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Q.1 (Assignment sheet 7 problem 4) Find a Mobius transformation f from the upper half-plane H onto the unit
disc D that takes 1 + i to 0 and (when considered as a map C — C) also takes 1 to —i. Give an explicit

formula for f(z).

S.1 Denoting by M the Cayley map, we know that (AMC)*1 = M-1 takes D to H. Consequently, the Mobius
map M = M1 o f takes H to itself. By the H2H theorem we know that we can find S € SLsy (R) such
that

Mc—l O f = MS

and consequently (using the fact that Mo o Mo—1 = M4 = Id) we have that

f=DM¢goMgs= Mcs.

Writing f = My for some T' € G Ly (C) and using the fact that C' = G _ZZ> we see that if S = (Z Z)

with a, b, c,d € R and ad — bc = 1 we can choose T to be
a—ic b—1id
= <a+ic b+id>
with a,b,c,d € Rand ad — bc = 1. As f takes 1 44 to 0 and 1 to —i we have that
(a—ic)(1+i)+b—id=0

and
a—ic+b—id=—i(a+ic+b+id)
we find that
—i(a—ic) = —i(a+ic+b+id)
which implies that —2ic = b+ id and a = %. Lastly, we see that
d> —bd db—ib? B d? — iv?

1=ad—be= _
aq—oe 5 T3 2

We conclude that d = 41/2, b = 0 and consequently a = iT‘/i and c = $§. Plugging this back yields

po g V2 (1 2
2 \1—17 2
which, due to the scaling invariance, shows that
(I +i)z—2i
&) =007

Q.2 (Assignment sheet 7 problem 8) Use standard examples to find a biholomorphic map from the upper half
Q= {z € D:Im(z) > 0} of the unit disc onto the unit disc D.

S.2 We have seen that the Cayley map M takes the first quadrant Q; = {z € C : Im(z) > 0,Re(z) > 0} to
the lower half of D. We conclude that g(z) = —M¢(z) takes € to the upper half of D and consequently
g 1(2) = Mg-1(—2) takes the upper half of D to ;. Continuing on the above, we notice that 22 is a
biholomrphic map that takes {2; to H and by using the Cayley map again we see that

J(2) = M ((57(=2))") = Mo (Mg (=2)?)

takes the upper half of D to D in a bioholomorphic way. Using the fact that Mc(z) = % and Mo-1(z) =
L2424 we find that
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Q.4

S.4

Q.5

S.5

(Assignment sheet 7 problem 11) Construct a biholomorphic map f from R onto R, where R = {z : Im z <
tand R' = {z : |z — 1| < 2}. Give an explicit formula for f(z).

We see that we are asked to map half a plane to a circle so the Cayley map pops to mind. Consider the map
J1(z) = z — 5. We have that f; takes R to the lower half plane and as such — f; takes R to H. We conclude
that

f2(2) = Mc (= f1(2))

takes R to ID. Next we notice that f3(z) = %51 takes R’ to ) as well and is invertible with f; '(z) = 2z +1.

As all the above maps are biholomorphic we find that

F(z) = 2M¢ <—z + ;) +1

takes R to R’ in a biholomorphic way. Using the fact that M¢(z) = % we find that

+
62 —1
1C) =5 =%
(Assignment sheet 8 problem 3)
(i) Show that for any p > 0 the sequence {é}nEN converges uniformlyon A ={z € C: |z| > p}.

(ii) Does {%}neN converge uniformly on C* := C\ {0}?

(i) For all z € C* we have that

1
lim f,(2) = lim — =0

n—00 n—oo Nz

and as such { f,,(2)},,cy converges pointwise to f(z) = 0. On A we find that

Fule) = f(2)] = = < —

= Sp.
n|z| ~ np

We know that {s,}, o\ is a positive sequence that is independent of = and converges to zero. We conclude,
according to a lemma from class, that { f,,(2)},,cx converges to zero uniformly on A.

(i1) The convergence on C* will not be uniform as we can get as close as we want to z = 0 where the
sequence of functions is unbounded. Indeed, choosing z,, = % we see that {2, }, .y C C* and

| fr(zn) — f(zn)| = 1.

We conclude, according to a lemma from class, that { f,(2)},,cx does not converge to zero uniformly on A.

(Assignment sheet 8 problem 6) For every n € N, let f,(z) = sin(z/n) for z € C. Show that { fu}nen
converges pointwise on C. Let p be a positive real number. Show that { f,}nen converges uniformly on
A ={z:|z| < p}. Show that { fy, }nen does not converge uniformly on C.

We know that for any (fixed) z € C
lim = =0
n—oo n

(not uniformly!). As sin(z) is a continuous function we conclude that for any (fixed) z € C

lim sin (%) =sin (0) =0,

n—oo

showing that f,,(z) converges to f(z) = 0 pointwise on C.
To show the uniform convergence we recall that

sin(z) = sin(x) cosh(y) + i cos(z) sinh(y)
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and as such

fn(z) =sin (%) = sin (%) cosh (%) + i cos (%) sinh (%) )
|fn(2) = f(2)] = \/sin2 (%) cosh? (%) + cos? (%) sinh? (%)

At this point it is important to (yet again) remind ourselves that sin(z) is not bounded in general due to the
appearance of sinh and cosh. We do find that

fal2) = £(2)] < \/sin2 (Z) cosh? (L) + sk (2)

(where we have kept the terms that we know will go to zero) and using the facts that sin(—z) = — sin(z),
sinh(—z) = sinh(z), and cosh(—xz) = cosh(z) we find that

() - ()] < \/sin2 (5] cost ([ 2]) -+ sim (1)

Using the fact that on A

We conclude that

max {|z], [y[} <[z] < p

together with the facts that sinh and cosh are increasing on [0, c0) and |sin(z)| < |z| for all z € R we find

that on A
)= 1 < (2)] con? (£) st (£) = s

n

We know that {s,,},, o is a positive sequence that is independent of z and converges to zero. We conclude,
according to a lemma from class, that { f,,(2)},, <y converges to zero uniformly on A.
The lack of uniform convergence on C can be seen by considering the sequence z, = n. Indeed

’fn(zn) - f(Zn)’ = |Sin(1)’ n7:>o 0.

We can do “worse” and even get unboundedness. For instance, choosing z, = in? (to bring out the sinh and
cosh which only depend on Im(z)) gives us

| fn(2n) — f(zn)| = [sinh(n)| = sinh(n)
which goes to infinity as n goes to infinity.

(Assignment sheet 8 problem 9) Prove that ), e"* converges uniformly on A = {z € C: Re(z) < —1},
butnoton B = {z € C: Re(z) <0}.

For any z € A we have that
‘6”2’ _ 6ch(z) <e "= (e—l)n =M,

As Y02 M, < oo (a geometric series with ¢ = e~ < 1) we conclude by Weierstrass’ M-test that the
series converges uniformly on A.
The reason we will have issues with the convergence on B is the fact that the real part of z can be zero.

Indeed, 2 = 0isin B and
o o
POLLED SR
n=0 n=0

so the series doesn’t even converge on 5.
It is worth to mention that the series does converge locally uniformly on B = {z € C : Re(z) < 0}.
Indeed, given any z € BY we consider the open set U, = {fw € C : Re(w) < RGT(’Z)} Clearly z € U, and
for any w € U, we have that

nRe(z)

[Re(2)| \ ¥
|€nw’ _ 6nRe(w) <e 2 = <€7¥) =M, (Uz) .

As Y M, (U;) < co we conclude the result by using Weierstrass’ local M-test.
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n

oo
(Assignment sheet 8 problem 10) Let R satisfy 0 < R < 1. Show that the series Z 1 j
z
n=1

uniformly on A = {z € C : |z| < R}. Conclude that the infinite series defines a continuous function on the
unit disc .

oy converges

We recall that the reverse triangle inequality states that
2 = w| > [|z] = fwl|.
Using the above inequality, we conclude that if 2| < R < 1 then
T+ =1 = (=2")[ 2 1= [=2"|| = [1 = |2["| =1 = [2[" = 1 — R,
where we used the fact that [z|" < R < las R < 1.

For any z € A we have that
z

1+ 27

I P
|14z T 1-Rr

M,

‘ n

Since M,, > 0 and
My 1-—R" 1-0 ,
M, - Sk fiT <]

[e%¢) 2"

we conclude that Y ~>° | M,, < co. Using Weierstrass’ M-test, we find that 37 ;| o

on A. Since li% are continuous on A (as we do not include the boundary |z| = 1 where the denominator
is unbounded) we conclude that the limit function of the series is continuous by the same theorem.

converges uniformly



