Q.1 [Q1 from the May 2023 exam]

l

- 1.1 Let $U \subset \mathbb{C}$ be an open set. Define what it means for a function $f : U \to \mathbb{C}$ to be complex differentiable at a point $z_0 \in U$.
- 1.2 State the Cauchy-Riemann equations.
- 1.3 Let $f: U \to \mathbb{C}$ be the function defined by

$$f(z) = f(x + iy) = x\cos(y) + \sinh(iy)\cosh(x)$$

Use the Cauchy-Riemann equations to determine the points $z_0 \in \mathbb{C}$ where f is complex differentiable.

Complex Analysis II, Easter 2025. Revision Lecture (for the Michaelmas Term)

page 2

Complex multiplis it, Easter 2025. Revision Eccure (for the international form) page 2
uvec'(R2) so we know from class that is complex diff at 25= x5+iy.
that is complex diff at 25= x5+14.
if and only if C-R eq. hold at (rong.).
Ux(x,y) = Cosy Uy(x,y) = - x Sm(y)
$U_{x}(x,y) = Cosy$ $V_{x}(x,y) = Cosy$ $V_{x}(x,y) = Sin(y)Sinh(x)$ $V_{y}(x,y) = Cosy Cosh(x)$ Cosh(x)
C'Leg. are.
(1) $\cos(y) = \cos(y)\cos(x)$ (2) $x\sin(y) = \sin(y)\sinh(x)$
(1) implies cosy=0 or 1= cosh(2) y=1/2+TUK KEZ X=0
if y= static, ked, sn(y)=(-1) and as such
(a) bearres x=sinh(x), i.e x=0.
if x=0 (2) is inmediate.
=) C-Rholds for X=0, geR. Therefor
f is complex diff on iR.

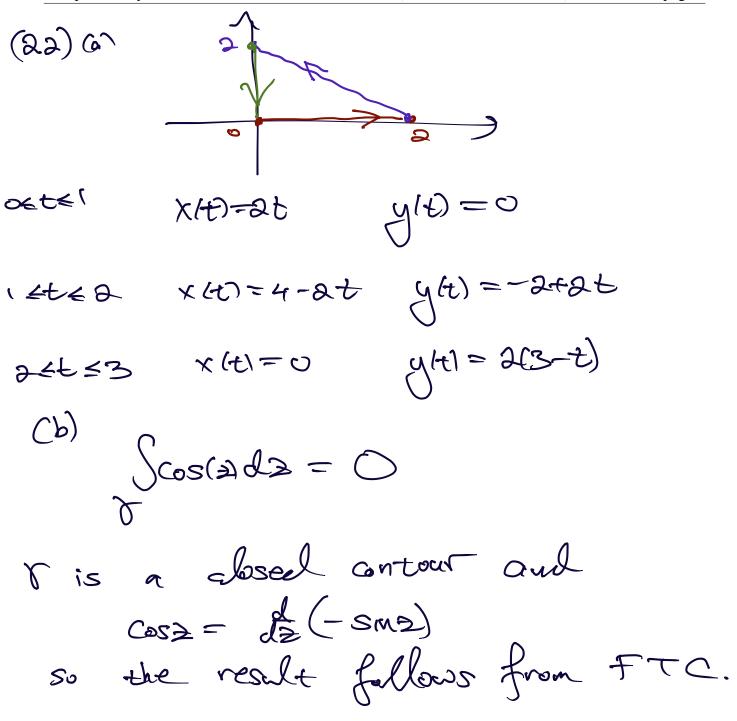
Q.2 [Q2 from the May 2023 exam]

- 2.1.(a) On what subset of \mathbb{C} is the function $f(z) = (z+i)^4 3$ conformal? Justify your response.
- 2.1.(b) Describe the geometric effects of f(z) on the tangent vectors of the curves passing through the point z = 1 2i.
 - 2.2 Let $\gamma: [0,3] \to \mathbb{C}$ be the contour given by

$$\gamma(t) := \begin{cases} 2t, & \text{if } 0 \le t \le 1, \\ 4 - 2i + 2(-1 + i) t, & \text{if } 1 \le t \le 2, \\ 2(3 - t) i, & \text{if } 2 \le t \le 3. \end{cases}$$

(a) Sketch $\gamma(t)$ in \mathbb{C} .

(b) Evaluate $\int_{\gamma} \cos(z) dz$.



- Q.3 [Q5 from the May 2023 exam]
 - 3.1 Prove that for each $a \in \mathbb{R}$, a > 0, the series

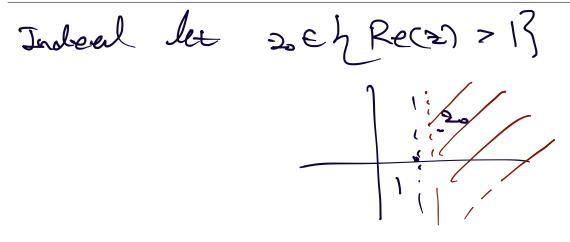
$$\sum_{n=1}^{\infty} n^{-z}$$

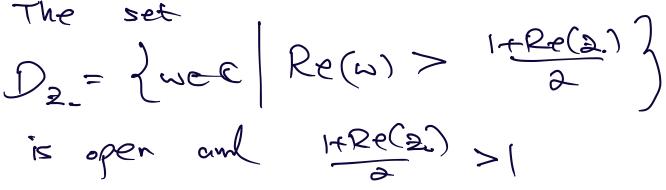
converges uniformly on $\{z \in \mathbb{C} : \operatorname{Re}(z) > 1 + a\}$ where n^{-z} is defined using the principal logarithm [You may use without proof that $\sum_{n=1}^{\infty} n^{-b}$, $b \in \mathbb{R}$, b > 1, converges.]

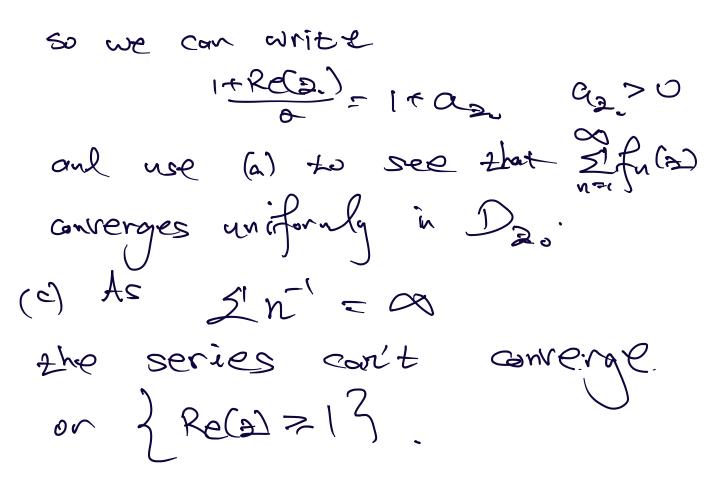
- 3.2 Does the series $\sum_{n=1}^{\infty} n^{-z}$ defines a continuous function on $\{z \in \mathbb{C} : \operatorname{Re}(z) > 1\}$? Justify your response.
- 3.3 Does the series $\sum_{n=1}^{\infty} n^{-z}$ converge uniformly on $\{z \in \mathbb{C} : \operatorname{Re}(z) \geq 1\}$? Justify your response.

Complex Analysis II, Easter 2025. Revision Lecture (for the Michaelmas Term)

page 6

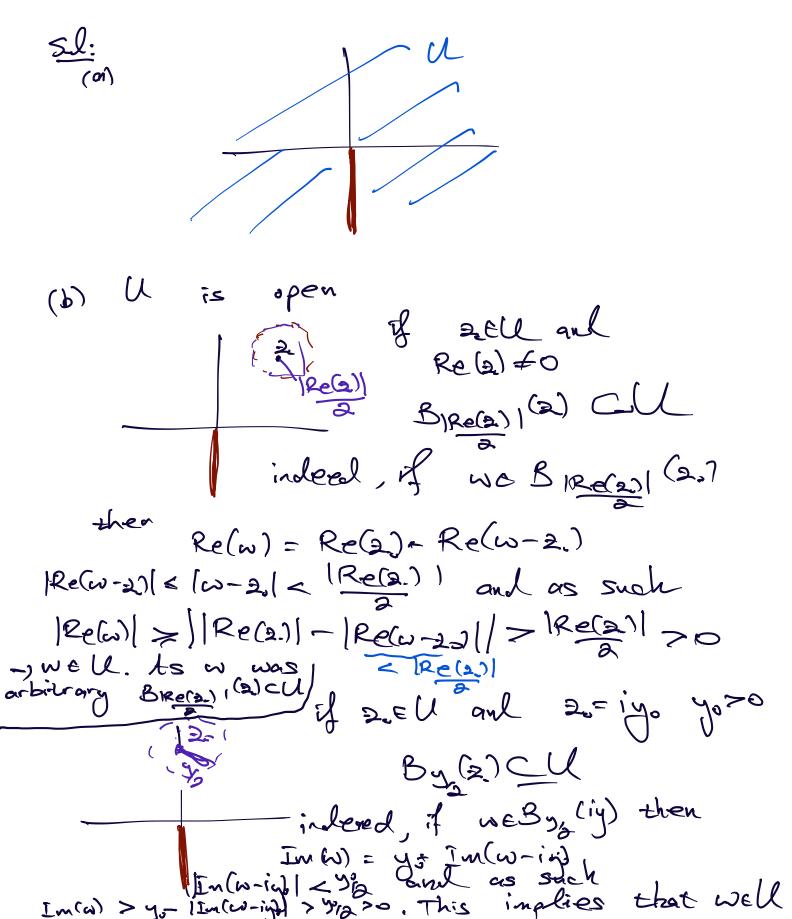


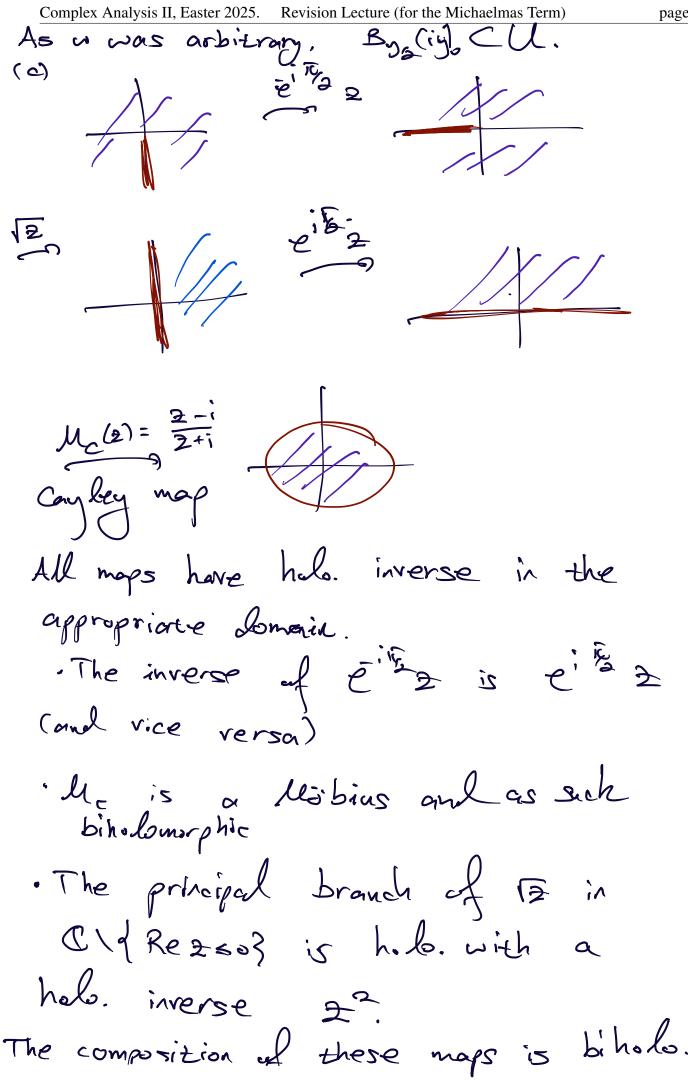




Q.4 [Q6 from the May 2023 exam] Consider the set $U = \mathbb{C} \setminus \{iy : y \in \mathbb{R}, y \leq 0\}$.

- 4.1 Sketch the set U in \mathbb{C} .
- 4.2 Is U an open set? Justify your response.
- 4.3 Find a biholomorphic map from U to the open unit disc $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and justify why this map is biholomorphic.





and gives the desired map.