Q.1 (Assignment sheet 7 problem 4) Find a Möbius transformation f from the upper half-plane \mathbb{H} onto the unit disc \mathbb{D} that takes 1 + i to 0 and (when considered as a map $\hat{\mathbb{C}} \to \hat{\mathbb{C}}$) also takes 1 to -i. Give an explicit formula for f(z).

Q.2 (Assignment sheet 7 problem 8) Use standard examples to find a biholomorphic map from the upper half $\Omega := \{z \in \mathbb{D} : Im(z) > 0\}$ of the unit disc onto the unit disc \mathbb{D} .

Q.3 (Assignment sheet 7 problem 11) Construct a biholomorphic map f from \mathcal{R} onto \mathcal{R}' , where $\mathcal{R} = \{z : Im z < \frac{1}{2}\}$ and $\mathcal{R}' = \{z : |z - 1| < 2\}$. Give an explicit formula for f(z).

- Q.4 (Assignment sheet 8 problem 3)
 - (i) Show that for any $\rho > 0$ the sequence $\left\{\frac{1}{nz}\right\}_{n \in \mathbb{N}}$ converges uniformly on $A = \{z \in \mathbb{C} : |z| \ge \rho\}$.
 - (ii) Does $\left\{\frac{1}{nz}\right\}_{n\in\mathbb{N}}$ converge uniformly on $\mathbb{C}^* := \mathbb{C} \setminus \{0\}$?

Q.5 (Assignment sheet 8 problem 6) For every $n \in \mathbb{N}$, let $f_n(z) = \sin(z/n)$ for $z \in \mathbb{C}$. Show that $\{f_n\}_{n \in \mathbb{N}}$ converges pointwise on \mathbb{C} . Let ρ be a positive real number. Show that $\{f_n\}_{n \in \mathbb{N}}$ converges uniformly on $A = \{z : |z| \le \rho\}$. Show that $\{f_n\}_{n \in \mathbb{N}}$ does not converge uniformly on \mathbb{C} .

Q.6 (Assignment sheet 8 problem 9) Prove that $\sum_{n=0}^{\infty} e^{nz}$ converges uniformly on $A = \{z \in \mathbb{C} : Re(z) \leq -1\}$, but not on $B = \{z \in \mathbb{C} : Re(z) \leq 0\}$.