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The following questions are all taken from various past exam papers for Complex Analysis II. These questions
have been selected to complement the May/June 2024 exam.

Q.1 [Q3 2016]

(a) Define a metric space X . What is an open, respectively closed, set in X?

(b) Let x and y be two different points in a metric space X . Show that there exist two open disjoint sets
containing x and y respectively.

S.1 (a) A metric space X is a set together with a “distance” function d : X ×X → R such that

d(x, y) ≥ 0 with equality if and only if x = y

d(x, y) = d(y, x)

d(x, y) ≤ d(x, z) + d(z, y).

A subset U ⊆ X is open in X if for every z ∈ U , there exists ϵ > 0 such that Bϵ(z) = {y ∈ X :
d(z, y) < ϵ} ⊂ U . A subset U ⊆ X is closed if its complement X \ U is open in X .

(b) Let r = d(x, y) be the distance between x and y. Then, since we know from lectures that open balls are
open, U1 = Br/2(x) and U2 = Br/2(y) are two disjoint open sets which contain x and y respectively.
Indeed, for z ∈ U1 ∩ U2 we would have by the triangle inequality that

r = d(x, y) ≤ d(x, z) + d(x, y) < r/2 + r/2 = r

which is a contradiction.

Q.2 [Q1 2017]

(a) Suppose (X, d) is a metric space. What does it mean for (X, d) to be sequentially compact?

(b) Show that the open unit interval (0, 1) with its usual metric is not compact.

S.2 (a) X is sequentially compact if for any sequence {xn}n∈N of points in X , there exists a convergent
subsequence {xnk

}k∈N whose limit is in X .

(b) We give a sequence of points in (0, 1) that converge to 0 /∈ (0, 1). Consider the sequence of points
xn = 1/n for n ≥ 2. Since d(0, xn) = 1/n we have that xn → 0 as n → ∞. So we must also
have xnk

→ 0 as k → ∞ for any subsequence. But 0 /∈ (0, 1). Thus there exists no subsequence of
{xn}n∈N which has a limit in (0, 1).

Q.3 [Q8 2019]

(a) [Note, this question part is a corrected version of the one visible in the exam]
Find a transformation taking the region R1 = {z : |z| < 1, Im(z) < 0} (the lower half of the unit
disc) to the upper half plane H = {z : Im(z) > 0}.

(b) Find a conformal map that maps the region R1 to R2 = {z : |z| < 1} \ R≤0 (the unit disc with the
non positive reals removed).

(c) Find the image of R2 under the principal branch of log.

S.3 (a) We know the Cayley transform MC is a map from H to D, so its inverse MC−1 maps D to H. To find
the image of R1 under MC−1 , we first consider how it acts on two segments of the boundary:

* The line segment from −1 to 1 (through 0). We have MC−1 = iz+i
−z+1 so

MC−1(−1) =
−i+ i

1 + 1
= 0, MC−1(1) =

i+ i

−1 + 1
= ∞, MC−1(0) =

0 + i

0 + 1
= i.

Thus, the line segment from −1 to 1 which passes through 0 is taken to the line segment from
0 to ∞ which passes through i. Consequently, the image of the line segment is the non-negative
imaginary axis.
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* The circular arc from −1 to 1 which passes through −i. We have

MC−1(−i) =
−i2 + i

i+ 1
= 1.

Thus, the circular arc from −1 to 1 which passes through −i is taken to the line segment from 0
to ∞ which passes through 1. Consequently the image of the circular arc is the positive real axis.
[Instead, we could just have used conformality to deduce that this was the image - the angle and
its orientation at z = −1 must be preserved, so the positive real axis had to be the image.]

To see where the interior is mapped to, we choose a point in R1 and see where its image lies. For −i
2 ,

we have that
MC−1(−i/2) =

4 + 3i

5
.

So combining our observations above, we conclude that the image of R1 under MC−1 is the first
quadrant Ω = {w ∈ C : 0 < Arg(w) < π/2}. [Alternatively, we could have concluded this by
conformality as the interior must stay on the ‘same side’ of each line segment otherwise the orientation
would be reversed.]
we notice that the map g : Ω → H, g : z 7→ z2 open up the first quadrant to the upper half plane and
conclude that the desired transformation is given by

f(z) = g ◦MC−1(z) = g

(
iz + i

−z + 1

)
=

(
iz + i

−z + 1

)2

.

Re(z)

Im(z)

M−1
C−→

Re(z)

Im(z)

z→z2−→ Re(z)

Im(z)

(b) We know from lectures that a holomorphic map f with f ′(z0) ̸= 0 is conformal at z0.
We first see that the map g1 : z 7→ exp (iπ/2) = iz maps R1 to the right-half of the unit disc
{z ∈ C : |z| < 1,Re(z) > 0}. The map g1 is conformal on all of C as it’s holomorphic and its
derivative does not equal 0.
We next see that the map g2 : z 7→ z2 maps {z ∈ C : |z| < 1,Re(z) > 0} to R2. The map g2 is
conformal on C \ {0} as f ′(z) = 0 ⇐⇒ z = 0. Since 0 /∈ {z ∈ C : |z| < 1,Re(z) > 0}, g2 is
conformal on its domain. We thus conclude that the desired map is

g(z) = (g2 ◦ g1)(z) = (iz)2 = −z2.
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Re(z)

Im(z)

z→iz−→ Re(z)

Im(z)

z→z2−→ Re(z)

Im(z)

(c) The region R2 can also be described as {z ∈ C : 0 < |z| < 1,Arg(z) ∈ (−π, π)}. Since

Log(z) = log |z|+ iArg(z),

we deduce that the principal branch of Log maps R2 to the horizontal half-strip

{z ∈ C : Re(z) < 0, Im(z) ∈ (−π, π)}.

Q.4 [Q9, 2004]

(a) Determine all Möbius transformations T for which T (∞) = ∞ and T (1) − T (0) = 1. What is the
geometric meaning of T and of its inverse T−1?

(b) Let C1 be the circle passing through 0, 1,−i and C2 be the circle passing through 0, 1, i. Let Ω be the
intersection of the two discs bounded by C1 and C2.

(i) Determine the unique Möbius transformation S which maps the ordered set of points {0, 1,−i}
to the ordered set of points {−1,∞, i}.

(ii) Sketch the image of Ω under S.

S.4 (a) We know that

T (z) =
az + b

cz + d
, for a, b, c, d ∈ C.

From the condition T (∞) = ∞ we get that c = 0. Consequently,

1 = T (1)− T (0) =
a+ b

d
− b

d
=

a

d

which implies that a = d. We find that

T (z) = z +
b

a
.

If w = z + b
a then z = w − b

a so we deduce that T−1(z) = z − b
a . Geometrically T is translation by

the complex number b
a and T−1 is translation by the complex number − b

a .

(b) (i) We know from lectures that a Möbius transformation w = f(z) preserves the cross-ratio, i.e.

(w − w2)(w1 − w3)

(w − w3)(w1 − w2)
=

(z − z2)(z1 − z3)

(z − z3)(z1 − z2)
.
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Thus we need to solve for w in terms of z for our ordered sets {z1, z2, z3} = {0, 1,−i} and
{w1, w2, w3} = {−1,∞, i}. In this case, we have

(−1− i)

(w − i)
=

(z − 1)(0 + i)

(z + i)(0− 1)
⇐⇒ −(1 + i)

(w − i)
=

−i(z − 1)

(z + i)

⇐⇒ i(w − i)(z − 1) = (1 + i)(z + i)

⇐⇒ iw(z − 1) = (1 + i)(z + i)− z + 1

⇐⇒ iw(z − 1) = iz + i

⇐⇒ w =
z + 1

z − 1
.

(ii) To find the image of Ω, we first find the image of its boundary. We know from lectures that Möbius
transformations map lines and circles to lines and circles. We also know from lectures that 3 points
determine a unique line or circle and if one of the points is ∞ then we have a line. Since 0, 1,−i
lie on C1, we see that C1 is mapped to the line ℓ1 through −1 and i.
Using our formula

S(z) =
z + 1

z − 1

from above, we have that

S(i) =
1− i

−1− i
=

−2i

2
= −i.

So, by the same reasoning as above, since 0, 1, i lie on C2, we see that C2 is mapped to the line ℓ2
through −1 and −i.
By continuity of S, the image of Ω must be one of the four connected regions in Figure ??. To
determine the image of Ω, we take z = 1

2 in the interior and see where it gets mapped to under S,
that is S(12) = −3. We conclude that the image of Ω under S is the region above ℓ2 and below ℓ1.

S−→

Q.5 [Q5 2022]

(a) Let U = {z ∈ C : Re(z) < 0} and V = {z ∈ C : 0 < |z| < 1}. Show that exp is a conformal in C
and satisfies f (U) = V . Is exp: U → V a biholomorphism?

(b) Using part (a) or otherwise, find a conformal map from {z ∈ C : |z| < 1} to {z ∈ C : 0 < |z| < 1}.

S.5 (a) the function f(z) = ez is an entire function. Consequently, we know from class that it is conformal on
C at every point where its derivative is not zero. As f ′(z) = ez ̸= 0 for any z ∈ C we conclude that f
is conformal on C.
Since ez = exeiy when z = x+iy we see that the line y = c, x < 0 is mapped to a segment 0 < r < 1,
θ = c. Consequently the image of U by f is the union of all such segments with y ranging over R.
This gives us V .
The map is not biholomorphic as it is not even injective – the lines y = c, x < 0 and y = c + 2π,
x < 0, both of which are in U , are mapped to the same segment.

(b) In order to be able to use (a) we need to take D = {z ∈ C : |z| < 1} to U . This will be done by using
a Möbius transformation. We know that the Cayley map takes the upper half plane, H, conformally
to the unit disc, D. Consequently, its inverse takes D to H conformally. To reach U we only need to
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rotate the domain by π
2 anti-clockwise, which is again conformal. Formally, we consider the following

conformal maps:

f1 : D → H, f1(z) = i
z + 1

1− z
,

f2 : H → U, f2(z) = e
iπ
2 z = iz.

We have that g : D → V defined by

g(z) = f ◦ f2 ◦ f1(z) = e
z+1
z−1

is conformal and surjective as requested.

Q.6 [Q2.3 2021]

Suppose that t > 0. Prove that fn : {z ∈ C : Re(z) ≥ t} → C defined by

fn(z) := tanh(nz) =
sinh(nz)

cosh(nz)

is uniformly convergent to 1 as n → ∞. Is the convergence uniform in {z ∈ C : Re(z) > 0}? Justify your
answer.

S.6 Let t > 0 and let z be such that Re(z) ≥ t. We find that

fn(z) =
sinh(nz)

cosh(nz)
=

exp(nz)− exp(−nz)

exp(nz) + exp(−nz)
=

1− exp(−2nz)

1 + exp(−2nz)
= 1 +

−2 exp(−2nz)

1 + exp(−2nz)
. (1)

Now, by the reverse triangle inequality, we have

|fn(z)− 1| =
∣∣∣∣ −2 exp(−2nz)

1 + exp(−2nz)

∣∣∣∣ ≤ 2| exp(−2nz)|
1− | exp(−2nz)|

.

Since Re(z) ≥ t, we also have that

| exp(−2nz)| = | exp(−2nRe(z))| · | exp(−2niIm(z))| = exp(−2nRe(z)) ≤ exp(−2nt).

Combining the previous two inequalities, we obtain that

|fn(z)− 1| ≤ 2 exp(−2nt)

1− exp(−2nt)
.

The right-hand side is independent of z and converges to 0 as n → ∞. This proves the uniform convergence
of fn to the constant function f(z) = 1 on {z ∈ C : Re(z) ≥ t}.

By the test for (non-)uniform convergence from lectures, we know that if there exists c > 0, {zn} ⊂ {z ∈
C : Re(z) > 0} such that for all n ∈ N, |fn(zn) − f(zn)| ≥ c then the convergence is not uniform in the
region {z ∈ C : Re(z) > 0}.

We could take the sequence zn = 1
n . Then, by (1), we have that

|fn(zn)− f(zn)| =
2 exp(−2)

1 + exp(−2)
=: c > 0

which proves that the convergence is not uniform in {z ∈ C : Re(z) > 0}.

Q.7 [Q3.2 2020 Resit]

Prove that the series
∞∑
n=1

1

3n + zn

is uniformly convergent on |z| ≤ ρ for every real ρ with 0 < ρ < 3. Is the convergence uniform on |z| < 3?
[Hint (which was not provided in the original exam): You may use without proof the fact that if fn(z) doesn’t
converge uniformly to zero on a set U , then the series

∑∞
n=1 fn(z) can’t converge uniformly]
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S.7 We apply the Weierstrass M -test. Let |z| ≤ ρ < 3. By reverse triangle inequality,

|3n + zn| ≥ 3n − |z|n ≥ 3n − ρn.

Denoting by Mn := 1
3n−ρn we find that

1

|3n + zn|
≤ Mn

for all z with |z| ≤ ρ. We claim that
∞∑
n=1

Mn =
∞∑
n=1

1

3n − ρn

is convergent by the ratio test. Indeed,

Mn+1

Mn
=

3n − ρn

3n+1 − ρn+1
−→
n→∞

1

3
< 1.

Hence the conditions for Weierstrass’ M-test are satisfied and the series converges uniformly on |z| ≤ ρ.

We will show that the convergence is not uniform on |z| < 3 by utilising the hint. By the test for (non-
)uniform convergence from lectures, we need to find c > 0 and {zn}n∈N ⊂ C with |zN | < 3 such that for
all N ∈ N, ∣∣∣∣ 1

3n + znn
− 0

∣∣∣∣ ≥ c.

Choosing zn = − (3n − 1)
1
n we find that

|zn| = (3n − 1)
1
n < (3n)

1
n = 3

and ∣∣∣∣ 1

3n + znn
− 0

∣∣∣∣ = 1.

This proves that the convergence is not uniform on |z| < 3.

Q.8 [Q3.3 2021]

Let p be a polynomial with complex coefficients. Using a parametrisation of the unit circle, show that

p′(0) =
1

2πi

∫
|z|=1

p(z) dz.

Find
∫
|z|=1Re(p(z)) dz.

S.8 We write p(z) =
∑n

k=0 akz
k. We parametrise the unit circle as γ(t) = exp(it) where t ∈ [0, 2π]. Then we

have that ∫
γ
p(z) dz =

∫
γ

n∑
k=0

akzk dz =

∫ 2π

0

n∑
k=0

akγ(t)k · γ′(t) dt

=

n∑
k=0

ak

∫ 2π

0
exp(−ikt) · i exp(it) dt =

n∑
k=0

iak

∫ 2π

0
exp((1− k)it) dt.

The integral
∫ 2π
0 exp((1− k)it) dt is equal to zero unless 1− k = 0, that is k = 1, in which case it is equal

to 2π. Hence ∫
γ
p(z) dz = 2πia1 = 2πip′(0)

from which we obtain the desired result.



Complex Analysis II, Easter 2024/25. Sheet 20: Exam Revision Questions page 7

For the second part of the question, we use that Re(p(z)) = p(z)+p(z)
2 to obtain∫

|z|=1
Re(p(z)) dz =

1

2

∫
|z|=1

p(z) dz +
1

2

∫
|z|=1

p(z) dz.

Since p is a polynomial, it has a holomorphic antiderivative and the contour is closed so
∫
|z|=1 p(z) dz = 0

by the Complex Fundamental Theorem of Calculus (Theorem 6.10). Hence∫
|z|=1

Re(p(z)) dz =
1

2

∫
|z|=1

p(z) dz = πip′(0).

Q.9 (a) [Q9a 2012]
Show that there exists an unbounded open subset S ⊂ C on which sin(z) is bounded.

(b) [Q6 2011]
Show that there exists no holomorphic function f such that f(z) = | sin(z)| for all purely real z = x
with −1 < x < 1.

S.9 (a) By the triangle inequality that

| sin(z)| =
∣∣∣∣eiz − e−iz

2i

∣∣∣∣ ≤ |eiz|
2

+
|e−iz|
2

.

Consider the horizontal strip D = {z ∈ C : |Im(z)| < 1}, which is open and unbounded. We claim sin(z)
is bounded on D. To see this, let z ∈ D and write z = x + iy for x, y,∈ R. We have |eiz| = |eix−y| =
e−y < e, since y = Im(z) > −1. Moreover, |e−iz| = |ey−ix| = ey < e, since y = Im(z) < 1. Hence
| sin(z)| < e

2 + e
2 = e when z ∈ D as claimed.

(b) Suppose there is a holomorphic function f on D = {z ∈ C : |z| < 1} such that f(x) = | sin(x)| for
−1 < x < 1. Then f(x) = sin(x) for 0 ≤ x < 1 and f(x) = − sin(x) for −1 < x < 0. Let
I = [0, 1) ⊂ D. Then I is contained in the set of points S = {z ∈ C : f(z) = sin(z)}. In particular, the
set S contains a non-isolated point. By the identity theorem we must have that f(z) = sin(z) on all of
D, since sin(z) is holomorphic on D. Similarly, if we take I = (−1, 0] we get f(z) = − sin(z) on D, a
contradiction.

Q.10 [Q1.4 2020]

Let f be a holomorphic function on C − {0}. Show that f is bounded if and only if f is constant. State
clearly any results you use from lectures.

S.10 Clearly if f is constant then it is bounded. So, let us assume f is bounded and show it is constant.

If f is bounded on C− {0} by some constant M > 0, it is in particular bounded on B∗
1(0) = B1(0)− {0}.

By the Riemann Extension Theorem f must have a removable singularity at z = 0 (or to apply its proof
directly, 0 < |zf(z)| < M |z| so by squeezing limz→0 zf(z) = 0, and we know this is equiv to having a
removable singularity). It follows that f extends to a holomorphic function g defined at z = 0. But then g is
entire and bounded, so by Liouville’s Theorem it is constant (and so must f be).

Q.11 [Q3.1 2022 Resit]

Consider the meromorphic function f(z) =
1

z2(8 + z3)
.

Determine the Laurent series expansion of f(z) on the annulus A = {z ∈ C : 0 < |z| < 2}.

S.11 We use the known geometric series Taylor expansion

1

1− ω
=

∞∑
k=0

ωk, |ω| < 1. (2)
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On the annulus A = {z ∈ C : 0 < |z| < 2}, we have that |(−z/2)3| = (|z|/2)3 < 1, so by the above
expansion (2),

1

8 + z3
=

1

8
· 1

1− (− z
2)

3
=

1

8

∞∑
n=0

((
−z

2

)3
)n

=
1

8

∞∑
n=0

(−1)n

23n
z3n.

By the uniqueness of Laurent series expansions, it follows that on A we have

f(z) =
1

z2
· 1

8 + z3
=

∞∑
n=0

(−1)n

23n+3
z3n−2.

Q.12 [Q4 2019]

(i) Find all the zeros and poles, with their orders, of f(z) =
z

sin z + cos z
.

(ii) Find the residue of f at each of its poles.

S.12 (i) There is a simple zero (ie, a zero of order 1) at z = 0 (because the denominator is not zero).

The poles occur when sin z+cos z = 0. This is equivalent to eiz − eiz + i(eiz + e−iz) = 0; or e2iz(1+ i) =
1 − i, i.e., e2iz = (1 − i)/(1 + i) = −i = ei3π/2, i.e., ei(2z−3π/2) = 1, i.e., 2z − 3π/2 = 2πn, i.e.,
z = π(n+ 3/4), where n is an integer.

The derivative of the denominator, which is cos z − sin z, is equal to −(−1)n
√
2 at these poles. Thus these

are simple poles.

(ii) Since we have simple poles we can use Rule 3 from lectures (differentiate the denominator) to calculate
that the residue at each of z = π(n+ 3/4) is

−π(n+ 3/4)

(−1)n
√
2

=
(−1)nπ(4n+ 3)

4
√
2

.

Q.13 [Q9 2016]

Consider the function g(z) =
e−z2

1 + e−2az
, where a = (1 + i)

√
π√
2
= eiπ/4

√
π is fixed.

(a) Show a2 = iπ and e−2a(z+a) = e−2az . Use this to show that

g(z)− g(z + a) = e−z2 . (∗)

(b) Show that all poles of g occur at z = a
2 + na with n ∈ Z. Compute the residue at z = a

2 .

(c) For r and s positive real numbers, consider the contour γ given by the boundary of the parallelogram
with vertices s, s+ a,−r + a and −r. Draw the contour marking all the poles of g(z).

(d) Use (∗) to show that the horizontal line integrals of
∫
γ g(z)dz combine to

∫ s
−r e

−x2
dx. Use this and

Cauchy’s residue theorem to find an expression for
∫ s
−r e

−x2
dx.

(e) Conclude ∫ ∞

−∞
e−x2

dx =
√
π.

S.13 Consider the function g(z) = e−z2

1+e−2az , where a = (1 + i)
√
π√
2
= eiπ/4

√
π is fixed.

(a) It is obvious that a2 = iπ and hence e−2a2 = e−2πi = 1 and e−2a(z+a) = e−2aze−2a2 = e−2az .
Finally,

g(z)− g(z + a) =
e−z2

1 + e−2az
− e−(z+a)2

1 + e−2a(z+a)
=

e−z2

1 + e−2az
− e−z2e−2az

1 + e−2az
=

e−z2(1 + e−2az)

(1 + e−2az)
,

which implies g(z)− g(z + a) = e−z2 .
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(b) Poles occur when e−2az = −1, so when 2az = iπ + 2πin for some n ∈ Z. Hence by (a) we have
z = (iπ + 2πin)/(2a) = (aiπ + 2aπin)/(2a2) = a/2 + an. These are all simple poles. Evaluating
the residue at z = a/2 using Rule 3 we get

Resz=a/2(g(z)) =
e−z2

d
dz (1 + e−2az)

∣∣∣∣
z=a/2

=
e−(a/2)2

−2ae−a2
=

e−iπ/4

−2ae−iπ
= − i

2
√
π
.

(c) Below is a sketch:

Re(z))

Im(z)

γ2
γ4 γ1

γ3

s

s+ a−r + a

−r

a
2

(d) Write γ for the contour and γ1, γ2, γ3, γ4 for the line segments. By Cauchy’s residue theorem we have∫
γ1

g +

∫
γ2

g +

∫
γ3

g +

∫
γ4

g =

∫
γ
g(z)dz = 2πi · Resz=a/2(g(z)) = 2πi

(
− i

2
√
π

)
=

√
π.

Next note that γ1 = −γ3 + a so by part (a) we have∫
γ1

g(z)dz +

∫
γ3

g(z)dz =

∫ s

−r
g(x)dx−

∫ s

−r
g(x+ a)dx =

∫ s

−r
e−x2

dx.

So ∫ s

−r
e−x2

dx =
√
π −

∫
γ2

g(z)dz −
∫
γ4

g(z)dz.

(e) Finally, we need to show the latter integrals relating to γ2 and γ4 vanish as s and r tend to infinity
respectively. By the Estimation Lemma we have (for i = 2, 4) that∣∣∣∣∫

γi

g(z)dz

∣∣∣∣ ≤ |a| sup
z∈γi

∣∣∣∣∣ e−z2

1 + e−2az

∣∣∣∣∣ ≤ √
π sup

z∈γi

|e−x2+y2−2xyi|
|1− |e−2a(x+iy)||

= sup
z∈γi

e−x2+y2

|1− e
√
2π(y−x)|

.

Note that on both contours 0 ≤ y ≤ Im(a) =
√
π√
2

. Thus, the numerator above is bounded above

by
√
πeπ/2 supz∈γi e

−x2
. Furthermore, for γ2 (where x > 0) the denominator is bounded below by

1− eπ/
√
2e−

√
2πx. For γ4 (where x < 0) the denominator is bounded below by e−

√
2πx − 1. Since on

γ2 we have x → ∞ as s → ∞, and on γ4 we have x → −∞ as r → ∞, in both cases our estimate
tends to zero as s and r tend to infinity respectively.

Q.14 (a) [Q1.4 2020]
Show that the polynomial z5 + 15z + 1 has precisely four zeros (counted with multiplicity) in the
set { z : 3

2 ≤ |z| < 2}.
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(b) [Q5b 2018]

Fix R > 0. Prove that if N is sufficiently large, depending on R, then
N∑
k=0

zk

k!
= 0 has no solutions

z ∈ D(0, R). You can use any properties of the exponential function that you like, provided they are
stated clearly.

S.14 (a) We apply Rouché’s Theorem twice, for different choices of functions.

First let f(z) = z5 + 15z + 1 and g(z) = z5. For |z| = 2 we have

|f(z)− g(z)| = |15z + 1| ≤ 1 + 30 < 32 = |g(z)|.

Hence the 5 zeros of z5 + 15z + 1 are all in {z : |z| < 2}.

Next, let f(z) = z5 + 15z + 1 and g(z) = 15z. Then for |z| = 3/2 we have

|f(z)− g(z)| = |z5 + 1| ≤ 35/25 + 1 = 243/32 + 1 < 12 < 45/2 = |g(z)|.

Since g(z) has one zero with |z| < 3/2, so does f . Taking the difference, f has 4 zeros in the region given
in the question.

(b) Let pN (z) be the partial sum appearing in the question. We apply Rouché’s Theorem with g(z) = ez ,
f(z) = pN (z), and write γR for the circular contour of radius R centred at 0. For z = x + iy ∈ γR we
have |g(x + iy)| = |exeiz| = ex ≥ e−R. Since pN is the nth partial sum of the power series expansion
of ez at z = 0, and ez is holomorphic on C, we have pN (z) → ez as N → ∞ uniformly on any compact
set (by results from term 1). In particular there is M depending on R such that for N > M we have
|f(z)− g(z)| ≤ e−R

2 < e−R ≤ |g(z)| for all z ∈ γR. Since pN (z) and ez are holomorphic on all of C, the
hypotheses for Rouché’s Theorem are satisfied for N > M . Therefore for N > M , the functions pN (z)
and ez have the same number of zeros in D(0, R), and we know the exponential function has no zeros in C.


