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Q.1

S.1

Q2

S.2

Let X be a setandletd : X x X — R be defined as

0, z=uy,

Show that d is a metric on X (which we call the discrete metric).
Show in addition that if X is a non-trivial vector space, the discrete metric can’t be induced by a norm. In

d(z,y) = |z -yl

From its definition we have that d (z,y) > 0 and d(z,y) = 0 if and only if x = y. Moreover
0, z=y, 0, y=u,
d(z,y) = = =d(y,z).
Lox#y, (1, y#z,

We are left with showing the triangle inequality. Let z, y and z be given. We have that

0’ = =
d(z,2)+d(z,y) = (2, v#zandz#y, = rT=Yy==z

1, otherwise,

0, x=wyandz =y,
{ ' >d(z,y)

> 1, otherwise,

which shows the first part of the problem.
To see that the distance is not induced by a norm we notice that if it was

d(z,0) = [l]]
and consequently for any scalar A
d (A, 0) = [A[ ||z[| -

If 2z # 0 then for any A # 0 we have that Ax # 0 and as such d (Ax, 0) = 1. This implies that for any z # 0
and A\ # 0 we have that
L= Al f|]|

which is impossible. Hence, the distance is not induced by a norm.

(Assignment sheet 2 problem 3) In the space C([a,b]) of continuous functions defined on a closed interval

[a, b] (for a < b), let
/|f (1) di.

We start by noticing that | f(¢) — g(¢)| > 0 and as such f; |f(t) —g(t)| dt > f; 0dt = 0. Moreover, since
both f and g are continuous, so if | f — g| and

Show that d; is a metric on C([a,b)).

0= d (f.9) /f (0)] dt.

implies, due to the continuity and non-negativity, that | f(¢) — g(¢)| = 0 for all ¢ € [a, b] or that f = g.
Since |f — g| = |g — f| we have that d; (f, g) = d; (g, f) and since for any f, g and h we have that

[f(&) = g@)] = [(F(t) = h(t)) + (h(t) — g(@)] < [f(E) = h(®)] + [A(t) — g(t)]

we conclude that
dl (fvg) S dl (fvh) +d1 (hag)

which is the desired triangle inequality.
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Q.3

S.3

Q.4

S.4

(Assignment sheet 2 problem 7)

(i) Show that in any metric space (X, d) the set {x}, consisting of a single point v € X, is closed.

(ii) Show that in any metric space (X, d) the closed ball B, (x) := {y € X : d(y,x) < 1}, of radius v > 0
centred at x € X, is closed.

(i) We need to show that the complement of {z} is open. Take y € {x}°, i.e. y # =, and let ¢ = d(g’y). We
claim that Be(y) C {x}°. Indeed, if 2 € B.(y) then
d
d(w.y) < c= 12V

which is impossible.

(ii) We need to show that complement of B,.(z) is open. By definition
By(a)={ye X |d(z,y) <r}* ={ye X |d(z,y) >r}.
Lety € B,(z)¢. We know that d (z,y) > r and can define

Ezcl(:v’g;/)—go.

We claim that B, (y) C B,.(z)¢. Indeed, assume that B, (y) N B,. (z) # (. If z € B, (y) N B, (x) then

d
d(x’y) Sd(m"z)_'_d(yaz) Sr‘i‘d(y,Z) <T‘—|—6:T—+_2(x’y)_

This implies that d (z,y) < r which is impossible.
Alternative proof: By the triangle inequality we know that for any x, ¥ and z we have that

d(z,z) <d(z,y)+d(y,z2)

and
d(y,z) <d(z,y)+d(z,z2).

Combining the two inequalities we find that
d(l’,y) > max{d(w,z) - d(y7 Z) ,d(y,Z) - d(.Z',Z)} - ‘d(x72) - d(y,2)|
Thus, with € = %, we see that if 2 € B.(y)

d(z,2) > d(z,y) —d(y, z) >d(x,y)—€:r+d;$’y) ..

showing that B.(y) C B,(z)°.

(Assignment sheet 2 problem 13) Give an example of a metric space X and an v € X such that B1(x) #
Bi(x); that is, the closure of the open ball is not necessarily the closed ball!!

Consider any set X that is not a singleton with the discrete metric and let z € X be arbitrary. We notice that

{z}, r<l1,

Br(:c)z{yGXd(xvy)Sr}:{X r>1

Thus B; (x) = X. On the other hand, as we saw in class

{a}, r<1,

Br(r)={ye X : d(ﬂfay)“}:{x r>1
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which implies that B; (z) = {z}. We claim that By (x) = {x} # X which will give us the desired example.
_ C
We have several way to show this but we will go with the original definition: A = ((AC)O) . Recall that

with the discrete metric every set is open. We claim that for any open set A we have that A = A". Once this
is proven we’ll find that since every set is open in the discrete metric, we have that

A= ((49) = (a4 =4

which shows the desired result.

Proof of the claim By definition, A C A so we only need to show that A C A°. Let z € A. Since A is
open we can find an open ball of radius e for some € > 0 that is centred in  and is contained in A. In other
words, there exists € > 0 such that B.(z) C A. By the definition of A” and the fact that pen balls are open
sets we conclude that 2 € A°. As z was arbitrary we find that A C A° and the proof is complete.

Remark: If we use the theorem that states that A is closed if and only if A = A we can conclude that any
set is in the discrete metric satisfies A = A since every set is closed.



