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Q.1 (Assignment sheet 7 problem 4) Find a Möbius transformation f from the upper half-plane H onto the unit
disc D that takes 1 + i to 0 and (when considered as a map Ĉ → Ĉ) also takes 1 to −i. Give an explicit
formula for f(z).

S.1 Denoting by MC the Cayley map, we know that (MC)
−1 = MC−1 takes D to H. Consequently, the Möbius

map M = MC−1 ◦ f takes H to itself. By the H2H theorem we know that we can find S ∈ SL2 (R) such
that

MC−1 ◦ f = MS

and consequently (using the fact that MC ◦MC−1 = MId = Id) we have that

f = MC ◦MS = MCS .

Writing f = MT for some T ∈ GL2 (C) and using the fact that C =

(
1 −i
1 i

)
we see that if S =

(
a b
c d

)
with a, b, c, d ∈ R and ad− bc = 1 we can choose T to be

T =

(
a− ic b− id
a+ ic b+ id

)
with a, b, c, d ∈ R and ad− bc = 1. As f takes 1 + i to 0 and 1 to −i we have that

(a− ic) (1 + i) + b− id = 0

and
a− ic+ b− id = −i (a+ ic+ b+ id)

we find that
−i (a− ic) = −i (a+ ic+ b+ id)

which implies that −2ic = b+ id and a = d−b
2 . Lastly, we see that

1 = ad− bc =
d2 − bd

2
+

db− ib2

2
=

d2 − ib2

2
.

We conclude that d = ±
√
2, b = 0 and consequently a = ±

√
2

2 and c = ∓
√
2
2 . Plugging this back yields

T = ±
√
2

2

(
1 + i −2i
1− i 2i

)
which, due to the scaling invariance, shows that

f(z) =
(1 + i) z − 2i

(1− i) z + 2i
.

Q.2 (Assignment sheet 7 problem 8) Use standard examples to find a biholomorphic map from the upper half
Ω := {z ∈ D : Im(z) > 0} of the unit disc onto the unit disc D.

S.2 We have seen that the Cayley map MC takes the first quadrant Ω1 = {z ∈ C : Im(z) > 0,Re(z) > 0} to
the lower half of D. We conclude that g(z) = −MC(z) takes Ω1 to the upper half of D and consequently
g−1(z) = MC−1(−z) takes the upper half of D to Ω1. Continuing on the above, we notice that z2 is a
biholomrphic map that takes Ω1 to H and by using the Cayley map again we see that

f(z) = MC

((
g−1(−z)

)2)
= MC

(
MC−1(−z)2

)
takes the upper half of D to D in a bioholomorphic way. Using the fact that MC(z) =

z−i
z+i and MC−1(z) =

iz+i
−z+1 we find that

f(z) =
(z − 1)2 + i (z + 1)2

(z − 1)2 − i (z + 1)2
.
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Q.3 (Assignment sheet 7 problem 11) Construct a biholomorphic map f from R onto R′, where R = {z : Im z <
1
2} and R′ = {z : |z − 1| < 2}. Give an explicit formula for f(z).

S.3 We see that we are asked to map half a plane to a circle so the Cayley map pops to mind. Consider the map
f1(z) = z− i

2 . We have that f1 takes R to the lower half plane and as such −f1 takes R to H. We conclude
that

f2(z) = MC (−f1(z))

takes R to D. Next we notice that f3(z) = z−1
2 takes R′ to D as well and is invertible with f−1

3 (z) = 2z+1.
As all the above maps are biholomorphic we find that

f(z) = 2MC

(
−z +

i

2

)
+ 1

takes R to R′ in a biholomorphic way. Using the fact that MC(z) =
z−i
z+i we find that

f(z) =
6z − i

2z − 3i
.

Q.4 (Assignment sheet 8 problem 3)

(i) Show that for any ρ > 0 the sequence
{

1
nz

}
n∈N converges uniformly on A = {z ∈ C : |z| ≥ ρ}.

(ii) Does
{

1
nz

}
n∈N converge uniformly on C∗ := C \ {0}?

S.4 (i) For all z ∈ C∗ we have that

lim
n→∞

fn(z) = lim
n→∞

1

nz
= 0

and as such {fn(z)}n∈N converges pointwise to f(z) = 0. On A we find that

|fn(z)− f(z)| = 1

n|z|
≤ 1

nρ
= sn.

We know that {sn}n∈N is a positive sequence that is independent of z and converges to zero. We conclude,
according to a lemma from class, that {fn(z)}n∈N converges to zero uniformly on A.
(ii) The convergence on C∗ will not be uniform as we can get as close as we want to z = 0 where the
sequence of functions is unbounded. Indeed, choosing zn = 1

n we see that {zn}n∈N ⊂ C∗ and

|fn(zn)− f(zn)| = 1.

We conclude, according to a lemma from class, that {fn(z)}n∈N does not converge to zero uniformly on A.

Q.5 (Assignment sheet 8 problem 6) For every n ∈ N, let fn(z) = sin(z/n) for z ∈ C. Show that {fn}n∈N
converges pointwise on C. Let ρ be a positive real number. Show that {fn}n∈N converges uniformly on
A = {z : |z| ≤ ρ}. Show that {fn}n∈N does not converge uniformly on C.

S.5 We know that for any (fixed) z ∈ C
lim
n→∞

z

n
= 0

(not uniformly!). As sin(z) is a continuous function we conclude that for any (fixed) z ∈ C

lim
n→∞

sin
( z

n

)
= sin (0) = 0,

showing that fn(z) converges to f(z) = 0 pointwise on C.
To show the uniform convergence we recall that

sin(z) = sin(x) cosh(y) + i cos(x) sinh(y)
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and as such
fn(z) = sin

( z

n

)
= sin

(x
n

)
cosh

(y
n

)
+ i cos

(x
n

)
sinh

(y
n

)
.

We conclude that

|fn(z)− f(z)| =
√

sin2
(x
n

)
cosh2

(y
n

)
+ cos2

(x
n

)
sinh2

(y
n

)
.

At this point it is important to (yet again) remind ourselves that sin(z) is not bounded in general due to the
appearance of sinh and cosh. We do find that

|fn(z)− f(z)| ≤
√

sin2
(x
n

)
cosh2

(y
n

)
+ sinh2

(y
n

)
(where we have kept the terms that we know will go to zero) and using the facts that sin(−x) = − sin(x),
sinh(−x) = sinh(x), and cosh(−x) = cosh(x) we find that

|fn(z)− f(z)| ≤
√

sin2
(∣∣∣x

n

∣∣∣) cosh2
(∣∣∣y

n

∣∣∣)+ sinh2
(∣∣∣y

n

∣∣∣)
Using the fact that on A

max {|x|, |y|} ≤ |z| ≤ ρ

together with the facts that sinh and cosh are increasing on [0,∞) and |sin(x)| ≤ |x| for all x ∈ R we find
that on A

|fn(z)− f(z)| ≤
√(ρ

n

)2
cosh2

(ρ
n

)
+ sinh2

(ρ
n

)
= sn.

We know that {sn}n∈N is a positive sequence that is independent of z and converges to zero. We conclude,
according to a lemma from class, that {fn(z)}n∈N converges to zero uniformly on A.
The lack of uniform convergence on C can be seen by considering the sequence zn = n. Indeed

|fn(zn)− f(zn)| = |sin(1)| ̸−→
n→∞

0.

We can do “worse” and even get unboundedness. For instance, choosing zn = in2 (to bring out the sinh and
cosh which only depend on Im(z)) gives us

|fn(zn)− f(zn)| = |sinh(n)| = sinh(n)

which goes to infinity as n goes to infinity.

Q.6 (Assignment sheet 8 problem 9) Prove that
∑∞

n=0 e
nz converges uniformly on A = {z ∈ C : Re(z) ≤ −1},

but not on B = {z ∈ C : Re(z) ≤ 0}.

S.6 For any z ∈ A we have that
|enz| = enRe(z) ≤ e−n =

(
e−1

)n
= Mn.

As
∑∞

n=0Mn < ∞ (a geometric series with q = e−1 < 1) we conclude by Weierstrass’ M-test that the
series converges uniformly on A.
The reason we will have issues with the convergence on B is the fact that the real part of z can be zero.
Indeed, z = 0 is in B and

∞∑
n=0

en·0 =
∞∑
n=0

1 = ∞

so the series doesn’t even converge on B.
It is worth to mention that the series does converge locally uniformly on B0 = {z ∈ C : Re(z) < 0}.
Indeed, given any z ∈ B0 we consider the open set Uz =

{
w ∈ C : Re(w) < Re(z)

2

}
. Clearly z ∈ Uz and

for any w ∈ Uz we have that

|enw| = enRe(w) ≤ e
n Re(z)

2 =
(
e−

|Re(z)|
2

)n
= Mn (Uz) .

As
∑∞

n=0Mn (Uz) < ∞ we conclude the result by using Weierstrass’ local M-test.
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Q.7 (Assignment sheet 8 problem 10) Let R satisfy 0 < R < 1. Show that the series
∞∑
n=1

zn

1 + zn
converges

uniformly on A = {z ∈ C : |z| < R}. Conclude that the infinite series defines a continuous function on the
unit disc D.

S.7 We recall that the reverse triangle inequality states that

|z − w| ≥ ||z| − |w||.

Using the above inequality, we conclude that if |z| < R < 1 then

|1 + zn| = |1− (−zn)| ≥ |1− |−zn|| = |1− |z|n| = 1− |z|n ≥ 1−Rn,

where we used the fact that |z|n < Rn < 1 as R < 1.
For any z ∈ A we have that ∣∣∣∣ zn

1 + zn

∣∣∣∣ = |zn|
|1 + zn|

≤ Rn

1−Rn
= Mn.

Since Mn > 0 and
Mn+1

Mn
=

1−Rn

1−Rn+1
R −→

n→∞

1− 0

1− 0
R = R < 1

we conclude that
∑∞

n=0Mn < ∞. Using Weierstrass’ M-test, we find that
∑∞

n=1
zn

1+zn converges uniformly
on A. Since zn

1+zn are continuous on A (as we do not include the boundary |z| = 1 where the denominator
is unbounded) we conclude that the limit function of the series is continuous by the same theorem.


