Complex Analysis II, Easter 2025. Revision Lecture (for the Michaelmas Term)

  1. Let \(U\subset \mathbb C\) be an open set. Define what it means for a function \(f:U\to \mathbb C\) to be complex differentiable at a point \(z_0\in U\).

  2. State the Cauchy-Riemann equations.

  3. Let \(f:U\to \mathbb C\) be the function defined by \[f(z)=f(x+iy)=x\cos(y)+\sinh(iy)\cosh(x).\] Use the Cauchy-Riemann equations to determine the points \(z_0\in\mathbb C\) where \(f\) is complex differentiable.

  1. Prove that for each \(a\in \mathbb R\), \(a>0\), the series \[\sum_{n=1}^\infty n^{-z}\] converges uniformly on \(\left\lbrace z\in\mathbb C\;:\; \mathrm{Re}(z)>1+a\right\rbrace\) where \(n^{-z}\) is defined using the principal logarithm [You may use without proof that \(\sum_{n=1}^\infty n^{-b}\), \(b\in\mathbb R\), \(b>1\), converges.]

  2. Does the series \(\sum_{n=1}^\infty n^{-z}\) defines a continuous function on \(\left\lbrace z\in\mathbb C\;:\; \mathrm{Re}(z)>1\right\rbrace\)? Justify your response.

  3. Does the series \(\sum_{n=1}^\infty n^{-z}\) converge uniformly on \(\left\lbrace z\in\mathbb C\;:\; \mathrm{Re}(z)\geq 1\right\rbrace\)? Justify your response.

Consider the set \(U=\mathbb C\setminus \left\lbrace iy\;:\;y\in\mathbb R,\;y\leq 0\right\rbrace\).

  1. Sketch the set \(U\) in \(\mathbb C\).

  2. Is \(U\) an open set? Justify your response.

  3. Find a biholomorphic map from \(U\) to the open unit disc \(\mathbb{D}=\left\lbrace z\in \mathbb C\;:\; {\left|z\right|}<1\right\rbrace\) and justify why this map is biholomorphic.