
Complex Analysis II.

Prerequisites from Analysis I ∗

The definitions and results collected in this document serve as a refresher of some concepts from
Analysis I that we will explore in the complex setting throughout the Complex Analysis II module. The
definitions and results collected here are taken from the Analysis I lecture notes from 2021–2022 by Prof.
D. Schütz and Prof. J. Funke.

Sequences.

Definition 1 (Real sequence). A real sequence is a function from N to R. That is, it assigns to every
natural number n ∈ N a real number xn ∈ R. Such a sequence is denoted {xn}.

Definition 2 (Convergence of sequence). A real sequence {xn} is said to be convergent to the limit x ∈ R
if

lim
n→∞

|xn − x| = 0.

That is, for every ϵ > 0, there exists and index N ∈ N such that

|xn − x| < ϵ for all n > N.

We write limn→∞ xn = x, or we say “xn → x as n → ∞.” A sequence that has a limit is called a
convergent sequence. If a sequence is not convergent, then it is called divergent.

Definition 3 (Bounded sequence). Let {xn} be a real sequence and denote the set X = {xn ∈ R : n ∈ N}.
The sequence {xn} is called bounded above, respectively below, if X is bounded above, respectively below.
The sequence {xn} is called bounded if X is bounded.

Theorem 4 (COLT). Let {xn} and {yn} be real sequences that are convergent with limits x = limn→∞ xn

and y = limn→∞ yn. Let a, b ∈ R. Then we have

1. axn + byn → ax+ by as n → ∞.

2. xn · yn → x · y as n → ∞.

3. xn

yn
→ x

y as n → ∞.

Definition 5 (Subsequence). Let {xn} be a sequence. A subsequence of {xn} is a sequence {xnj
} with

n1 < n2 < n3 < · · · .

Theorem 6 (Bolzano–Weierstrass). Let {xn} be a bounded real sequence. Then {xn} has a subsequence
which is convergent.

Definition 7 (Lim sup and Lim inf). Let {xn} be a bounded sequence. The limit superior of {xn} is
defined as

lim sup
n→∞

xn = inf
n≥1

{
sup
m≥n

{xm}
}
,

and the limit inferior of {xn} is defined as

lim inf
n→∞

xn = sup
n≥1

{
inf
m≥n

{xm}
}
.
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Series

Definition 8 (Series, convergence of series). Let {an} be a real sequence. Then the sequence of partial
sums {sk}, defined as

sk =

k∑
n=0

an = a1 + a2 + · · ·+ ak,

is called an (infinite) series. If the sequence of partial sums {sk} is convergent, then we say that the
series

∑∞
n=0 an is convergent and we write

∞∑
n=0

an = lim
k→∞

sk.

Otherwise, we say that the series
∑∞

n=0 an is divergent.

Theorem 9 (COLT for series). Assume the series
∑∞

n=0 an and
∑∞

n=0 bn both converge with limits a
and b respectively. Let c ∈ R. Then

1.
∑∞

n=0(an + bn) is convergent with limit a+ b.

2.
∑∞

n=0 can is convergent with limit ca.

Theorem 10 (Comparison Test). Let N ∈ N, {an}n≥N and {bn}n≥N be sequences with 0 ≤ an ≤ bn for
all n ≥ N .

1. If
∑∞

n=0 bn is convergent with limit b, then
∑∞

n=0 an is also convergent with limit a ≤ b.

2. If
∑∞

n=0 an is divergent, then so is
∑∞

n=0 bn.

Definition 11 (Absolute convergence). We say that the series
∑∞

n=0 an is absolutely convergent if the
series

∑∞
n=0 |an| is convergent.

Theorem 12 (Ratio Test). Let {an} be a sequence with an ̸= 0 for all but possibly finitely many n.

1. If limn→∞
|an+1|
|an| < 1, then

∑∞
n=0 an converges absolutely.

2. If limn→∞
|an+1|
|an| > 1, then

∑∞
n=0 an is divergent.

Theorem 13 (Root Test). For a sequence {an} set

a = lim sup |an|1/n.

1. If a < 1, then
∑∞

n=0 an converges absolutely.

2. If a > 1, then
∑∞

n=0 an is divergent.

Functions, Limits, and Continuity.

Proposition 14 (Properties of image and preimage). Let f : X → Y be a function, and assume that
A,B ⊂ X. Then

1. f(A ∩B) ⊂ f(A) ∩ f(B).

2. f(A ∪B) = f(A) ∪ f(B).

3. f(X \A) ⊃ f(X) \ f(A).

Assume that C,D ⊂ Y . Then

1. f−1(C ∩D) = f−1(C) ∩ f−1(D).

2. f−1(C ∪D) = f−1(C) ∪ f−1(D).
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3. f−1(Y \ C) = X \ f−1(C).

Definition 15 (Exponential function and Logarithm). The exponential function exp : R → (0,∞) is
defined as

exp(x) := ex.

The logarithm function log : (0,∞) → R is defined for x > 0 by

log(x) = y,

where y is the unique real number such that exp y = x.

• Let a, b ∈ R, a ≤ b. We call (a, b) := {t ∈ R : a < t < b} an open interval inside R (where we also
allow a = −∞ or b = ∞), and [a, b] := {t ∈ R : a ≤ t ≤ b} a closed interval or compact interval
inside R (where we do not allow a, b = ±∞).

• We call a subset X ⊆ R open if for each c ∈ X there exists ϵ > 0 such that the open interval
(c− ϵ, c+ ϵ) ⊆ X.

• We call c ∈ X and interior point if there exists an open subset U or an open interval (a, b) containing
c which lies completely in U .

Throughout we let f : X → R be a function on a subset X ⊆ R.

Definition 16 (Continuous function). Let f : X → R be a function and let c be an interior point of X.
Then f is called continuous at c ∈ X if

lim
x→c

f(x) = f(c).

That is, for all ϵ > 0, there exists a δ > 0 such that

|f(x)− f(c)| < ϵ for all x ∈ X with |x− c| < δ.

The function f : X → R is called continuous if it is continuous for all c ∈ X.

Proposition 17 (Continuity via sequences). Let X ⊂ R, c ∈ X, and f : X → R be a function. Then f
is continuous at c if and only if for all sequences {xn} in X with xn → c as n → ∞ we have f(xn) → f(c)
as n → ∞. That is,

lim
n→∞

f(xn) = f
(
lim
n→∞

xn

)
.

Theorem 18 (COLT for continuous functions). Let X ⊂ R, c ∈ X and f, g : X → R be continuous
functions at c. Then

1. a · f(x) + b · g(x) is continuous at c for any a, b ∈ R.

2. f(x) · g(x) is continuous at c.

3. f(x)/g(x) is continuous at c provided that g(c) ̸= 0.

Theorem 19 (Composition of continuous functions is continuous). Let X,Y ⊂ R, c ∈ X, f : X → R,
g : Y → R with f(X) ⊂ Y . If f is continuous at c ∈ X and g is continuous at f(c) ∈ Y , then g ◦ f is
continuous at c ∈ X.

Theorem 20 (Extreme Value Theorem). Let a, b ∈ R with a < b and f : [a, b] → R be continuous. Then
f attains its maximum and minimum values on [a, b]. That is, every continuous function on a compact
interval attains its maximum and minimum.
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Differentiable functions.

Definition 21 (Differentiable function). Let X ⊆ R be open and f : X → R be a function. We say that
f is differentiable at c ∈ X if

lim
x→c

f(x)− f(c)

x− c

exists. We denote this limit f ′(c) and call f ′(c) the derivative of f at c. We call f a differentiable
function if f is differentiable at all points c ∈ X. Another formulation of this is

f ′(c) = lim
h→0

f(c+ h)− f(c)

h
.

Theorem 22 (Sums, products, compositions, quotients of differentiable functions).

1. Let f, g : X → R be two functions which are differentiable at c ∈ X and let a ∈ R be a constant.
Then f + g and afare also differentiable at c and

(f + g)′(c) = f ′(c) + g′(c).

(af)′(c) = af ′(c).

Their product fg is also differentiable at c with

(fg)′(c) = f(c)g′(c) + f ′(c)g(c).

2. Let f, g : X → R be two functions such that g is differentiable at c and f is differentiable at g(c).
Then the composition f ◦ g is also differentiable at c and

(f ◦ g)′(c) = f ′(g(c))g′(c).

3. Let f : X → R be a function which is differentiable at c and such that f(c) ̸= 0. Then 1/f is also
differentiable at c and (

1

f

)′

(c) = − f ′(c)

f2(c)
.

Power series.

Let c ∈ R.

Definition 23 (Power series). A real power series is an infinite series of the form
∑∞

n=0 an(x− c)n with
real an and x ∈ R.

Theorem 24 (Cauchy–Hadamard). Let
∑∞

n=0 an(x−c)n be a power series. Then there exists a constant
R ∈ [0,∞] such that

1. If R = 0, then
∑∞

n=0 an(x− c)n converges only for x = c.

2. If R > 0, then

∞∑
n=0

an(x− c)n converges absolutely for x ∈ (c−R, c+R);

∞∑
n=0

an(x− c)n diverges for |x− c| > R.

If we set
lim sup

n
|an|1/n = k ∈ [0,∞],

then R is explicitly given by

R =
1

k
∈ [0,∞].

We call R the radius of convergence of the power series.
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Lemma 25 (Term by term differentiation or integration preserves the radius of convergence). Let∑∞
n=0 an(x− c)n be a power series with radius of convergence R. Then the

formal derivative

∞∑
n=0

nan(x− c)n−1 =
1

x− c

∞∑
n=0

nan(x− c)n;

formal antiderivative

∞∑
n=0

an
n+ 1

(x− c)n+1 = (x− c)

∞∑
n=0

an
n+ 1

(x− c)n

also have radius of convergence R.

Theorem 26 (Power series can be differentiated term-by-term in their disc of convergence). Let f(x) =∑∞
n=0 an(x− c)n be a power series and R ∈ (0,∞] be its radius of convergence. Then f is differentiable

infinitely many times at all points x ∈ (c−R, c+R), and we can differentiate term-by-term:

f ′(x) =

∞∑
n=1

nan(x− c)n−1.

Sequences of functions, uniform convergence, and limit theorems.

Definition 27 (Pointwise convergence). Let {fn} be a sequence of functions on an interval I. We say
that {fn} has a pointwise limit if for all x ∈ I, the limit limn→∞ fn(x) exists (as a sequence of real
numbers). In that case, the limit function f : I → R is defined as

f(x) = lim
n→∞

fn(x).

In other words, we have

∀x ∈ I ∀ϵ > 0 ∃N ∈ N ∀n > N : |fn(x)− f(x)| < ϵ.

Definition 28 (Uniform convergence). Let {fn} be a sequence of functions on an interval I. We say
that {fn} converges uniformly to f if for every ϵ > 0, there exists N ∈ N such that for all n ≥ N and all
x ∈ I, we have

|fn(x)− f(x)| < ϵ.

If fn converges uniformly to f , we write “fn → f uniformly”. In other words, we have

∀ϵ > 0 ∃N ∈ N ∀n > N ∀x ∈ I : |fn(x)− f(x)| < ϵ.

Here, N does not depend on the individual point x, the same N works for all x ∈ I.

Theorem 29 (Uniform limits of continuous functions are continuous). Let fn be a sequence of continuous
functions on an interval I such that fn → f uniformly. Then the limit function f is also continuous.

Theorem 30 (Weierstrass M -test). Let I ⊂ R be an interval and fn : I → R be a sequence of functions
such that

|fn(x)| ≤ Mn for all x ∈ I and

∞∑
n=1

Mn < ∞.

Then
∞∑

n=1

fn(x) converges uniformly on X to some limit function f : X → C.

Integration.

Theorem 31 (Fundamental Theorem of Calculus). Let f be a continuous function on [a, b]. Then

F (x) :=

∫ x

a

f(t) dt

is a differentiable function on [a, b] (one-sided at a and b), and we have F ′(x) = f(x) for all x ∈ [a, b].
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Theorem 32 (Integral of uniform limit of continuous functions is limit of integrals). Let I = [a, b] and
{fn} be a sequence of continuous functions on I such that fn → f uniformly. Then

lim
n→∞

∫ c

a

fn(x) dx =

∫ c

a

f(x) dx, for all c ∈ [a, b].

Complex numbers.

The following facts are recalled from the lecture notes from Analysis I, 2021–2022.

• Addition of complex numbers is associative and commutative. Multiplication of complex numbers
is associative and commutative.

• For z = x+ iy, we call z := x− iy the complex conjugate of z.

• For z = x+ iy, we call |z| :=
√
zz =

√
x2 + y2 the modulus or absolute value of z.

• |z| = 0 if and only if z = 0.

• |z · w| = |z| · |w|.

• (Triangle Inequality) For z1, z2 ∈ C, |z1 + z2| ≤ |z1|+ |z2|.
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