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Q.1 Let X be a set and let d : X ×X → R be defined as

d (x, y) =

{
0, x = y,

1, x ̸= y.

Show that d is a metric on X (which we call the discrete metric).
Show in addition that if X is a non-trivial vector space, the discrete metric can’t be induced by a norm. In
other words, show that there exists no norm on X , ∥·∥, such that

d (x, y) = ∥x− y∥ .

S.1 From its definition we have that d (x, y) ≥ 0 and d(x, y) = 0 if and only if x = y. Moreover

d (x, y) =

{
0, x = y,

1, x ̸= y,
=

{
0, y = x,

1, y ̸= x,
= d (y, x) .

We are left with showing the triangle inequality. Let x, y and z be given. We have that

d (x, z) + d (z, y) =


0, x = y and z = y,

2, x ̸= z and z ̸= y,

1, otherwise,

=

{
0, x = y = z,

≥ 1, otherwise,
≥ d (x, y)

which shows the first part of the problem.
To see that the distance is not induced by a norm we notice that if it was

d (x, 0) = ∥x∥

and consequently for any scalar λ
d (λx, 0) = |λ| ∥x∥ .

If x ̸= 0 then for any λ ̸= 0 we have that λx ̸= 0 and as such d (λx, 0) = 1. This implies that for any x ̸= 0
and λ ̸= 0 we have that

1 = |λ| ∥x∥

which is impossible. Hence, the distance is not induced by a norm.

Q.2 (Assignment sheet 2 problem 3) In the space C([a, b]) of continuous functions defined on a closed interval
[a, b] (for a < b), let

d1(f, g) :=

∫ b

a
|f(t)− g(t)| dt.

Show that d1 is a metric on C([a, b]).

S.2 We start by noticing that |f(t) − g(t)| ≥ 0 and as such
∫ b
a |f(t) − g(t)| dt ≥

∫ b
a 0 dt = 0. Moreover, since

both f and g are continuous, so if |f − g| and

0 = d1 (f, g) =

∫ b

a
|f(t)− g(t)| dt.

implies, due to the continuity and non-negativity, that |f(t)− g(t)| = 0 for all t ∈ [a, b] or that f ≡ g.
Since |f − g| = |g − f | we have that d1 (f, g) = d1 (g, f) and since for any f, g and h we have that

|f(t)− g(t)| = |(f(t)− h(t)) + (h(t)− g(t))| ≤ |f(t)− h(t)|+ |h(t)− g(t)|

we conclude that
d1 (f, g) ≤ d1 (f, h) + d1 (h, g)

which is the desired triangle inequality.
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Q.3 (Assignment sheet 2 problem 7)

(i) Show that in any metric space (X, d) the set {x}, consisting of a single point x ∈ X , is closed.

(ii) Show that in any metric space (X, d) the closed ball Br(x) := {y ∈ X : d(y, x) ≤ r}, of radius r > 0
centred at x ∈ X , is closed.

S.3 (i) We need to show that the complement of {x} is open. Take y ∈ {x}c, i.e. y ̸= x, and let ϵ = d(x,y)
2 . We

claim that Bϵ(y) ⊆ {x}c. Indeed, if x ∈ Bϵ(y) then

d (x, y) < ϵ =
d (x, y)

2

which is impossible.

(ii) We need to show that complement of Br(x) is open. By definition

Br(x)
c = {y ∈ X | d (x, y) ≤ r}c = {y ∈ X | d (x, y) > r} .

Let y ∈ Br(x)
c. We know that d (x, y) > r and can define

ϵ =
d (x, y)− r

2
> 0.

We claim that Bϵ (y) ⊆ Br(x)
c. Indeed, assume that Bϵ (y) ∩Br (x) ̸= ∅. If z ∈ Bϵ (y) ∩Br (x) then

d (x, y) ≤ d (x, z) + d (y, z) ≤ r + d (y, z) < r + ϵ =
r + d (x, y)

2
.

This implies that d (x, y) < r which is impossible.
Alternative proof: By the triangle inequality we know that for any x, y and z we have that

d (x, z) ≤ d (x, y) + d (y, z)

and
d (y, z) ≤ d (x, y) + d (x, z) .

Combining the two inequalities we find that

d (x, y) ≥ max {d (x, z)− d (y, z) , d (y, z)− d (x, z)} = |d (x, z)− d (y, z)|.

Thus, with ϵ = d(x,y)−r
2 , we see that if z ∈ Bϵ(y)

d (x, z) ≥ d (x, y)− d (y, z) > d (x, y)− ϵ =
r + d (x, y)

2
> r

showing that Bϵ(y) ⊆ Br(x)
c.

Q.4 (Assignment sheet 2 problem 13) Give an example of a metric space X and an x ∈ X such that B1(x) ̸=
B1(x); that is, the closure of the open ball is not necessarily the closed ball!!

S.4 Consider any set X that is not a singleton with the discrete metric and let x ∈ X be arbitrary. We notice that

Br (x) = {y ∈ X : d (x, y) ≤ r} =

{
{x} , r < 1,

X, r ≥ 1

Thus B1 (x) = X . On the other hand, as we saw in class

Br (x) = {y ∈ X : d (x, y) < r} =

{
{x} , r ≤ 1,

X, r > 1
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which implies that B1 (x) = {x}. We claim that B1 (x) = {x} ≠ X which will give us the desired example.

We have several way to show this but we will go with the original definition: A =
(
(Ac)0

)c
. Recall that

with the discrete metric every set is open. We claim that for any open set A we have that A = A0. Once this
is proven we’ll find that since every set is open in the discrete metric, we have that

A =
(
(Ac)0

)c
= (Ac)c = A

which shows the desired result.
Proof of the claim By definition, A0 ⊆ A so we only need to show that A ⊆ A0. Let x ∈ A. Since A is
open we can find an open ball of radius ϵ for some ϵ > 0 that is centred in x and is contained in A. In other
words, there exists ϵ > 0 such that Bϵ(x) ⊆ A. By the definition of A0 and the fact that pen balls are open
sets we conclude that x ∈ A0. As x was arbitrary we find that A ⊆ A0 and the proof is complete.
Remark: If we use the theorem that states that A is closed if and only if A = A we can conclude that any
set is in the discrete metric satisfies A = A since every set is closed.


