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Q.1 [Q1 from the May 2023 exam]

1.1 Let U ⊂ C be an open set. Define what it means for a function f : U → C to be complex differentiable
at a point z0 ∈ U .

1.2 State the Cauchy-Riemann equations.

1.3 Let f : U → C be the function defined by

f(z) = f(x+ iy) = x cos(y) + sinh(iy) cosh(x).

Use the Cauchy-Riemann equations to determine the points z0 ∈ C where f is complex differentiable.

S.1

1.1 A function f : U → C is complex differentiable at z0 ∈ U if

lim
z→z0

f(z)− f(z0)

z − z0

exists.

1.2 The pair of functions u, v : U → R satisfy the Cauchy-Riemann equation at z0 = x0 + iy0 if

ux (x0, y0) = vy (x0, y0) , uy (x0, y0) = −vx (x0, y0) .

1.3 We know that a function f = u+iv, with u, v : U → R, is complex differentiable at z0 = x0+iy0 ∈ U
if and only if u and v are differentiable at (x0, y0) and satisfy the Cauchy-Riemann equations. In order
to identify u and v we first need to simplify sinh (iy). We have that

sinh (iy) =
eiy − e−iy

2
= i sin(y)

and consequently

f(z) = x cos(y) + i sin(y) cosh(x) = u(x, y) + iv(x, y)

where u(x, y) = x cos(y) and v(x, y) = sin(y) cosh(x). We have that

ux (x, y) = cos(y), vy(x, y) = cos(y) cosh(x),

uy(x, y) = −x sin(y), vx(x, y) = sin(y) sinh(x).

Using Cauchy-Riemann equation we find that

cos(y) = cos(y) cosh(x), x sin(y) = sin(y) sinh(x).

The first equation implies that cos(y) = 0 or cosh(x) = 1, i.e. y = π
2 + nπ with n ∈ Z or x = 0.

When y = π
2 + nπ with n ∈ Z: we have that the second equation reads as

(−1)n x = x sin
(π
2
+ nπ

)
= sin

(π
2
+ nπ

)
sinh(x) = (−1)n sinh(x)

or x = sinh(x). There is only one solution to this equation, which is x = 0.
When x = 0: we have that the second equation reads as

0 = 0 · sin(y) = sin(y) sinh(0) = 0,

i.e. the equation always holds.
In conclusion, Cauchy-Riemann equations hold for any (x0, y0) such that x0 = 0 and as u and v are
differentiable we conclude that f is complex differentiable if and only if z0 ∈ iR.
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Q.2 [Q2 from the May 2023 exam]

2.1.(a) On what subset of C is the function f(z) = (z + i)4 − 3 conformal? Justify your response.

2.1.(b) Describe the geometric effects of f(z) on the tangent vectors of the curves passing through the point
z = 1− 2i.

2.2 Let γ : [0, 3] → C be the contour given by

γ(t) :=


2t, if 0 ≤ t ≤ 1,

4− 2i+ 2 (−1 + i) t, if 1 ≤ t ≤ 2,

2 (3− t) i, if 2 ≤ t ≤ 3.

(a) Sketch γ(t) in C.
(b) Evaluate

∫
γ cos(z)dz.

S.22.1.(a) We know from class that if a function f is holomorphic in a domain (i.e. open and connected set) U
then it is conformal at z0 ∈ U if and only if f ′ (z0) ̸= 0. Our function f is an entire function so we
only need to check where the derivative is zero.

f ′(z) = 4 (z + i)3

which implies that f ′(z) ̸= 0 if and only if z ̸= −i. Consequently, we conclude that f is conformal on
C \ {−i}.

2.1.(b) Given a function f on a domain U such that f ′(z0) ̸= 0, we have that the tangent vectors of the image
of a given curve passing by z0 is the multiplication of the original tangent vector by f ′(z0) which acts
as a stretch by |f ′(z0)| and rotation by Arg (f ′(z0)). In our case z0 = 1− 2i gives

f ′ (1− 2i) = 4 (1− i)3 = 4
(√

2e−
iπ
4

)3
= 2

7
2 e−

3iπ
4 .

We conclude that the geometric effects of f(z) on the tangent vectors of the curves passing through
the point z = 1− 2i is a stretch by 2

7
2 and rotation by 3π

4 clockwise.

2.2.(a) The curve is composed of three straight lines which intersect at the appropriate points:

γ1 : x(t) = 2t, y(t) = 0, 0 ≤ t ≤ 1,

γ2 : x(t) = 4− 2t, y(t) = −2 + 2t, 1 ≤ t ≤ 2,

γ3 : x(t) = 0, y(t) = 2(3− t), 2 ≤ t ≤ 3.

−1 1 2 3 4 5

−2

2

4

Re (z)

Im (z)

2.2.(b) We know that cos(z) is entire and as such is holomorphic in a domain that contains the closed contour
γ (C). By the Complex Fundamental Theorem of Calculus we conclude that∫

γ
cos(z)dz = 0.
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Q.3 [Q5 from the May 2023 exam]

3.1 Prove that for each a ∈ R, a > 0, the series
∞∑
n=1

n−z

converges uniformly on {z ∈ C : Re(z) > 1 + a} where n−z is defined using the principal logarithm
[You may use without proof that

∑∞
n=1 n

−b, b ∈ R, b > 1, converges.]

3.2 Does the series
∑∞

n=1 n
−z defines a continuous function on {z ∈ C : Re(z) > 1}? Justify your re-

sponse.

3.3 Does the series
∑∞

n=1 n
−z converge uniformly on {z ∈ C : Re(z) ≥ 1}? Justify your response.

S.3 3.1 We will aim to use one of Weierstrass M-tests – standard or its local variant. Denote by fn(z) = n−z .
We notice that for any z ∈ C

|fn(z)| =
∣∣e−z Logn

∣∣ = ∣∣∣e−Re(z) logne−iIm(z) logn
∣∣∣ = e−Re(z) logn = n−Re(z).

On {z ∈ C : Re(z) > 1 + a} we have that

|fn(z)| ≤ n−1+a = Mn.

Using the given hint we have that
∑∞

n=1Mn < ∞ and consequently, using Weierstrass’ M-test, we
conclude that

∑∞
n=1 fn(z) converges uniformly on {z ∈ C : Re(z) > 1 + a}.

3.2 The idea is similar to the previous result, though we see that we can’t avoid having a >
0 in using Weierstrass’ M-test. However, we know that

∑∞
n=1 fn(z) converges uniformly on

{z ∈ C : Re(z) > 1 + a} for any a > 0. Given w ∈ {z ∈ C : Re(z) > 1} we can find aw > 0

such that w ∈ {z ∈ C : Re(z) > 1 + aw}, for example aw = 1+Re(w)
2 . In other words, for any

w ∈ {z ∈ C : Re(z) > 1} there exists an open set Uw = {z ∈ C : Re(z) > 1 + aw} that contains
w and on which the series converges uniformly. This means, by definition, that

∑∞
n=1 fn(z) converges

locally uniformly on {z ∈ C : Re(z) > 1}. As fn(z) are continuous in the domain for any n ∈ N we
conclude from a theorem from class that the resulting function is also continuous.

3.3 We notice that when z = 1 the series is nothing but the harmonic series
∑∞

n=1 n
−1 which doesn’t

converge. Consequently the series can’t converge uniformly in {z ∈ C : Re(z) ≥ 1} as it doesn’t
even converge pointwise there.

Q.4 [Q6 from the May 2023 exam] Consider the set U = C \ {iy : y ∈ R, y ≤ 0}.

4.1 Sketch the set U in C.

4.2 Is U an open set? Justify your response.

4.3 Find a biholomorphic map from U to the open unit disc D = {z ∈ C : |z| < 1} and justify why this
map is biholomorphic.

S.4 4.1

Re(z)

Im(z)
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4.2 The set U is open. We can show it by definition, i.e. by showing that for any z ∈ U there exists ϵ > 0
such that Bϵ(z) ⊂ U , or by showing that U c is closed.
By definition: Given z ∈ U we have that Re (z) ̸= 0 or z = iy with y > 0. In the former case we

choose ϵ = |Re(z)|
2 and find that for any w ∈ Bϵ(z), Re(w) ̸= 0. Indeed, we have that

Re (w) = Rez +Re (w − z) .

If Re(w) = 0 then
Re(z) = Re (z − w)

which implies that

|Re(z)| = |Re (z − w)| ≤ |z − w| < |Re(z)|
2

,

which is impossible. Consequently, Bϵ(z) ⊂ U .
Consider now the case where z = iy with y > 0. Then we claim that B y

2
(z) ⊂ U . Indeed, for any

w ∈ B y
2
(z)

Im(w) = Im(z) + Im(w − z) = y + Im(w − z).

Since |Im(w − z)| ≤ |w − z| < y
2 we have that

Im(w) > y − y

2
=

y

2
> 0,

which shows that w ∈ U . As w was arbitrary we conclude that B y
2
(z) ⊂ U and with it the openness

of U .
By using U c: By definition we find that

U c = C \ U = {iy : y ∈ R, y ≤ 0} .
To show that U c is closed we will show that if {zn}n∈N ⊂ U c converges to a point z ∈ C, then z ∈ U c.
Indeed, assuming that {zn}n∈N converges to z implies that

Im (zn) −→
n→∞

Im(z).

Since {zn}n∈N ⊂ U we find that Im (zn) ≤ 0 for all n ∈ N. Consequently, Im(z) ≤ 0 as the limit of
non-positive sequence. This implies that z ∈ U c and concludes the proof.

4.3 When considering maps to unit spheres powers and Möbius transformations come to mind. In our case
we see that by rotating the domain by π

2 clockwise we get the domain

{z ∈ C : Re(z) ≤ 0}
which lends itself well to powers that use the principal logarithm. This will allow us to use the principal
squared root,

√
z, which will take the above domain to the right half plane. At this point we can rotate

the domain by π
2 anti-clockwise we get the upper half plane and use the Cayley map which we know

take the upper half plane to D.
More formally: Consider the maps

f1 : C → C, f1(z) = e−
iπ
2 z

f2 : C \ {z ∈ C : Re(z) ≤ 0} → HR, f2(z) =
√
z,

where the principal branch of the logarithm was chosen,

f3 : HR → H, f3(z) = e
iπ
2 z,

f4 : H → D, f4(z) =
z − i

z + i
.

Each of these maps is holomorphic with a holomorphic inverse in the appropriate domain

f−1
1 (z) = f3(z), f−1

2 (z) = z2, f−1
3 (z) = f1(z), f−1

4 (z) = i
z + 1

1− z
,

showing that each map is biholomorphic in the appropriate domain. The desired map would be

f(z) = f4 ◦ f3 ◦ f2 ◦ f1(z).


