- Q.1 (Assignment sheet 7 problem 4) Find a Möbius transformation f from the upper half-plane \mathbb{H} onto the unit disc \mathbb{D} that takes 1 + i to 0 and (when considered as a map $\hat{\mathbb{C}} \to \hat{\mathbb{C}}$) also takes 1 to -i. Give an explicit formula for f(z).
- S.1 Denoting by M_C the Cayley map, we know that $(M_C)^{-1} = M_{C^{-1}}$ takes \mathbb{D} to \mathbb{H} . Consequently, the Möbius map $M = M_{C^{-1}} \circ f$ takes \mathbb{H} to itself. By the H2H theorem we know that we can find $S \in SL_2(\mathbb{R})$ such that

$$M_{C^{-1}} \circ f = M_S$$

and consequently (using the fact that $M_C \circ M_{C^{-1}} = M_{Id} = Id$) we have that

$$f = M_C \circ M_S = M_{CS}$$

Writing $f = M_T$ for some $T \in GL_2(\mathbb{C})$ and using the fact that $C = \begin{pmatrix} 1 & -i \\ 1 & i \end{pmatrix}$ we see that if $S = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in \mathbb{R}$ and ad - bc = 1 we can choose T to be

$$T = \begin{pmatrix} a - ic & b - id \\ a + ic & b + id \end{pmatrix}$$

with $a, b, c, d \in \mathbb{R}$ and ad - bc = 1. As f takes 1 + i to 0 and 1 to -i we have that

$$(a - ic)(1 + i) + b - id = 0$$

and

$$a - ic + b - id = -i(a + ic + b + id)$$

we find that

$$-i(a - ic) = -i(a + ic + b + id)$$

which implies that -2ic = b + id and $a = \frac{d-b}{2}$. Lastly, we see that

$$1 = ad - bc = \frac{d^2 - bd}{2} + \frac{db - ib^2}{2} = \frac{d^2 - ib^2}{2}.$$

We conclude that $d = \pm \sqrt{2}$, b = 0 and consequently $a = \frac{\pm \sqrt{2}}{2}$ and $c = \mp \frac{\sqrt{2}}{2}$. Plugging this back yields

$$T = \pm \frac{\sqrt{2}}{2} \begin{pmatrix} 1+i & -2i \\ 1-i & 2i \end{pmatrix}$$

which, due to the scaling invariance, shows that

$$f(z) = \frac{(1+i) \, z - 2i}{(1-i) \, z + 2i}.$$

- Q.2 (Assignment sheet 7 problem 8) Use standard examples to find a biholomorphic map from the upper half $\Omega := \{z \in \mathbb{D} : Im(z) > 0\}$ of the unit disc onto the unit disc \mathbb{D} .
- S.2 We have seen that the Cayley map M_C takes the first quadrant $\Omega_1 = \{z \in \mathbb{C} : \text{Im}(z) > 0, \text{Re}(z) > 0\}$ to the lower half of \mathbb{D} . We conclude that $g(z) = -M_C(z)$ takes Ω_1 to the upper half of \mathbb{D} and consequently $g^{-1}(z) = M_{C^{-1}}(-z)$ takes the upper half of \mathbb{D} to Ω_1 . Continuing on the above, we notice that z^2 is a biholomrphic map that takes Ω_1 to \mathbb{H} and by using the Cayley map again we see that

$$f(z) = M_C \left(\left(g^{-1}(-z) \right)^2 \right) = M_C \left(M_{C^{-1}}(-z)^2 \right)$$

takes the upper half of \mathbb{D} to \mathbb{D} in a bioholomorphic way. Using the fact that $M_C(z) = \frac{z-i}{z+i}$ and $M_{C^{-1}}(z) = \frac{iz+i}{-z+1}$ we find that

$$f(z) = \frac{(z-1)^2 + i(z+1)^2}{(z-1)^2 - i(z+1)^2}.$$

- Q.3 (Assignment sheet 7 problem 11) Construct a biholomorphic map f from \mathcal{R} onto \mathcal{R}' , where $\mathcal{R} = \{z : \text{Im } z < \frac{1}{2}\}$ and $\mathcal{R}' = \{z : |z 1| < 2\}$. Give an explicit formula for f(z).
- S.3 We see that we are asked to map half a plane to a circle so the Cayley map pops to mind. Consider the map $f_1(z) = z \frac{i}{2}$. We have that f_1 takes \mathcal{R} to the lower half plane and as such $-f_1$ takes \mathcal{R} to \mathbb{H} . We conclude that

$$f_2(z) = M_C\left(-f_1(z)\right)$$

takes \mathcal{R} to \mathbb{D} . Next we notice that $f_3(z) = \frac{z-1}{2}$ takes \mathcal{R}' to \mathbb{D} as well and is invertible with $f_3^{-1}(z) = 2z+1$. As all the above maps are biholomorphic we find that

$$f(z) = 2M_C\left(-z + \frac{i}{2}\right) + 1$$

takes \mathcal{R} to \mathcal{R}' in a biholomorphic way. Using the fact that $M_C(z) = \frac{z-i}{z+i}$ we find that

$$f(z) = \frac{6z - i}{2z - 3i}.$$

Q.4 (Assignment sheet 8 problem 3)

- (i) Show that for any $\rho > 0$ the sequence $\left\{\frac{1}{nz}\right\}_{n \in \mathbb{N}}$ converges uniformly on $A = \{z \in \mathbb{C} : |z| \ge \rho\}$. (ii) Does $\left\{\frac{1}{nz}\right\}_{n \in \mathbb{N}}$ converge uniformly on $\mathbb{C}^* := \mathbb{C} \setminus \{0\}$?
- S.4 (i) For all $z \in \mathbb{C}^*$ we have that

$$\lim_{n \to \infty} f_n(z) = \lim_{n \to \infty} \frac{1}{nz} = 0$$

and as such $\{f_n(z)\}_{n\in\mathbb{N}}$ converges pointwise to f(z) = 0. On A we find that

$$|f_n(z) - f(z)| = \frac{1}{n|z|} \le \frac{1}{n\rho} = s_n.$$

We know that $\{s_n\}_{n\in\mathbb{N}}$ is a positive sequence that is independent of z and converges to zero. We conclude, according to a lemma from class, that $\{f_n(z)\}_{n\in\mathbb{N}}$ converges to zero uniformly on A.

(ii) The convergence on \mathbb{C}^* will not be uniform as we can get as close as we want to z = 0 where the sequence of functions is unbounded. Indeed, choosing $z_n = \frac{1}{n}$ we see that $\{z_n\}_{n \in \mathbb{N}} \subset \mathbb{C}^*$ and

$$|f_n(z_n) - f(z_n)| = 1.$$

We conclude, according to a lemma from class, that $\{f_n(z)\}_{n\in\mathbb{N}}$ does not converge to zero uniformly on A.

- Q.5 (Assignment sheet 8 problem 6) For every $n \in \mathbb{N}$, let $f_n(z) = \sin(z/n)$ for $z \in \mathbb{C}$. Show that $\{f_n\}_{n \in \mathbb{N}}$ converges pointwise on \mathbb{C} . Let ρ be a positive real number. Show that $\{f_n\}_{n \in \mathbb{N}}$ converges uniformly on $A = \{z : |z| \le \rho\}$. Show that $\{f_n\}_{n \in \mathbb{N}}$ does not converge uniformly on \mathbb{C} .
- S.5 We know that for any (fixed) $z \in \mathbb{C}$

$$\lim_{n \to \infty} \frac{z}{n} = 0$$

(not uniformly!). As $\sin(z)$ is a continuous function we conclude that for any (fixed) $z \in \mathbb{C}$

$$\lim_{n \to \infty} \sin\left(\frac{z}{n}\right) = \sin\left(0\right) = 0,$$

showing that $f_n(z)$ converges to f(z) = 0 pointwise on \mathbb{C} . To show the uniform convergence we recall that

$$\sin(z) = \sin(x)\cosh(y) + i\cos(x)\sinh(y)$$

and as such

$$f_n(z) = \sin\left(\frac{z}{n}\right) = \sin\left(\frac{x}{n}\right)\cosh\left(\frac{y}{n}\right) + i\cos\left(\frac{x}{n}\right)\sinh\left(\frac{y}{n}\right).$$

We conclude that

$$|f_n(z) - f(z)| = \sqrt{\sin^2\left(\frac{x}{n}\right)\cosh^2\left(\frac{y}{n}\right) + \cos^2\left(\frac{x}{n}\right)\sinh^2\left(\frac{y}{n}\right)}.$$

At this point it is important to (yet again) remind ourselves that sin(z) is not bounded in general due to the appearance of sinh and cosh. We do find that

$$|f_n(z) - f(z)| \le \sqrt{\sin^2\left(\frac{x}{n}\right)\cosh^2\left(\frac{y}{n}\right)} + \sinh^2\left(\frac{y}{n}\right)$$

(where we have kept the terms that we know will go to zero) and using the facts that $\sin(-x) = -\sin(x)$, $\sinh(-x) = \sinh(x)$, and $\cosh(-x) = \cosh(x)$ we find that

$$|f_n(z) - f(z)| \le \sqrt{\sin^2\left(\left|\frac{x}{n}\right|\right)\cosh^2\left(\left|\frac{y}{n}\right|\right) + \sinh^2\left(\left|\frac{y}{n}\right|\right)}$$

Using the fact that on A

$$\max\left\{|x|, |y|\right\} \le |z| \le \rho$$

together with the facts that sinh and cosh are increasing on $[0, \infty)$ and $|sin(x)| \le |x|$ for all $x \in \mathbb{R}$ we find that on A

$$|f_n(z) - f(z)| \le \sqrt{\left(\frac{\rho}{n}\right)^2 \cosh^2\left(\frac{\rho}{n}\right)} + \sinh^2\left(\frac{\rho}{n}\right) = s_n$$

We know that $\{s_n\}_{n\in\mathbb{N}}$ is a positive sequence that is independent of z and converges to zero. We conclude, according to a lemma from class, that $\{f_n(z)\}_{n\in\mathbb{N}}$ converges to zero uniformly on A.

The lack of uniform convergence on \mathbb{C} can be seen by considering the sequence $z_n = n$. Indeed

$$|f_n(z_n) - f(z_n)| = |\sin(1)| \not\longrightarrow_{n \to \infty} 0.$$

We can do "worse" and even get unboundedness. For instance, choosing $z_n = in^2$ (to bring out the sinh and cosh which only depend on Im(z)) gives us

$$|f_n(z_n) - f(z_n)| = |\sinh(n)| = \sinh(n)$$

which goes to infinity as n goes to infinity.

- Q.6 (Assignment sheet 8 problem 9) Prove that $\sum_{n=0}^{\infty} e^{nz}$ converges uniformly on $A = \{z \in \mathbb{C} : Re(z) \le -1\}$, but not on $B = \{z \in \mathbb{C} : Re(z) \le 0\}$.
- S.6 For any $z \in A$ we have that

$$|e^{nz}| = e^{n\operatorname{Re}(z)} \le e^{-n} = (e^{-1})^n = M_n$$

As $\sum_{n=0}^{\infty} M_n < \infty$ (a geometric series with $q = e^{-1} < 1$) we conclude by Weierstrass' M-test that the series converges uniformly on A.

The reason we will have issues with the convergence on B is the fact that the real part of z can be zero. Indeed, z = 0 is in B and

$$\sum_{n=0}^{\infty} e^{n \cdot 0} = \sum_{n=0}^{\infty} 1 = \infty$$

so the series doesn't even converge on B.

It is worth to mention that the series does *converge locally uniformly on* $B^0 = \{z \in \mathbb{C} : Re(z) < 0\}$. Indeed, given any $z \in B^0$ we consider the open set $U_z = \{w \in \mathbb{C} : Re(w) < \frac{Re(z)}{2}\}$. Clearly $z \in U_z$ and for any $w \in U_z$ we have that

$$|e^{nw}| = e^{n\operatorname{Re}(w)} \le e^{\frac{n\operatorname{Re}(z)}{2}} = \left(e^{-\frac{|\operatorname{Re}(z)|}{2}}\right)^n = M_n(U_z)$$

As $\sum_{n=0}^{\infty} M_n(U_z) < \infty$ we conclude the result by using Weierstrass' local M-test.

- Q.7 (Assignment sheet 8 problem 10) Let R satisfy 0 < R < 1. Show that the series $\sum_{n=1}^{\infty} \frac{z^n}{1+z^n}$ converges uniformly on $A = \{z \in \mathbb{C} : |z| < R\}$. Conclude that the infinite series defines a continuous function on the unit disc \mathbb{D} .
- S.7 We recall that the reverse triangle inequality states that

$$|z - w| \ge ||z| - |w||$$

Using the above inequality, we conclude that if |z| < R < 1 then

$$|1 + z^n| = |1 - (-z^n)| \ge |1 - |-z^n|| = |1 - |z|^n| = 1 - |z|^n \ge 1 - R^n$$

where we used the fact that $|z|^n < R^n < 1$ as R < 1. For any $z \in A$ we have that

$$\left|\frac{z^n}{1+z^n}\right| = \frac{|z^n|}{|1+z^n|} \le \frac{R^n}{1-R^n} = M_n.$$

Since $M_n > 0$ and

$$\frac{M_{n+1}}{M_n} = \frac{1 - R^n}{1 - R^{n+1}} \ R \xrightarrow[n \to \infty]{} \frac{1 - 0}{1 - 0} \ R = R < 1$$

we conclude that $\sum_{n=0}^{\infty} M_n < \infty$. Using Weierstrass' M-test, we find that $\sum_{n=1}^{\infty} \frac{z^n}{1+z^n}$ converges uniformly on A. Since $\frac{z^n}{1+z^n}$ are continuous on A (as we do not include the boundary |z| = 1 where the denominator is unbounded) we conclude that the limit function of the series is continuous by the same theorem.