The map sin(z) injectively takes the line x = c to a one sided hyperbola when c ̸=πk and
c ̸= π

2 +πk for all k ∈Z. When c = πk or c = π
2 +πk for some k ∈Z we get the“squashed”

hyperbolas:
◦ {0}× iR if c =πk. The map is injective in this case.
◦ [1,∞)× {0} if c = π

2 +2πk. The map is injective on
{

z ∈C : z = π
2 +2πk + i y, y ≥ 0

}
and

{
z ∈C : z = π

2 +2πk + i y, y ≤ 0
}
.

◦ (−∞,1]×{0} if c =−π
2+2πk. The map is injective on

{
z ∈C : z =−π

2 +2πk + i y, y ≥ 0
}

and
{

z ∈C : z =−π
2 +2πk + i y, y ≤ 0

}
.
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Similar statements can be done for cos(z) using the identity cos(z) = sin
(
z + π

2

)
(a shift by π

2 on
the x−axis), and sinh(z) and cosh(z) using the identities

sinh(z) =−i sin(i z), cosh(z) = cos(i z)

(rotations by ±π
2 of the variable and image in the complex plane).

3.3. Logarithms and complex powers

LEMMA 3.5. [Inverting the exponential function] For every w ∈C∗, the equation

ez = w(3.1)

has a solution z. Furthermore, if we write w = |w |e iϕ with ϕ= Arg(w), then all solutions to (3.1)
are given by

(3.2) z = log |w |+ i (ϕ+2πk) for k ∈Z.

Here, log |w | is the usual natural logarithm of the real number |w |. Note that there are infinitely
many solutions.

PROOF.

□
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y

x

z

DEFINITION 3.6 (Complex logarithm functions). For any two real numbers θ1 < θ2 with θ2 −
θ1 = 2π, let arg be the choice of argument function with values in (θ1,θ2]. Then the function

log(z) := log |z|+ i arg(z)

is called a branch of logarithm. It has a jump discontinuity along the ray Rθ1 = Rθ2 . This ray is
called a branch cut.

If we choose arg(z) = Arg(z) ∈ (−π,π], then we obtain a branch of logarithm called the prin-
cipal branch of log . We write Log for this principal branch: it is given by the formula

Log(z) := log |z|+ i Arg(z).

The principal branch of logarithm has a “jump discontinuity” along the ray given by the non-
positive real axis R≤0.



3.3. LOGARITHMS AND COMPLEX POWERS 41

LEMMA 3.7. [Properties of logarithms] We have the following properties when using any given
branch of logarithm:

1. e log z = z for any z ∈C\ {0}.
2. In general

log(zw) ̸= log z + log w.

3. In general
log(ez) ̸= z.

PROOF.
□

LEMMA.

• A branch of the map log(z) injectively takes a ray without the origin of angle θ ̸= 0, mea-
sured with respect to the branch cut, to the line y = θ.

• A branch of the map log(z) takes a concentric circle of radius r , minus the branch cut, to
a segment of length 2π on the line x = logr with its lowest point given by the angle that
define the branch cut.

DEFINITION 3.8 (Complex powers). For w ∈ C fixed, by choosing any branch of log we can
define a branch of the function z 7→ zw by the expression

zw := exp(w log z).

For example, if w = 1/n and we use the principal branch we get

z
1
n = e

log |z|
n +i Arg(z))

n = |z| 1
n e i Arg(z)

n .
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EXAMPLE. Find (1− i )
1
2 using the principal branch of the logarithm.

EXAMPLE. Find 2
1
2 for all possible branches.

3.4. Möbius transformations

3.5. Complex differentiability

DEFINITION 3.9 (Complex differentiability). A function f : U → C defined on an open set U
in C is (complex) differentiable at z0 ∈U if

lim
z→z0

f (z)− f (z0)

z − z0
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exists. We call this limit the derivative of f at z0 and write f ′(z0) for the limit, i.e.

f ′(z0) = lim
z→z0

f (z)− f (z0)

z − z0
.

Another form to the above limit is

lim
h→0

f (z0 +h)− f (z0)

h
.

EXAMPLE. Show that f (z) = z2 is differentiable at z = 0.

EXAMPLE. At which points is f (z) = z differentiable?

LEMMA (COLT for derivatives and the chain rule).

1. Let f , g :C→C be differentiable at z0 ∈C. Then:
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• f + g is differentiable at z0 and(
f + g

)′ (z0) = f ′(z0)+ g ′(z0).

• (product rule) f g is differentiable at z0 and(
f g

)′ (z0) = f ′(z0)g (z0)+ f (z0)g ′(z0).

• (quotient rule) if g (z0) ̸= 0 then f /g is differentiable at z0 and(
f

g

)′
(z0) = f ′(z0)g (z0)− f (z0)g ′(z0)

g (z0)2
.

2. (chain rule) Let f , g : C→ C be functions such that g is differentiable at z0 ∈ C and f is differ-
entiable at g (z0). Then f ◦ g is differentiable at z0 and(

f ◦ g
)′ (z0) = f ′ (g (z0)

)
g ′(z0).

PROOF.

□

3.6. Cauchy-Riemann equations

PROPOSITION 3.10. [Cauchy-Riemann equations] Let f = u + i v be complex differentiable at
z0 = x0+i y0. Then the real partial derivatives ux ,uy , vx , vy exist at

(
x0, y0

)
and satisfy the Cauchy-

Riemann equations:

ux
(
x0, y0

)= vy
(
x0, y0

)
uy

(
x0, y0

)=−vx
(
x0, y0

)
.

Furthermore, the derivative of f at z0 can be written as

f ′(z0) = ux(z0)+ i vx(z0) = vy (z0)− i uy (z0)

= ux(z0)− i uy (z0) = vy (z0)+ i vx(z0).

PROOF.
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□

THEOREM 3.11. Let f = u + i v be defined on an open subset U of C. Assume the partial
derivatives ux ,uy , vx , vy exist, are continuous, and satisfy the Cauchy-Riemann equations at z0 ∈
U . Then f is complex differentiable at z0.

PROOF.

□

Holomorphicity.
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DEFINITION 3.12 (Holomorphic functions). A function f : U → C defined on an open set
U ⊆C is holomorphic on U if it is complex differentiable at every point in U . We say f is holo-
morphic at z0 if it is holomorphic on a open ball Bε(z0) for some ε> 0.
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DEFINITION 3.13. [Paths & path-connectedness]

1. A path or curve from z ∈ C to w ∈ C is a continuous function γ : [0,1] → C with γ(0) = z and
γ(1) = w . We say the path/curve is closed if z = w (in this case, the endpoints of the path join
up).

2. A path/curve is said to be continuously differentiable, or C 1, if its real part and imaginary
parts are continuously differentiable on [0,1]. At the end point 0 and 1 this means that real
part and imaginary parts have right-sided derivatives at 0 and left-sided derivative at 1, and
that the derivatives are continuos from the right at 0 and from the left at 1.
In that case we define

γ′(t ) = (
Re

(
γ(t )

))′+ i
(
Im

(
γ(t )

))′ .
3. We say a subset U ⊆ C is C 1 path-connected if for every pair of points z, w ∈ U there exists

a C 1 path from z to w such that γ(t ) ∈U for all t ∈ [0,1]. For simplicity, we will use the term
path-connected instead of C 1 path connected in the remaining of this module.

In general paths can be defined from an interval [a,b] instead of [0,1]. It makes no difference
since we can always re-parametrise the paths. For instance, if γ1 : [a,b] → X is a given function
we just define γ : [0,1] → X by

γ (t ) = γ1

(
t −a

b −a

)
.

Conversely for γ : [0,1] → X we define γ1 : [a,b] → X by

γ1 (t ) = γ ((b −a) t +a) .

Note that the continuity or differentiability of the maps is identical, as well as their image, so our
definition of paths and C 1 paths remains intact.

DEFINITION 3.14 (Domains). A domain D is an open, path-connected subset of C. (Some
people call domains regions).
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z1 = 2+ i

z2 = 1− i

−2

−1

1

2

z1 =−1− i

z2 =−i

−3

−2

−1

1

2

3

z1 =−1+ i

z2 = 1− i

z3 = 2

(
x − 1

2

)2 + (
y − 1

2

)2 = 5
2

THEOREM 3.15. Let f : D →C be holomorphic on a domain D ⊆C. If f ′(z) = 0 for every z ∈ D
then f is constant on D.
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LEMMA 3.16. [Chain rule] Let U ⊆ C be an open set, f : U → C be a holomorphic function on
C and γ : [0,1] →U be a C 1 path. Then for t0 ∈ [0,1] we have

( f ◦γ)′(t0) = f ′(γ(t0))γ′(t0).

PROOF OF THE LEMMA.

□

PROOF OF THE THEOREM.

□
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3.7. The angle-preserving properties of holomorphic functions

DEFINITION 3.17 (Conformal maps). We say that a (real differentiable) map f : D → C on a
domain D ⊆C is conformal at z0 if it preserves the angle and orientation between any two tan-
gent vectors at z0. This is exactly the same as saying that it preserves the angle and orientation
between any two C 1 curves passing through z0. We say that f is conformal if it is conformal at
all points in D .

LEMMA 3.18. [Holomorphic maps are conformal] Let f be a holomorphic map at z0. If f ′(z0) ̸=
0 then f conformal at z0.

PROOF.

□
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COROLLARY 3.19. Any conformal map maps orthogonal grids in the (x, y)-plane to orthogonal
grids.

x = 1

y = 1 (1,1)

x axis

y axis

u = 1− v2

4u = v2

4 −1

(0,2)

u axis

v axis

PROPOSITION 3.20. [Conformal maps are holomorphic] Let D be a domain. If f is conformal
at z0 ∈ D then f is complex differentiable at z0 and f ′(z0) ̸= 0. Therefore, if f is conformal on D,
then f is holomorphic on D and f ′(z) ̸= 0 for all z ∈ D. Thus

f is conformal on D ⇐⇒ f is holomorphic with f ′(z) ̸= 0 for all z ∈ D .

PROOF.

□

3.8. Biholomorphic maps

DEFINITION 3.21 (Biholomorphic maps). Let D and D ′ be domains. We say that f : D → D ′
is biholomorphic if f is holomorphic, a bijection, and the inverse f −1 : D ′ → D is also holomor-
phic. A biholomorphic map f is called a biholomorphism. When f as above exists, we say that
the domains D and D ′ are biholomorphic and write f : D

∼−→ D ′.
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LEMMA 3.22 (Automorphism groups). Let D ⊂ C be a domain. The set of all biholomorphic
maps f : D

∼−→ D from D to itself forms a group under composition. We call this group the auto-
morphism group of D and denote it by Aut(D).

PROOF.

□



CHAPTER 4

Möbius transformations

4.1. Definition and first properties of Möbius transformations

Recall the that the General Linear group GL2 (C) is defined to be

GL2 (C) :=
{(

a b
c d

)
: a,b,c,d ∈C, ad −bc ̸= 0

}
,

i.e. the set of all 2×2 complex valued matrices with non-zero determinant.

DEFINITION 4.1 (Möbius transformations). Given any matrix T =
(

a b
c d

)
∈ GL2(C) we can

define a function
MT :C→ Ĉ

by

MT (z) := az +b

cz +d

54
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if cz +d ̸= 0, and if cz +d = 0 we set MT

(
−d

c

)
=∞ when c ̸= 0. We can extend the map to Ĉ by

setting

MT (∞) =
{

a
c , if c ̸= 0,

∞, if c = 0.

The function MT : Ĉ→ Ĉ is called a Möbius transformation.

|z| = 2

Re(z)

Im(z)

Re(z)

Im(z)



4.1. DEFINITION AND FIRST PROPERTIES OF MÖBIUS TRANSFORMATIONS 56

LEMMA.

• The map 1/z injectively takes the set D\ {0} = {z ∈C : 0 < |z| < 1} to Dc = {z ∈C | : |z| > 1}.
When considering 1/z over Ĉwe find that it injectively takes D to Dc ∪ {∞}.
Similarly, 1/z injectively takes the set Dc to D\ {0} and on Ĉ it takes Dc ∪ {∞} to D.

• The map 1/z injectively takes the ray at angle θ without the origin to the ray at angle −θ
without the origin. On Ĉ the statement remains the same by adding the origin and ∞ to
the rays.

0 < |z| = 2

Re(z)

Im(z)

|z| = 1
2

Re(z)

Im(z)

LEMMA 4.2. The set of Möbius transformations form a group under composition. Further-
more,

1. MT1 ◦MT2 = MT1T2 .
2. (MT )−1 = MT −1 .
3. For any k ∈C∗ we have that MkT = MT . We conclude that MT = Id if and only if

T = k

(
1 0
0 1

)
for some k ∈C∗.

PROOF.

□

COROLLARY 4.3. Any Möbius transformation is a bijection from Ĉ to Ĉ.

LEMMA 4.4. Let T =
(

a b
c d

)
∈ GL2(C). If c = 0, the Möbius transformation MT gives a biholo-

morphic map
MT :C

∼−→C.

If c ̸= 0, then MT gives a biholomorphic map

MT :C\

{−d

c

} ∼−→C\
{a

c

}
.
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PROOF.

□

COROLLARY 4.5. A Möbius transformation MT is conformal at all z ∈Cwith MT (z) ̸=∞.

4.2. How to find Möbius transformations

DEFINITION 4.6. Given four distinct points z0, z1, z2, z3 ∈ C, the cross-ratio of these points is
defined by

(z0, z1; z2, z3) := (z0 − z2)(z1 − z3)

(z0 − z3)(z1 − z2)
=

z0−z2
z0−z3
z1−z2
z1−z3

.
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We will denote the cross ratio of z0, z1, z2, z3 by (z0, z1; z2, z3). We can extend the definition to the
case that one of the points is ∞ by removing all differences involving that point, for example,

(∞, z1; z2, z3) := (z1 − z3)

(z1 − z2)
.

THEOREM 4.7. [Three points Theorem] Let {z1, z2, z3} and {w1, w2, w3} be two sets of three
ordered distinct points in Ĉ. Then there exists a unique Möbius Transformation f such that
f (zi ) = wi for i = 1,2,3.

LEMMA 4.8 (Fixed points). Let T ∈ GL2(C). If MT : Ĉ→ Ĉ is not the identity map then MT has
at most 2 fixed points in Ĉ, where z0 is a fixed point of the map f if f (z0) = z0. In other words, if a
Möbius transformation has three fixed points in Ĉ, then it is the identity.

PROOF OF FIXED POINT LEMMA.

□

PROOF OF THREE POIINTS THEOREM.
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□

LEMMA 4.9. The cross-ratio is preserved under Möbius transformations. In other words, if
f : Ĉ→ Ĉ is a Möbius transformation then

( f (z0) , f (z1) ; f (z2) , f (z3)) = (z0, z1; z2, z3).

LEMMA 4.10 (Building blocks of Möbius transformations). Any Möbius transformation is
composition of the following four type of maps:

1. Shift: z → z +b for some b ∈C.
2. Stretch/Compression: z →λz for some λ ∈R>0.
3. Rotation: z → e iθz for some θ ∈ (−π,π].
4. Inversion: z → 1

z .

PROOF.
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□

PROOF OF THE INVARAINCE OF THE CROSS-RATIO.
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□

Using the invariance of cross-ratio to find Möbius transformation.

EXAMPLE. Find the Möbius map that takes the points {1,−1, i } to {0,∞,1} respectively.

4.3. The image of special domains under the Möbius transformation - the geometry of
circles and lines

LEMMA 4.11. Let T =
(

a b
c d

)
∈ GL2 (C) and let D ⊆ C be a open set. Then MT

(
D \

{
−d

c

})
is

open. Together with the fact that Möbius maps are bijections on Ĉwe have that

MT

(
∂D \

{
−d

c

})
= ∂MT (D) \ {∞} .

When c = 0 we consider −d
c as ∞ which is outside of C and consequently A \ {∞} = A for any

A ⊆C.
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LEMMA 4.12. The map f (z) = 1
z takes a circle that doesn’t pass through the origin to a circle.

Moreover, if B is an open ball whose closure doesn’t contain the origin then f (B) is once again an
open ball. Consequently, if D ⊆C is a set then for any z0 ∈D \ {0} for which there exists ε> 0 with
Bε (z0) ⊆ D we have that there exists δ > 0 such that Bδ

(
f (z0)

) ⊆ f (D) (i.e. f takes any non-zero
interior point of D to an interior point of f (D)).

PROOF OF THE AUXILARY LEMMA.
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□

PROOF OF THE LEMMA.

□
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LEMMA 4.13. [Equation of circles and lines in C] Given γ,β ∈R and α ∈C, the equation

γzz −αz −αz +β= 0

describes a circle if γ ̸= 0 and |α|2 −βγ> 0, and a line if γ= 0 and α ̸= 0. Conversely, any circle or
line can be described by an equation of this form.

PROPOSITION 4.14. Möbius transformations map circles and lines in Ĉ to circles and lines in
Ĉ, where we consider any line to pass through infinity. By circles in Ĉwe mean simply circles in C.

PROOF.
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□

Terminology: we use the term circline to refer to an object that is either a circle or line.
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EXAMPLE. Find the image of D andH under the Cayley map defined as

f (z) = z − i

z + i
.

Re(z)

Im(z)

Re(z)

Im(z)
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Re(z)

Im(z)

Re(z)

Im(z)

EXAMPLE. Show that the Cayley map takes
{

z ∈C : 0 < Arg(z) < π
2

}
to {z ∈D : Im(z) < 0}.

Re(z)

Im(z)

Re(z)

Im(z)

The above examples also give us maps from discs/half discs to upper/lower/left/right planes
and quadrants by using the inverse Cayley map

(MC )−1 (z) = MC−1 (z) = i z + i

1− z
.
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Möbius transformations that preserve the upper plane and unit disc.

PROPOSITION 4.15. [H2H] Every Möbius transformation mapping H to H is of the form MT

with T in the group

SL2(R) :=
{

T =
(

a b
c d

)
: a,b,c,d ∈R, detT = ad −bc = 1

}
.

Conversely, every such Möbius transformation maps H to H, and hence gives a biholomorphism
fromH toH.

PROOF.
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□

PROPOSITION 4.16. [D2D] Every Möbius transformation from the unit disk D to itself is of the
form MT with T in the set

SU(1,1) :=
{

T =
(
α β

β α

)
: α,β ∈C, detT = |α|2 −|β|2 = 1

}
.

Conversely, every such Möbius transformation maps D to D and hence gives a biholomorphic au-
tomorphism of D.

PROOF.
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□

COROLLARY 4.17 (D2D-improved).

1. Every Möbius transformation f from the unit disk D to itself can be written as

f (z) = e iθ z − z0

z0z −1
,

for some angle θ and z0 ∈Dwhich is the unique point such that f (z0) = 0.
2. All Möbius transformations of the unit disk to itself for which f (0) = 0 are rotations about 0.

PROOF.
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□

EXAMPLE. Find a biholomorphic map f from the unit disc to itself such that f
( i

2

) = 0 and
f (−i ) = 1.

4.4. Riemann Sphere - revisited
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4.5. Biholomorphic domains - revisited

Function Maps the domain To the domain Biholomorphic?

zn , n ∈N {
0 < Arg(z) < θ}⋃

{0}
C, if θ > 2π

n ,{
0 < Arg(z) < nθ

}⋃
{0} , if θ ≤ π

n ,{
0 < Arg(z) ≤π}⋃{−π< Arg(z) < nθ−2π

}⋃
{0} , if π

n < θ ≤ 2π
n .

When θ ≤ 2π
n .

zn , n ∈N {
θ1 < Arg(z) < θ2

}
with −π< θ1 < θ2 ≤π a rotation by nθ1 of the image of{

0 < Arg(z) < θ2 −θ1
}

by zn When θ2 −θ1 ≤ 2π
n .

Principle branch of z
1
n , n ∈N {

θ1 < Arg(z) < θ2
}⋃

{0} with −π< θ1 < θ2 ≤π
{
θ1
n < Arg(z) < θ2

n

}⋃
{0} Yes

ez {θ1 < Im(z) < θ2}
C∗, if θ2 −θ1 > 2π,{

θ1 mod 2π< Arg(z) < θ2 mod 2π
}

\ {0} , if θ2 −θ1 ≤ 2π.
When θ2 −θ1 ≤ 2π

Log(z)
{
θ1 < Arg(z) < θ2

}
\ {0} with −π< θ1 < θ2 ≤π {θ1 < Im(z) < θ2} \ {0} Yes

1
z {r1 < |z| < r2}

{
1
r2
< |z| < 1

r1

}
Yes

Cayley map f (z) = z−i
z+i D HL Yes

Cayley map f (z) = z−i
z+i H D Yes

Cayley map f (z) = z−i
z+i H∩D= {|z| < 1, Im(z) > 0} HL ∩D= {|z| < 1, Re(z) < 0} Yes

Cayley map f (z) = z−i
z+i H∩HR = {Rez > 0, Im(z) > 0} H−∩D= {|z| < 1, Im(z) < 0} Yes

Möbius map MT (z) with real matrix T such that detT = 1 H H Yes

f (z) = e iθ z−z0
z0z−1 with θ ∈ (−π,π] and z0 ∈D D D Yes

General Möbius transformation domains bounded by circlines domains bounded by circline Yes

where we have used the notation ofH− := {z ∈C : Imz < 0} for the lower half plane.

EXAMPLE. Find a biholomorphic map that takes
{

z ∈C : Arg(z) ̸= −π}
to D.

Re(z)

Im(z)

Re(z)

Im(z)

Re(z)

Im(z)

Re(z)

Im(z)



CHAPTER 5

Notions of Convergence in complex analysis and power series

DEFINITION 5.1 (Pointwise convergence). Let (X ,dX ) and (Y ,dY ) be two metric spaces. A
sequence of functions { fn}n∈N : X → Y converges pointwise (on X ) to f if every x ∈ X the limit
function f (x) := limn→∞ fn(x) exists in Y . In other words, for any x ∈ X and any ε > 0 there
exists N (ε, x) ∈N such that if n > N (ε, x)

dY
(

fn(x), f (x)
)< ε.

Note that N (ε, x) depends on ε and x ∈ X in general.

Key issue with pointwise convergence: Pointwise convergence doesn’t necessarily preserves
continuity.

DEFINITION 5.2 (Uniform convergence). We say a sequence of functions { fn}n∈N : X → Y
converges uniformly (on X ) to (the limit function) f if we have

sup
x∈X

dY
(

fn(x), f (x)
) −→

n→∞ 0.

In other words, for any ε> 0 there exists N (ε) ∈N such that if n > N (ε)

d( fn(x), f (x)) < ε, ∀x ∈ X .
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Note that N (ε) here does not depend on the specific choice of x ∈ X – the same N works for all
of them!

THEOREM 5.3. [Uniform limits of continuous functions are continuous] Let (X ,dX ) and (Y ,dY )
be two metric spaces and let { fn}n∈N : X → Y be a sequence of continuous functions that converges
uniformly to f on X . Then f is continuous on X .

PROOF.

□

LEMMA 5.4. [Test for uniform convergence] Let fn : X →C be a sequence of functions converg-
ing pointwise to a limit function f .

1. If | fn(x)− f (x)| ≤ sn for every x ∈ X , where {sn}n∈N is some sequence in R≥0 (independent of x)
with limn→∞ sn = 0, then fn converge uniformly to f on X .

2. If there exists a sequence xn ∈ X such that | fn(xn)− f (xn)| ≥ c for some positive constant c, then
fn does not converge uniformly to f on X .

PROOF.
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□

EXAMPLE. Show that the sequence of functions fn(z) = ez + 1
n converges to ez uniformly on

C.

EXAMPLE. Show that for any R > 0 the sequence of functions fn(z) = ez + z
n converges to ez

uniformly on {z ∈C : |z| < R}. Does is converge uniformly on C?

THEOREM 5.5. [Weierstrass M-test] Let fn : X →C be a sequence of functions such that
∣∣ fn(x)

∣∣≤
Mn for all x ∈ X and some sequence of non-negative numbers {Mn}n∈N such that

∞∑
n=1

Mn <∞.

Then SN (x) = ∑N
n=1 fn(x) converges uniformly on X to some limit function S : X → C which we

denote by

S(x) =
∞∑

n=1
fn(x).

In particular, if all the functions fn(x) are continuous on X then S(x) =∑∞
n=1 fn(x) is also contin-

uous on X .

PROOF.

□

EXAMPLE. Show that ∞∑
n=1

|2z|3n

32nn2
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converges uniformly to a continuous function on D.

THEOREM 5.6. Assume a sequence of functions fn : [a,b] → R converge uniformly on an inter-
val [a,b] to some function f , and that { fn}n∈N are all continuous. Then for any c ∈ [a,b] we have
that:

lim
n→∞

∫ c

a
fn(x)d x =

∫ c

a
f (x)d x.

In particular, if
∑∞

n=1 fn(x) converges uniformly on an interval [a,b] and if { fn}n∈N are continuous
for all n ∈N then for any c ∈ [a,b] we have that:∫ c

a

( ∞∑
n=1

fn(x)

)
d x =

∞∑
n=1

∫ c

a
fn(x)d x.
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5.1. Locally uniform convergence

DEFINITION 5.7 (Locally uniform convergence). Let { fn}n∈N be a sequence of functions de-
fined on a metric space X . We say { fn} converges locally uniformly (on X ) to (the limit func-
tion) f , if for every x ∈ X there exists an open set Ux ⊂ X (that can depend on x!) containing x
on which { fn}n∈N converges uniformly to f .

EXAMPLE. Show that the sequence of functions fn(z) = zn converges locally uniformly on D
but not uniformly.

THEOREM 5.8. Let { fn}n∈N be a sequence of continuous functions, which converges locally
uniformly on X to a limit function f . Then f is continuous on X .

PROOF.

□

THEOREM 5.9. [Local M-test] Let X be a metric space and let fn : X → C be a sequence of
continuous functions such that for any x0 ∈ X , there is an open Ux0 ⊂ X containing x0 and con-
stants Mn

(
Ux0

)> 0 (which may depend on Ux0 !) such that | fn(x)| ≤ Mn
(
Ux0

)
for all x ∈Ux0 , and∑∞

n=1 Mn
(
Ux0

)<∞. Then
∑∞

n=1 fn converges locally uniformly to a continuous function on X .
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PROOF.
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□
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EXAMPLE. Show that the series
∑∞

n=1

(
z+ 1

z

)n

n! converges locally uniformly to ao continuous
function on C∗.

5.2. Complex power series

DEFINITION 5.10. A (complex) power series is an expression of the form
∞∑

n=0
an(z − c)n

where {an}n∈N is a sequence of complex numbers and c ∈C.

THEOREM 5.11. For any sequence of complex numbers {an}n∈N we can define the power series

S(z) =
∞∑

n=0
an(z − c)n .

There exists R ∈R≥0 ∪ {+∞} such that

• S(z) converges only for z = c when R = 0. In this case S(c) = a0.
• S(z) converges absolutely for all |z − c| < R when R > 0. If R = +∞ this condition holds

for any z.
• S(z) diverges for |z − c| > R when R > 0. If R =+∞ this condition never holds.

R is called the radius of convergence of our power series and BR (c) is called the disc of conver-
gence.
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Recall/Fact: The radius of convergence can be found using the formula

R = 1

limsupn→∞
n
p|an |

.

We can replace limsup by lim when the limit exists.
Moreover, we have the following formula when the limit exist:

R = lim
n→∞

|an |
|an+1|

(note that the above implies that if both limits exist they are the same).
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THEOREM 5.12. A power series
∑∞

n=0 an(z−c)n with radius of convergence 0 < R ≤∞ converges
uniformly on any ball Br (c) with 0 < r < R. This implies the power series is locally uniformly
convergent on its disc of convergence.

PROOF.

□

EXAMPLE. Show that the power series
∑∞

n=0
zn

n! converges locally uniformly on C.

Differentiation/integration of power series.

PROPOSITION 5.13. [Term by term differentiation or integration preserves the radius of con-
vergence] Let

∑∞
n=0 an(z − c)n be a power series with radius of convergence 0 < R ≤+∞. Then the

formal derivatives and anti-derivatives of the power series
∞∑

n=1
nan(z − c)n−1 and

∞∑
n=0

an

n +1
(z − c)n+1

are power series with the same radius of convergence R.
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THEOREM 5.14. [Power series can be differentiated term by term in their disc of convergence]
Let

∑∞
n=0 an(z − c)n be a power series in C, with radius of convergence 0 < R ≤ +∞, and let f :

BR (c) →C be the resulting limit function. Then f is holomorphic on BR (c) with

f ′(z) =
∞∑

n=1
nan(z − c)n−1

for z ∈ BR (c).

PROOF.
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□

COROLLARY 5.15. A power series f of the form
∑∞

n=0 an(z − c)n with positive radius of conver-
gence R can be differentiated infinitely many times in BR (c). We have that

f (k)(z) :=
∞∑

n=k
n(n −1) . . . (n −k +1)an(z − c)n−k =

∞∑
n=k

k !

(
n

k

)
an(z − c)n−k

for z ∈ BR (c) which implies that f (k)(c) = k ! ak .

COROLLARY 5.16 (Power series can be integrated term by term in their disc of convergence).
A power series f of the form

∑∞
n=0 an(z−c)n with positive radius of convergence R has a holomor-

phic antiderivative F : BR (c) → C, that is a holomorphic function F on BR (c) such that F ′(z) =
f (z). F is given by F (z) :=∑∞

n=0
an

n+1 (z − c)n+1 for z ∈ BR (c).
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CHAPTER 6

Complex integration over contours

6.1. Definition of contour integrals

DEFINITION 6.1. Consider a continuous function f : [a,b] →Cwhere [a,b] ⊂R. We define∫ b

a
f (t )d t =

∫ b

a

(
Re

(
f (t )

)+ i Im
(

f (t )
))

d t :=
∫ b

a
Re

(
f (t )

)
d t + i

∫ b

a
Im

(
f (t )

)
d t .
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EXAMPLE. Find
∫ 1

0 f (t )d t where f (t ) = t + i t ,

LEMMA 6.2.

1. Let f1 and f2 be continuous functions from [a,b] to C. Then∫ b

a

(
f1(t )+ f2(t )

)
d t =

∫ b

a
f1(t )d t +

∫ b

a
f2(t )d t .

2. For any complex number c ∈C, and continuous function f : [a,b] →C,∫ b

a
c f (t )d t = c

∫ b

a
f (t )d t .

PROOF.
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□

Recall: We say that a path γ : [a,b] →C is C 1 if its real part and imaginary parts are continuously
differentiable on [a,b]. At the end point a and b this means that real part and imaginary parts
have right-sided derivatives at a and left-sided derivative at b, and that the derivatives are con-
tinuos from the right at a and from the left at b.
In that case we define

γ′(t ) = (
Re

(
γ(t )

))′+ i
(
Im

(
γ(t )

))′ .

DEFINITION 6.3 (Contours). Let γ : [a,b] → C be a curve, and suppose that there exist a =
a0 < a1 < a2 < . . . < an−1 < an = b such that the curves γi : [ai−1, ai ] → C, i = 1,2, . . . ,n defined
by γi (t ) := γ(t ) for t ∈ [ai−1, ai ] are C 1 curves. Then we say that γ is a piecewise C 1-curve, or a
contour.
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DEFINITION 6.4. Let U ⊆ C be an open set, and let f : U → C be a continuous function. Let
γ : [a,b] →U be a C 1-curve. Then we define the integral of f along the curve γ by∫

γ
f (z)d z :=

∫ b

a
f (γ(t ))γ′(t )d t .

If γ : [a,b] →U is a contour such that γ|[ai−1,ai ] →C, with a = a0 < a1 < a2 < . . . < an−1 < an = b is
a C 1 curves for i = 1, . . . ,n, then we define∫

γ
f (z)d z =

n∑
i=1

∫
γi

f (z)d z.

LEMMA 6.5 (Basic properties). Assuming that f1, f2 and f are continuous on U we find that
for any C 1 curve γ : [a,b] →U :

1. ∫
γ

( f1(z)+ f2(z))d z =
∫
γ

f1(z)d z +
∫
γ

f2(z)d z.

2. For any c ∈C ∫
γ

c f (z)d z = c
∫
γ

f (z)d z.

3. Defining
(−γ)

: [−b,−a] →U by
(−γ)

(t ) = γ(−t ) we have that∫
γ

f (z)d z =−
∫
−γ

f (z)d z.

PROOF.

□

EXAMPLE. Consider the path γ : [0,2π] →C defined by γ(θ) = r e iθ with r > 0. Find:

• ∫
γd z.

• ∫
γ zd z.

• ∫
γ znd z for n ∈Z.
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LEMMA 6.6 (Reparametrisation of curves). Let U ⊂C be an open set, f : U →C be continuous,
and let γ : [a,b] →U be a C 1 curve. If ϕ : [a′,b′] → [a,b] is continuously differentiable bijection
with ϕ(a′) = a and ϕ(b′) = b and we define δ : [a′,b′] →C by

δ(t ) := γ(
ϕ(t )

)= (
γ◦ϕ)

(t )

then ∫
γ

f (z)d z =
∫
δ

f (z)d z.

PROOF.



6.1. DEFINITION OF CONTOUR INTEGRALS 91

□

Important notation: Given a domain D such that there exists a bijective contour γ : [a,b] → ∂D
with a continuous inverse γ−1 : ∂D → [a,b] and such that γ′(t ) ̸= 0, we define∫

∂D
f (z)d z =

∫
γ

f (z)d z.

This notion is well defined and doesn’t depend on γ due to our Reparametrisation of curves
lemma, Lemma 6.6. When the boundary has no “end points”, such as the circle, we can extend
to above definition to the case where γ : [a,b) → ∂D has the previously mentioned properties
and γ(a) = γ(b).
For example, for D = {z ∈C : |z − c| < r, r > 0,c ∈C} we have that

∂D = {z ∈C : |z − c| = r, r > 0,c ∈C} ,

which is the bijective image of the C 1 curve γ : [0,2π) →C

γc,r (θ) = c + r e iθ.

Consequently ∫
|z−c|=r

f (z)d z =
∫
γc,r

f (z)d z =
∫ 2π

0
f
(
c + r e iθ

)
r i e iθdθ.

DEFINITION 6.7. Let if γ : [a,b] → C and δ : [c,d ] → C be two contours such that γ(b) = δ(c).
We define their addition, γ∪δ, as the curve

γ∪δ : [a,b +d − c] →C

with

γ∪δ(t ) :=
{
γ(t ), , a ≤ t ≤ b,

δ(t + c −b), b ≤ t ≤ b +d − c.
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By the definition of integration along a contour and the change of variables formula we have
that ∫

γ∪δ
f (z)d z =

∫
γ

f (z)d z +
∫
δ

f (z)d z.

6.2. The Fundamental Theorem of Calculus

THEOREM 6.8 (Complex Fundamental Theorem of Calculus - Part I (FTC-I)). Let U ⊂ C be
an open set and let F : U →C be holomorphic with continuous derivative f . Then for any contour
γ : [a,b] →U we have ∫

γ
f (z)d z = F (γ(b))−F (γ(a)).

In particular if γ is closed, that is γ(a) = γ(b), then we have that∫
γ

f (z)d z = 0.

PROOF.

□
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DEFINITION 6.9 (Length of a contour). Let γ : [a,b] → C be a contour. We define the length
of γ by

L(γ) :=
∫ b

a

∣∣γ′(t )
∣∣d t .

LEMMA 6.10 (The Estimation Lemma). Let f : U → C be continuous and γ : [a,b] → U be a
contour. Then ∣∣∣∣∫

γ
f (z)d z

∣∣∣∣≤ (
sup
z∈γ

| f (z)|
)

L(γ).

PROOF.
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□

The definition of a length of a curve is motivated from the analysis of functions of many
variables and the study of integration over curves. There one shows that the infinitesimal length
of a curve is exactly

∣∣γ′(t )
∣∣d t . This means that if we have a function g : U → R and a curve

γ : [a,b] →U we can define the integral of the real valued function g along the curve γ as∫ b

a
g

(
γ(t )

)∣∣γ′(t )
∣∣d t .

We have a special notation for this:
Notation: Let U ⊆C be a open and let g : U →R be continuous. For any γ : [a,b] →U we define∫

γ
g (z)d |z| :=

∫ b

a
g

(
γ(t )

)∣∣γ′(t )
∣∣d t .

In the proof of our estimation lemma we have shown the important inequality:∣∣∣∣∫
γ

f (z)d z

∣∣∣∣≤ ∫
γ

∣∣ f (z)
∣∣d |z| .

EXAMPLE. Consider γ :
[
0, π2

]→C given by γ (θ) = 2e iθ. Find an upper bound for∣∣∣∣∫
γ

z +4

z3 −1
d z

∣∣∣∣ .
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THEOREM 6.11 (Complex Fundamental Theorem of Calculus - Part II (FTC-II)). Let f : D →
C be continuous on a domain D. If

∫
γ f (z)d z = 0 for all closed contours γ in D, then there exists a

holomorphic F : D →C such that
F ′(z) = f (z).

PROOF.
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□
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