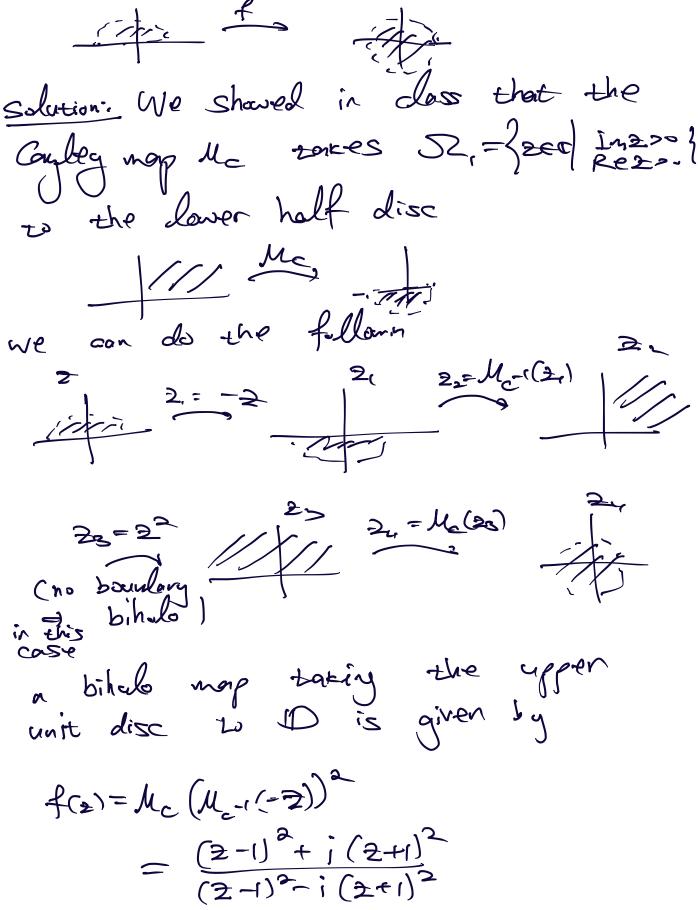
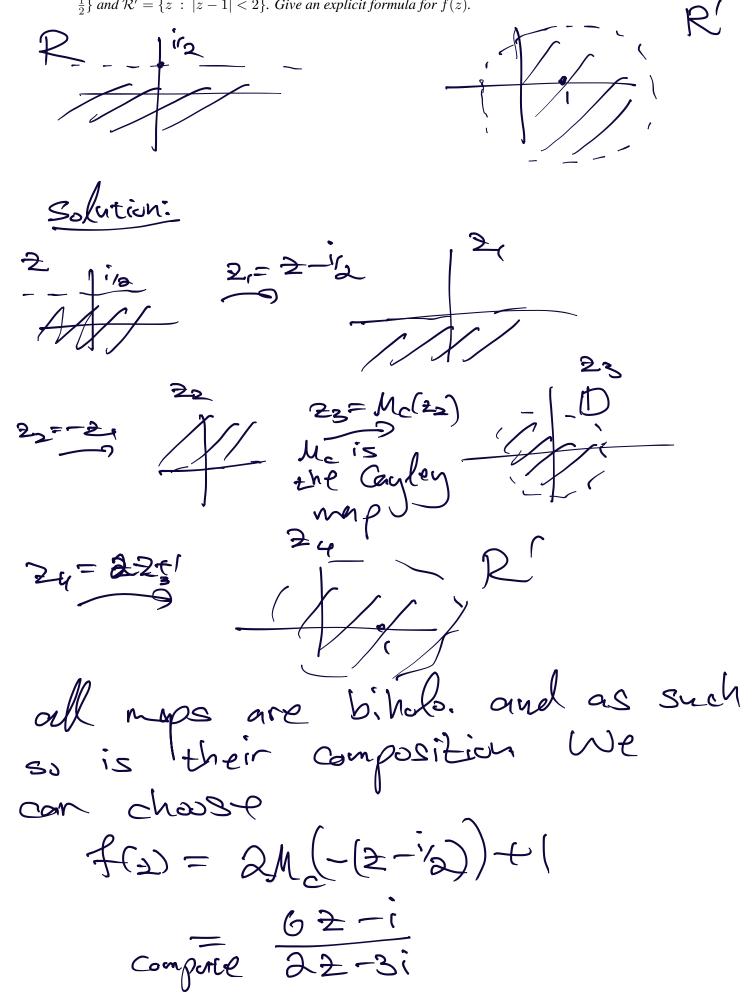
Q.1 (Assignment sheet 7 problem 4) Find a Möbius transformation f from the upper half-plane \mathbb{H} onto the unit disc \mathbb{D} that takes 1 + i to 0 and (when considered as a map $\hat{\mathbb{C}} \to \hat{\mathbb{C}}$) also takes 1 to -i. Give an explicit formula for f(z).

Solution: We reall that the coupley map $M_{c}(2) = \frac{2-i}{2+i}$ (i.e C = (1-i)) takes It to D. =) The map (m_) of is a Möbius map that takes It is It. By HOH theorem Mcrof = Ms SESL_2(R) \rightarrow ($M_{c} \cdot M_{r} \cdot I = Id$) f= M_ · Us = Mas if S= (a d) with arb, c, del and ad-bc=1 then we can write fEUT with T= CS = (a-ic b-id) (a+ic b+id) $f(2) = (a-ic) \ge + (b-id)$ (a+ic) $\ge + (b+id)$ **)** $f(i+i)=0 \implies (a-ie)(i+i) + (b-id) = 0$ $f(i) = -i \rightarrow (a - ic) + (b - id) = -i((a + ic) + (b + id))$ we also have ad-bc=1 Solving this gives us d=== ara, b=0, a====, c=== plugging it back oul zaking a commu enominator gives $f(2) = \frac{(1+1)2}{(1-1)2}$

Q.2 (Assignment sheet 7 problem 8) Use standard examples to find a biholomorphic map from the upper half $\Omega := \{z \in \mathbb{D} : Im(z) > 0\}$ of the unit disc onto the unit disc \mathbb{D} .



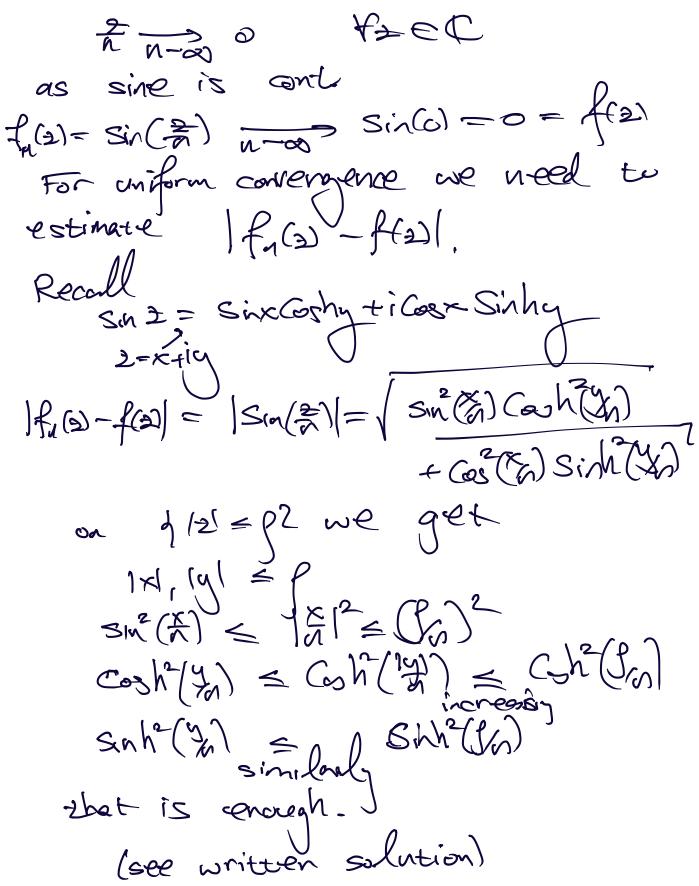
Q.3 (Assignment sheet 7 problem 11) Construct a biholomorphic map f from \mathcal{R} onto \mathcal{R}' , where $\mathcal{R} = \{z : Im z < \frac{1}{2}\}$ and $\mathcal{R}' = \{z : |z - 1| < 2\}$. Give an explicit formula for f(z).



Q.4 (Assignment sheet 8 problem 3)

(i) Show that for any $\rho > 0$ the sequence $\left\{\frac{1}{nz}\right\}_{n \in \mathbb{N}}$ converges uniformly on $A = \{z \in \mathbb{C} : |z| \ge \rho\}$. (ii) Does $\left\{\frac{1}{nz}\right\}_{n \in \mathbb{N}}$ converge uniformly on $\mathbb{C}^* := \mathbb{C} \setminus \{0\}$?

Q.5 (Assignment sheet 8 problem 6) For every $n \in \mathbb{N}$, let $f_n(z) = \sin(z/n)$ for $z \in \mathbb{C}$. Show that $\{f_n\}_{n \in \mathbb{N}}$ converges pointwise on \mathbb{C} . Let ρ be a positive real number. Show that $\{f_n\}_{n \in \mathbb{N}}$ converges uniformly on $A = \{z : |z| \le \rho\}$. Show that $\{f_n\}_{n \in \mathbb{N}}$ does not converge uniformly on \mathbb{C} .



see written solution

Q.7 (Assignment sheet 8 problem 10) Let R satisfy 0 < R < 1. Show that the series $\sum_{n=1}^{\infty} \frac{z^n}{1+z^n}$ converges uniformly on $A = \{z \in \mathbb{C} : |z| < R\}$. Conclude that the infinite series defines a continuous function on the unit disc \mathbb{D} .

see written solution