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(b) Poles occur when e→2az = →1, so when 2az = iω + 2ωin for some n ↑ Z. Hence by (a) we have
z = (iω + 2ωin)/(2a) = (aiω + 2aωin)/(2a2) = a/2 + an. These are all simple poles. Evaluating
the residue at z = a/2 using Rule 3 we get

Resz=a/2(g(z)) =
e→z2

d
dz (1 + e→2az)

∣∣∣∣
z=a/2

=
e→(a/2)2

→2ae→a2
=

e→iω/4

→2ae→iω
= → i

2
↓
ω
.

(c) Below is a sketch:
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(d) Write ε for the contour and ε1, ε2, ε3, ε4 for the line segments. By Cauchy’s residue theorem we have
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Next note that ε1 = →ε3 + a so by part (a) we have
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(e) Finally, we need to show the latter integrals relating to ε2 and ε4 vanish as s and r tend to infinity
respectively. By the Estimation Lemma we have (for i = 2, 4) that
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Note that on both contours 0 ↔ y ↔ Im(a) =
↓
ω↓
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. Thus, the numerator above is bounded above

by
↓
ωeω/2 supz↑εi e

→x2 . Furthermore, for ε2 (where x > 0) the denominator is bounded below by
1→ eω/
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2e→
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2ωx. For ε4 (where x < 0) the denominator is bounded below by e→

↓
2ωx → 1. Since on

ε2 we have x ↗ ↘ as s ↗ ↘, and on ε4 we have x ↗ →↘ as r ↗ ↘, in both cases our estimate
tends to zero as s and r tend to infinity respectively.

Q.14 (a) [Q1.4 2020]

Show that the polynomial z5 + 15z + 1 has precisely four zeros (counted with multiplicity) in the

set { z : 3
2 ↔ |z| < 2}.


