Complex Analysis II. Prerequisites from Analysis I *

The definitions and results collected in this document serve as a refresher of some concepts from Analysis I that we will explore in the complex setting throughout the Complex Analysis II module. The definitions and results collected here are taken from the Analysis I lecture notes from 2021–2022 by Prof. D. Schütz and Prof. J. Funke.

Sequences.

Definition 1 (Real sequence). A real sequence is a function from \mathbb{N} to \mathbb{R} . That is, it assigns to every natural number $n \in \mathbb{N}$ a real number $x_n \in \mathbb{R}$. Such a sequence is denoted $\{x_n\}$.

Definition 2 (Convergence of sequence). A real sequence $\{x_n\}$ is said to be convergent to the limit $x \in \mathbb{R}$ if

$$\lim_{n \to \infty} |x_n - x| = 0.$$

That is, for every $\epsilon > 0$, there exists and index $N \in \mathbb{N}$ such that

$$|x_n - x| < \epsilon$$
 for all $n > N$.

We write $\lim_{n\to\infty} x_n = x$, or we say " $x_n \to x$ as $n \to \infty$." A sequence that has a limit is called a convergent sequence. If a sequence is not convergent, then it is called divergent.

Definition 3 (Bounded sequence). Let $\{x_n\}$ be a real sequence and denote the set $X = \{x_n \in \mathbb{R} : n \in \mathbb{N}\}$. The sequence $\{x_n\}$ is called bounded above, respectively below, if X is bounded above, respectively below. The sequence $\{x_n\}$ is called bounded if X is bounded.

Theorem 4 (COLT). Let $\{x_n\}$ and $\{y_n\}$ be real sequences that are convergent with limits $x = \lim_{n \to \infty} x_n$ and $y = \lim_{n \to \infty} y_n$. Let $a, b \in \mathbb{R}$. Then we have

- 1. $ax_n + by_n \to ax + by \text{ as } n \to \infty$.
- 2. $x_n \cdot y_n \to x \cdot y \text{ as } n \to \infty$.
- 3. $\frac{x_n}{y_n} \to \frac{x}{y}$ as $n \to \infty$.

Definition 5 (Subsequence). Let $\{x_n\}$ be a sequence. A subsequence of $\{x_n\}$ is a sequence $\{x_{n_j}\}$ with $n_1 < n_2 < n_3 < \cdots$.

Theorem 6 (Bolzano–Weierstrass). Let $\{x_n\}$ be a bounded real sequence. Then $\{x_n\}$ has a subsequence which is convergent.

Definition 7 (Lim sup and Lim inf). Let $\{x_n\}$ be a bounded sequence. The limit superior of $\{x_n\}$ is defined as

$$\limsup_{n \to \infty} x_n = \inf_{n \ge 1} \left\{ \sup_{m \ge n} \{x_m\} \right\},\,$$

and the limit inferior of $\{x_n\}$ is defined as

$$\liminf_{n \to \infty} x_n = \sup_{n \ge 1} \left\{ \inf_{m \ge n} \{x_m\} \right\}.$$

^{*}This document was written by Katie Gittins and Stephen Herrap in the 2022-23 Academic Year

Series

Definition 8 (Series, convergence of series). Let $\{a_n\}$ be a real sequence. Then the sequence of partial sums $\{s_k\}$, defined as

$$s_k = \sum_{n=0}^k a_n = a_1 + a_2 + \dots + a_k;$$

is called an (infinite) series. If the sequence of partial sums $\{s_k\}$ is convergent, then we say that the series $\sum_{n=0}^{\infty} a_n$ is convergent and we write

$$\sum_{n=0}^{\infty} a_n = \lim_{k \to \infty} s_k.$$

Otherwise, we say that the series $\sum_{n=0}^{\infty} a_n$ is divergent.

Theorem 9 (COLT for series). Assume the series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ both converge with limits a and b respectively. Let $c \in \mathbb{R}$. Then

- 1. $\sum_{n=0}^{\infty} (a_n + b_n)$ is convergent with limit a + b.
- 2. $\sum_{n=0}^{\infty} ca_n$ is convergent with limit ca.

Theorem 10 (Comparison Test). Let $N \in \mathbb{N}$, $\{a_n\}_{n \geq N}$ and $\{b_n\}_{n \geq N}$ be sequences with $0 \leq a_n \leq b_n$ for all $n \geq N$.

- 1. If $\sum_{n=0}^{\infty} b_n$ is convergent with limit b, then $\sum_{n=0}^{\infty} a_n$ is also convergent with limit $a \leq b$.
- 2. If $\sum_{n=0}^{\infty} a_n$ is divergent, then so is $\sum_{n=0}^{\infty} b_n$.

Definition 11 (Absolute convergence). We say that the series $\sum_{n=0}^{\infty} a_n$ is absolutely convergent if the series $\sum_{n=0}^{\infty} |a_n|$ is convergent.

Theorem 12 (Ratio Test). Let $\{a_n\}$ be a sequence with $a_n \neq 0$ for all but possibly finitely many n.

- 1. If $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} < 1$, then $\sum_{n=0}^{\infty} a_n$ converges absolutely.
- 2. If $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} > 1$, then $\sum_{n=0}^{\infty} a_n$ is divergent.

Theorem 13 (Root Test). For a sequence $\{a_n\}$ set

 $a = \limsup |a_n|^{1/n}.$

- 1. If a < 1, then $\sum_{n=0}^{\infty} a_n$ converges absolutely.
- 2. If a > 1, then $\sum_{n=0}^{\infty} a_n$ is divergent.

Functions, Limits, and Continuity.

Proposition 14 (Properties of image and preimage). Let $f : X \to Y$ be a function, and assume that $A, B \subset X$. Then

- 1. $f(A \cap B) \subset f(A) \cap f(B)$.
- 2. $f(A \cup B) = f(A) \cup f(B)$.
- 3. $f(X \setminus A) \supset f(X) \setminus f(A)$.

Assume that $C, D \subset Y$. Then

- 1. $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.
- 2. $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D).$

3. $f^{-1}(Y \setminus C) = X \setminus f^{-1}(C)$.

Definition 15 (Exponential function and Logarithm). The exponential function $\exp : \mathbb{R} \to (0, \infty)$ is defined as

 $\exp(x) := e^x.$

The logarithm function $\log : (0, \infty) \to \mathbb{R}$ is defined for x > 0 by

 $\log(x) = y,$

where y is the unique real number such that $\exp y = x$.

- Let $a, b \in \mathbb{R}$, $a \leq b$. We call $(a, b) := \{t \in \mathbb{R} : a < t < b\}$ an open interval inside \mathbb{R} (where we also allow $a = -\infty$ or $b = \infty$), and $[a, b] := \{t \in \mathbb{R} : a \leq t \leq b\}$ a closed interval or compact interval inside \mathbb{R} (where we do not allow $a, b = \pm \infty$).
- We call a subset $X \subseteq \mathbb{R}$ open if for each $c \in X$ there exists $\epsilon > 0$ such that the open interval $(c \epsilon, c + \epsilon) \subseteq X$.
- We call $c \in X$ and interior point if there exists an open subset U or an open interval (a, b) containing c which lies completely in U.

Throughout we let $f: X \to \mathbb{R}$ be a function on a subset $X \subseteq \mathbb{R}$.

Definition 16 (Continuous function). Let $f : X \to \mathbb{R}$ be a function and let c be an interior point of X. Then f is called continuous at $c \in X$ if

$$\lim_{x \to c} f(x) = f(c)$$

That is, for all $\epsilon > 0$, there exists a $\delta > 0$ such that

 $|f(x) - f(c)| < \epsilon$ for all $x \in X$ with $|x - c| < \delta$.

The function $f: X \to \mathbb{R}$ is called continuous if it is continuous for all $c \in X$.

Proposition 17 (Continuity via sequences). Let $X \subset \mathbb{R}$, $c \in X$, and $f : X \to \mathbb{R}$ be a function. Then f is continuous at c if and only if for all sequences $\{x_n\}$ in X with $x_n \to c$ as $n \to \infty$ we have $f(x_n) \to f(c)$ as $n \to \infty$. That is,

$$\lim_{n \to \infty} f(x_n) = f\Big(\lim_{n \to \infty} x_n\Big).$$

Theorem 18 (COLT for continuous functions). Let $X \subset \mathbb{R}$, $c \in X$ and $f, g : X \to \mathbb{R}$ be continuous functions at c. Then

1. $a \cdot f(x) + b \cdot g(x)$ is continuous at c for any $a, b \in \mathbb{R}$.

2. $f(x) \cdot g(x)$ is continuous at c.

3. f(x)/g(x) is continuous at c provided that $g(c) \neq 0$.

Theorem 19 (Composition of continuous functions is continuous). Let $X, Y \subset \mathbb{R}$, $c \in X$, $f : X \to \mathbb{R}$, $g : Y \to \mathbb{R}$ with $f(X) \subset Y$. If f is continuous at $c \in X$ and g is continuous at $f(c) \in Y$, then $g \circ f$ is continuous at $c \in X$.

Theorem 20 (Extreme Value Theorem). Let $a, b \in \mathbb{R}$ with a < b and $f : [a, b] \to \mathbb{R}$ be continuous. Then f attains its maximum and minimum values on [a, b]. That is, every continuous function on a compact interval attains its maximum and minimum.

Differentiable functions.

Definition 21 (Differentiable function). Let $X \subseteq \mathbb{R}$ be open and $f : X \to \mathbb{R}$ be a function. We say that f is differentiable at $c \in X$ if

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

exists. We denote this limit f'(c) and call f'(c) the derivative of f at c. We call f a differentiable function if f is differentiable at all points $c \in X$. Another formulation of this is

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}.$$

Theorem 22 (Sums, products, compositions, quotients of differentiable functions).

1. Let $f, g: X \to \mathbb{R}$ be two functions which are differentiable at $c \in X$ and let $a \in \mathbb{R}$ be a constant. Then f + g and af are also differentiable at c and

$$(f+g)'(c) = f'(c) + g'(c).$$

 $(af)'(c) = af'(c).$

Their product fg is also differentiable at c with

$$(fg)'(c) = f(c)g'(c) + f'(c)g(c).$$

2. Let $f, g: X \to \mathbb{R}$ be two functions such that g is differentiable at c and f is differentiable at g(c). Then the composition $f \circ g$ is also differentiable at c and

$$(f \circ g)'(c) = f'(g(c))g'(c).$$

3. Let $f: X \to \mathbb{R}$ be a function which is differentiable at c and such that $f(c) \neq 0$. Then 1/f is also differentiable at c and

$$\left(\frac{1}{f}\right)'(c) = -\frac{f'(c)}{f^2(c)}$$

Power series.

Let $c \in \mathbb{R}$.

Definition 23 (Power series). A real power series is an infinite series of the form $\sum_{n=0}^{\infty} a_n (x-c)^n$ with real a_n and $x \in \mathbb{R}$.

Theorem 24 (Cauchy-Hadamard). Let $\sum_{n=0}^{\infty} a_n (x-c)^n$ be a power series. Then there exists a constant $R \in [0, \infty]$ such that

1. If
$$R = 0$$
, then $\sum_{n=0}^{\infty} a_n (x - c)^n$ converges only for $x = c$.

2. If R > 0, then

$$\sum_{n=0}^{\infty} a_n (x-c)^n \text{ converges absolutely for } x \in (c-R, c+R);$$
$$\sum_{n=0}^{\infty} a_n (x-c)^n \text{ diverges for } |x-c| > R.$$

If we set

$$\limsup_{n} |a_n|^{1/n} = k \in [0,\infty],$$

then R is explicitly given by

$$R = \frac{1}{k} \in [0, \infty].$$

We call R the radius of convergence of the power series.

Lemma 25 (Term by term differentiation or integration preserves the radius of convergence). Let $\sum_{n=0}^{\infty} a_n (x-c)^n$ be a power series with radius of convergence R. Then the

formal derivative
$$\sum_{n=0}^{\infty} na_n (x-c)^{n-1} = \frac{1}{x-c} \sum_{n=0}^{\infty} na_n (x-c)^n;$$

formal antiderivative
$$\sum_{n=0}^{\infty} \frac{a_n}{n+1} (x-c)^{n+1} = (x-c) \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x-c)^n;$$

also have radius of convergence R.

Theorem 26 (Power series can be differentiated term-by-term in their disc of convergence). Let $f(x) = \sum_{n=0}^{\infty} a_n (x-c)^n$ be a power series and $R \in (0,\infty]$ be its radius of convergence. Then f is differentiable infinitely many times at all points $x \in (c-R, c+R)$, and we can differentiate term-by-term:

$$f'(x) = \sum_{n=1}^{\infty} na_n (x-c)^{n-1}.$$

Sequences of functions, uniform convergence, and limit theorems.

Definition 27 (Pointwise convergence). Let $\{f_n\}$ be a sequence of functions on an interval I. We say that $\{f_n\}$ has a pointwise limit if for all $x \in I$, the limit $\lim_{n\to\infty} f_n(x)$ exists (as a sequence of real numbers). In that case, the limit function $f: I \to \mathbb{R}$ is defined as

$$f(x) = \lim_{n \to \infty} f_n(x).$$

In other words, we have

$$\forall x \in I \quad \forall \epsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n > N : \quad |f_n(x) - f(x)| < \epsilon.$$

Definition 28 (Uniform convergence). Let $\{f_n\}$ be a sequence of functions on an interval I. We say that $\{f_n\}$ converges uniformly to f if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \ge N$ and all $x \in I$, we have

$$|f_n(x) - f(x)| < \epsilon.$$

If f_n converges uniformly to f, we write " $f_n \to f$ uniformly". In other words, we have

$$\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n > N \quad \forall x \in I : \quad |f_n(x) - f(x)| < \epsilon$$

Here, N does not depend on the individual point x, the same N works for all $x \in I$.

Theorem 29 (Uniform limits of continuous functions are continuous). Let f_n be a sequence of continuous functions on an interval I such that $f_n \to f$ uniformly. Then the limit function f is also continuous.

Theorem 30 (Weierstrass *M*-test). Let $I \subset \mathbb{R}$ be an interval and $f_n : I \to \mathbb{R}$ be a sequence of functions such that

$$|f_n(x)| \le M_n \text{ for all } x \in I \quad and \quad \sum_{n=1}^{\infty} M_n < \infty$$

Then

$$\sum_{n=1}^{\infty} f_n(x) \text{ converges uniformly on } X \text{ to some limit function } f: X \to \mathbb{C}$$

Integration.

Theorem 31 (Fundamental Theorem of Calculus). Let f be a continuous function on [a, b]. Then

$$F(x) := \int_{a}^{x} f(t) \, dt$$

is a differentiable function on [a, b] (one-sided at a and b), and we have F'(x) = f(x) for all $x \in [a, b]$.

Theorem 32 (Integral of uniform limit of continuous functions is limit of integrals). Let I = [a, b] and $\{f_n\}$ be a sequence of continuous functions on I such that $f_n \to f$ uniformly. Then

$$\lim_{n \to \infty} \int_a^c f_n(x) \, dx = \int_a^c f(x) \, dx, \qquad \text{for all } c \in [a, b].$$

Complex numbers.

The following facts are recalled from the lecture notes from Analysis I, 2021–2022.

- Addition of complex numbers is associative and commutative. Multiplication of complex numbers is associative and commutative.
- For z = x + iy, we call $\overline{z} := x iy$ the complex conjugate of z.
- For z = x + iy, we call $|z| := \sqrt{z\overline{z}} = \sqrt{x^2 + y^2}$ the modulus or absolute value of z.
- |z| = 0 if and only if z = 0.
- $|z \cdot w| = |z| \cdot |w|$.
- (Triangle Inequality) For $z_1, z_2 \in \mathbb{C}$, $|z_1 + z_2| \le |z_1| + |z_2|$.