Q.1 Show that for any $a \in \mathbb{C}$ the curve $\gamma(t) = e^{\alpha t}$ satisfies

$$\gamma'(t) = \alpha e^{\alpha t} (= \alpha \gamma(t))$$

Conclude that for any $-\infty < a < b < \infty$ *and any* $\alpha \neq 0$

$$\int_{a}^{b} e^{\alpha t} dt = \frac{e^{\alpha b} - e^{\alpha a}}{\alpha}$$

- Q.2 (Assignment sheet 9 problem 5) Calculate $\int_{\gamma} \frac{1}{z} dz$, where $\gamma(t) = (1+2t)e^{4\pi i t}$ for $0 \le t \le 1$.
- Q.3 (Assignment sheet 9 problem 6) Let γ_{ρ} be the curve $\gamma_{\rho}(\theta) := \rho e^{i\theta}$ with $0 \le \theta \le \pi$. Let $z^{\frac{1}{2}}$ be the branch of square root corresponding to the branch of log with argument in $(-\pi/2, 3\pi/2)$, that is, if $z = \rho e^{i\theta}$ with $\theta \in (-\pi/2, 3\pi/2)$ then $z^{\frac{1}{2}} = \sqrt{\rho} e^{i\theta/2}$. Show that

$$\lim_{\rho \to \infty} \int_{\gamma_{\rho}} \frac{z^{1/2}}{z^2 + 1} dz = 0$$

Q.4 (Assignment sheet 9 problem 7) Let γ be any piecewise C^1 -curve from -3 to 3 such that, except for the end points, lies entirely in the upper half plane. Calculate the integral

$$\int_{\gamma} f(z) \, dz$$

where f(z) is the branch of $z^{\frac{1}{2}}$ defined by $\sqrt{r}e^{i\theta/2}$ with $0 < \theta < 2\pi$.