Functional Analysis and Applications Michaelmas 2023 Department of Mathematical Sciences, Durham University

Home Assignment 1

Exercise 1. Prove the following statement: Let (\mathcal{X}, d) be a metric space where \mathcal{X} is a vector space over \mathbb{R} or \mathbb{C} . Then the metric *d* is induced by a norm if and only if

- (i) d(x, y) = d(x + z, y + z) for any $x, y, z \in \mathcal{X}$.
- (ii) $d(\alpha x, \alpha y) = |\alpha| d(x, y)$ for any $x, y \in \mathcal{X}$ and scalar α .

In that case the norm which induces the metric is given by

 $\|x\| = d(x,0).$

Exercise 2. Prove the following statement: Let (X, d) be a metric space and let $\{x_n\}_{n \in \mathbb{N}} \subset X$ be Cauchy. Then $\{x_n\}_{n \in \mathbb{N}}$ is bounded

Exercise 3. Prove the following statement: Let (X, d) be a metric space and let *A* be a set in *A*. Show that *A* is dense in *X* if and only if for any $x \in X$ there exists a sequence of elements from *A*, $\{x_n\}_{n \in \mathbb{N}}$, that converges to *x*.

Exercise 4. Prove the following statement: Let (X, d) be a metric space. Show that X is separable if and only if there exists a sequence $\{x_n\}_{n \in \mathbb{N}}$ such that every $x \in X$ is a limit of a subsequence of $\{x_n\}_{n \in \mathbb{N}}$ that converges to x.

Hint: Be careful here! Remember that a subsequence of a sequence must has increasing indexes.

Exercise 5. Show that if *A* is dense in a metric space (X, d) and if $A \subset B$, then *B* is dense in *X*.

Exercise 6. Let $(\mathcal{X}, \|\cdot\|)$ be a normed space and let \mathcal{M} be a subspace of \mathcal{X} . Show that $\overline{\mathcal{M}}$ is a subspace. Furthermore, show that for any set $M \subseteq \mathcal{X}$ we have that $\overline{\text{span}M}$ is the smallest closed subspace containing M, i.e. $\overline{\text{span}M}$ is a closed subspace and if \mathcal{N} is a closed subspace of \mathcal{X} that contains M then

$$\overline{\operatorname{span} M} \subseteq \mathcal{N}.$$

Exercise 7. Show that the norm in $(\mathbb{F}^n, \|\cdot\|_p)$ is not induced by an inner product when $p \neq 2$.

Exercise 8. Show that the norm in $(L^p(E), \|\cdot\|_p)$ is not induced by an inner product when $p \neq 2$.

Exercise 9. Consider the space $\ell_p(\mathbb{N})$ defined in class.

(i) Show that $\ell_p(\mathbb{N})$ is closed under the addition and scalar multiplication, i.e. if $\boldsymbol{a}, \boldsymbol{b} \subset \ell_p(\mathbb{N})$ and α is a scalar then $\boldsymbol{a} + \boldsymbol{b}$ and $\alpha \boldsymbol{a}$ are in

 $\ell_p(\mathbb{N}).$

Hint: You may use without proof the inequality

$$(|x| + |y|)^p \le 2^{p-1} (|x|^p + |y|^p)$$

which holds for any $x, y \in \mathbb{C}$ and $p \in [1, \infty)$.

(ii) Show that $\|\cdot\|_{p}$ is a norm on $\ell_{p}(\mathbb{N})$.

Hint: You may without proof use the following discrete Minkowski inequality:

$$\left(\sum_{n\in\mathbb{N}}|a_n+b_n|^p\right)^{\frac{1}{p}} \le \left(\sum_{n\in\mathbb{N}}|a_n|^p\right)^{\frac{1}{p}} + \left(\sum_{n\in\mathbb{N}}|b_n|^p\right)^{\frac{1}{p}}$$

where $1 \le p < \infty$ and q is its Hölder conjugate.

Let $\{a_n\}_{n \in \mathbb{N}} \subset \ell_p(\mathbb{N})$ be a Cauchy sequence in $\ell_p(\mathbb{N})^{-1}$.

(iii) Show that for any $j \in \mathbb{N}$ we have that $\{a_{n,j}\}_{n \in \mathbb{N}}$, where $a_{n,j} = (\mathbf{a}_n)_j$, is a Cauchy sequence in \mathbb{F} and conclude that it converges to some element $a_j \in \mathbb{F}$.

Hint: Show that for any $\mathbf{a}, \mathbf{b} \in \ell_p$, with $1 \le p \le \infty$, we have that for any $j \in \mathbb{N}$

$$\left|a_{j}-b_{j}\right|\leq \left\|\boldsymbol{a}-\boldsymbol{b}\right\|.$$

(iv) Denoting by $\mathbf{a} = \{a_j\}_{j \in \mathbb{N}}$. with a_j found in the previous sub-question show that $\mathbf{a} \in \ell_p(\mathbb{N})$. Moreover, show that for any $N \in \mathbb{N}$

$$\sum_{j=1}^{N} \left| a_j - a_{n,j} \right|^p \leq \liminf_{m \to \infty} \left\| a_m - a_n \right\|_p^p$$

when $1 \le p < \infty$ and

$$\sup_{j\leq N} |a_j - a_{n,j}| \leq \liminf_{m\in\mathbb{N}} ||\boldsymbol{a}_m - \boldsymbol{a}_n||_{\infty}.$$

Conclude that $(\ell_p(\mathbb{N}), \|\cdot\|_p)$ is Banach space.

Exercise 10. Consider the space $(C[a, b], \|\cdot\|_{\infty})$ defined in class.

- (i) Show that *C*[*a*, *b*] is a vector space under pointwise addition and pointwise scalar multiplication.
- (ii) Show that the function $\|\cdot\|_{\infty} : C[a, b] \to \mathbb{R}_+$ defined by

$$\|f\|_{\infty} = \max_{x \in [a,b]} |f(x)|$$

is a norm on *C* [*a*, *b*].

(iii) Show that C[a, b] is complete under the norm induced by $\|\cdot\|_{\infty}$, i.e. C[a, b] is a Banach space.

¹We have a sequence of sequences here, be mindful of the index!

(iv) Show that the norm of the space *C*[*a*, *b*] is not induced by an inner product.