Functional Analysis and Applications Michaelmas 2023 Department of Mathematical Sciences, Durham University

Solution to Home Assignment 1

Solution to Question 1. We start by assuming that the metric *d* is induced by a norm. In that case for any $x, y, z \in \mathcal{X}$

d(x, y) = ||x - y|| = ||(x + z) - (y + z)|| = d(x + z, y + z),

and any $x, y \in \mathcal{X}$ and scalar α

$$d(\alpha x, \alpha y) = \|\alpha x - \alpha y\| = |\alpha| \|x - y\| = |\alpha| d(x, y).$$

Conversely, we assume that the two properties are valid and define

$$||x|| = d(x,0)$$

We find that:

- $||x|| \ge 0$ for all $x \in \mathcal{X}$ and ||x|| = 0 if and only if d(x, 0) = 0 which holds if and only if x = 0.
- For any $x \in \mathcal{X}$ and a scalar α we have that

 $\|\alpha x\| = d(\alpha x, 0) = d(\alpha x, \alpha 0) = |\alpha| d(x, 0) = |\alpha| \|x\|.$

• For any $x, y, z \in \mathcal{X}$ we have that

$$||x + y|| = d(x + y, 0) = d(x + y - y, 0 - y) = d(x, -y)$$

$$\leq d(x,0) + d(-y,0) = ||x|| + ||-y|| = ||x|| + |-1| ||y|| = ||x|| + ||y||.$$

As all three criteria for being a norm are satisfied, we conclude that $\|\cdot\|$ is indeed a norm.

Solution to Question 2. Let $\{x_n\}_{n \in \mathbb{N}}$ be a Cauchy sequence. There exists $n_0 \in \mathbb{N}$ such that for any $n, m \ge n_0$ we have that

 $d\left(x_n,x_m\right)<1.$

Consequently, for any $x_0 \in X$ and any $n \ge n_0$

$$d(x_n, x_0) \le d(x_{n_0}, x_0) + d(x_n, x_{n_0}) < d(x_{n_0}, x_0) + 1.$$

We conclude that

$$d(x_n, x_0) \le \max \{ d(x_1, x_0), \dots, d(x_{n_0-1}, x_0), d(x_{n_0}, x_0) + 1 \}.$$

As the right hand side is bounded uniformly in $n \in \mathbb{N}$ we conclude the desired boundedness.

Solution to Question 3. We start by assuming that *A* is dense in *X*. This means that $\overline{A} = X$. Given $x \in X$ we have that $x \in \overline{A}$ and as such we can find a sequence of elements from *A*, $\{x_n\}_{n \in \mathbb{N}}$, that converges to *x*.

Conversely, assuming that for any $x \in X$ we can a sequence of elements from A, $\{x_n\}_{n \in \mathbb{N}}$, that converges to x we see that any given $x \in X$ is a limit

point of *A*, or $x \in \overline{A}$. Since *x* was arbitrary we find that $\overline{A} = X$ which shows the density.

Solution to Question 4. Denote by $A = \{x_n\}_{n \in \mathbb{N}}$. If every $x \in X$ is a limit of a subsequence of $\{x_n\}_{n \in \mathbb{N}}$ then every $x \in X$ is a limit of a sequence of elements from *A*. Consequently, according to the previous question, *A* is dense in *X*. Since *A* is countable we conclude that *X* is separable.

The converse is a bit more delicate. Assume that *A* is a countable dense set. Since *A* is countable we can write is as a sequence $A = \{x_n\}_{n \in \mathbb{N}}$. According to our previous question we know that every $x \in X$ is a limit point of *A* - but this doesn't immediately mean that the sequence we extract from *A* is a subsequence of $\{x_n\}_{n \in \mathbb{N}}$ in its current ordering! Let $\{a_j\}_{j \in \mathbb{N}} \subset A$ be the sequence that converges to *x*. By definition, for any $j \in \mathbb{N}$ we can find $n_j \in \mathbb{N}$ such that $a_j = x_{n_j}$. What we need to do is extract a subsequence of $\{a_j\}_{j \in \mathbb{N}}$, $\{a_{j_k}\}_{k \in \mathbb{N}}$, such that $\{n_{j_k}\}_{k \in \mathbb{N}}$ is increasing. This way $\{x_{n_{j_k}}\}_{k \in \mathbb{N}}$ will converge to *x* as a subsequence of $\{a_j\}_{j \in \mathbb{N}}$ and will be a subsequence of the original $\{x_n\}_{n \in \mathbb{N}}$.

We start by choosing $n_{j_1} = n_1$. As $\{n_j\}_{j \in \mathbb{N}}$ must go to infinity as j goes to infinity we can find $j_2 \in \mathbb{N}$ such that $n_{j_2} > n_1$. We continue inductively: n_{j_k} is chosen so that $n_{j_k} > n_{j_{k-1}}$ and since $\{n_j\}_{j \in \mathbb{N}}$ must go to infinity as j goes to infinity we can find $j_{k+1} \in \mathbb{N}$ such that $n_{j_{k+1}} > n_{j_k}$. This concludes the proof.

Solution to Question 5. Assume that *A* is dense in *X* and let *B* be such that $A \subset X$. For any $x \in X$ we can find a sequence $\{a_n\}_{n \in \mathbb{N}} \subset A$ that converges to *x*. Since $A \subset B$ we conclude that for any $x \in X$ we can find a sequence $\{a_n\}_{n \in \mathbb{N}} \subset B$ that converges to *x*. This implies that *B* is dense, which is the desired result.

Solution to Question 6. To show that \mathcal{M} is a subspace we need to show that it is not empty and closed under addition and scalar multiplication. Since $\mathcal{M} \subseteq \overline{\mathcal{M}}$ and \mathcal{M} is not empty, we find that $\overline{\mathcal{M}}$ is not empty.

Next, let $x, y \in \mathcal{M}$. We can find sequences of elements in \mathcal{M} , $\{x_n\}_{n \in \mathbb{N}}$ and $\{y_n\}_{n \in \mathbb{N}}$, that converge to x and y respectively. Since \mathcal{M} is a subspace we have that the sequence $\{x_n + y_n\}_{n \in \mathbb{N}}$ is in \mathcal{M} and since it converges to x + y we conclude that $x + y \in \overline{\mathcal{M}}$.

Similarly, for any $x \in \mathcal{M}$ and any scalar α we find a sequence of elements in \mathcal{M} , $\{x_n\}_{n \in \mathbb{N}}$, that converges to x. As \mathcal{M} is a subspace the sequence $\{\alpha x_n\}_{n \in \mathbb{N}}$ is in \mathcal{M} and since it converges to αx we conclude that $\alpha x \in \overline{\mathcal{M}}$. The first part of the question is thus proved.

To show the second part we notice that the fact that spanM is a closed subspace follows immediately from the above proof. We are only left to

2

show that it is the smallest closed subspace that contains *M*. Indeed, let \mathcal{N} be a closed subspace that contains *M*. By definition this means that span $M \subseteq \mathcal{N}$ (since span *M* is the smallest subspace that contains *M*). Since \mathcal{N} is also a closed set we find that

$$\overline{\operatorname{span} M} \subseteq \mathcal{N}$$

which concludes the proof.

Solution to Question 7. In order to show that a norm is not induced from an inner product we will show that the parallelogram identity is not satisfied for some vectors. Consider the standard basis $(e_j)_{j=1,...,n} \subset \mathbb{F}^n$ where e_j is the vector whose entries are zero besides the entry in the j-th position, which is 1. We have that if $k \not j$ then

$$\| \boldsymbol{e}_{j} - \boldsymbol{e}_{k} \|_{p} = \| \boldsymbol{e}_{j} + \boldsymbol{e}_{k} \|_{p} = (1+1)^{\frac{1}{p}}.$$

1

Since $\|\boldsymbol{e}_j\|_p = \|\boldsymbol{e}_k\|_p = 1$ we see that the parallelogram identity i satisfied if and only if

$$2^{\frac{2}{p}} + 2^{\frac{2}{p}} = 2 + 2.$$

This holds if and only if p = 2.

Solution to Question 8. Similar to the question before, in order to show that a norm is not induced from an inner product we will show that the parallelogram identity is not satisfied for some vectors. The idea is the same - find two vectors with "disjoint support". Indeed, let *A* and *B* be measurable sets in *E* with a the same finite measure μ . Define

$$f = \chi_A, \qquad g = \chi_B$$

We have that

$$\|f - g\|_{p}^{p} = \int_{E} |\chi_{A}(x) - \chi_{B}(x)|^{p} dx = \int_{E} (\chi_{A}(x)^{p} + \chi_{B}(x)^{p}) dx$$
$$= \int_{E} (\chi_{A}(x) + \chi_{B}(x)) dx = 2\mu.$$

Similarly $||f + g||_p^p = 2\mu$. Since $||f||_p = ||g||_p = \mu^{\frac{1}{p}}$ we see that the parallelogram identity i satisfied if and only if

$$(2\mu)^{\frac{2}{p}} + (2\mu)^{\frac{2}{p}} = 2\mu^{\frac{2}{p}} + 2\mu^{\frac{2}{p}}.$$

This holds if and only if p = 2 (it is, in fact, the same identity as in the previous question).

Solution to Question 9. (i) We start with $1 \le p < \infty$. For any $N \in \mathbb{N}$ and any $a, b \in \ell_p(\mathbb{N})$ we have that

$$\sum_{n=1}^{N} |a_n + b_n|^p \le \sum_{n=1}^{N} (|a_n| + |b_n|)^p \le 2^{p-1} \left(\sum_{n=1}^{N} |a_n|^p + \sum_{n=1}^{N} |b_n|^p \right) \le 2^{p-1} \left(\|\boldsymbol{a}\|^p + \|\boldsymbol{b}\|^p \right).$$

As this holds for every $N \in \mathbb{N}$ and the right hand side is independent of N, taking N to infinity shows that

$$\sum_{n \in \mathbb{N}} |a_n + b_n|^p \le 2^{p-1} \left(\sum_{n \in \mathbb{N}} |a_n|^p + \sum_{n \in \mathbb{N}} |b_n|^p \right) < \infty$$

which proves that $\mathbf{a} + \mathbf{b} \in \ell_p(\mathbb{N})$. Similarly, for any $\mathbf{a} \in \ell_p(\mathbb{N})$ and a scalar α we have that

$$\sum_{n=1}^{N} |\alpha a_n|^p = |\alpha|^p \sum_{n=1}^{N} |a_n|^p \underset{N \to \infty}{\longrightarrow} |\alpha|^p \sum_{n \in \mathbb{N}} |a_n|^p = |\alpha|^p \|\boldsymbol{a}\|_p^p < \infty$$

which implies that $\alpha a \in \ell_p(\mathbb{N})$ and $||\alpha a|| = |\alpha| ||a||_p$. The case $p = \infty$ is more straightforward to show since

$$\|\boldsymbol{a} + \boldsymbol{b}\|_{\infty} = \sup_{n \in \mathbb{N}} |a_n + b_n| \le \sup_{n \in \mathbb{N}} (|a_n| + |b_n|) \le \sup_{n \in \mathbb{N}} |a_n| + \sup_{n \in \mathbb{N}} |b_n|$$
$$= \|\boldsymbol{a}\|_{\infty} + \|\boldsymbol{b}\|_{\infty} < \infty$$

and for any scalar α

$$\|\alpha \boldsymbol{a}\|_{\infty} = \sup_{n \in \mathbb{N}} |\alpha a_n| = |\alpha| \sup_{n \in \mathbb{N}} |a_n| = |\alpha| \|\boldsymbol{a}\|_{\infty} < \infty.$$

(ii) To show that $\|\cdot\|_p$ is a norm we notice that in the previous sub-question we have shown the scaling property for the proposed norm, as well as the triangle inequality for the case where $p = \infty$. The triangle inequality for the case where $1 \le p < \infty$ is nothing more than the discrete Minkowski's inequality. Consequently, in order to show that $\|\cdot\|_p$ is indeed a norm we only need to show that it has the positivity property.

We start with the case $1 \le p < \infty$: By definition $||\mathbf{a}||_p \ge 0$.

$$\|\boldsymbol{a}\|_{p} = 0 \iff \sum_{n \in \mathbb{N}} |a_{n}|^{p} = 0 \qquad \underset{\text{non-negative series}}{\Leftrightarrow} |a_{n}|^{p} = 0 \quad \forall n \in \mathbb{N}$$

$$\Leftrightarrow a_n = 0 \ \forall n \in \mathbb{N} \ \Leftrightarrow \ \boldsymbol{a} = \boldsymbol{0}.$$

Similarly, for $p = \infty$: By definition $||a||_{\infty} \ge 0$.

$$\|\boldsymbol{a}\|_{\infty} = 0 \iff \sup_{n \in \mathbb{N}} |a_n| = 0 \qquad \underset{\text{non-negative}}{\Leftrightarrow} |a_n| = 0 \quad \forall n \in \mathbb{N}$$

 $\Leftrightarrow a_n = 0 \ \forall n \in \mathbb{N} \ \Leftrightarrow \ \boldsymbol{a} = \boldsymbol{0}.$

We thus conclude that $\|\cdot\|_p$ is indeed a norm on $\ell_p(\mathbb{N})$ for any $1 \le p \le \infty$.

(iii) We start by noticing that for any $a, b \in \ell_p(\mathbb{N})$ we have that for any $j \in \mathbb{N}$

$$|a_j - b_j| \leq \left(\sum_{j \in \mathbb{N}} |a_j - b_j|^p\right)^{\frac{1}{p}} = ||\boldsymbol{a} - \boldsymbol{b}||_p$$

when $1 \le p < \infty$ and

$$|a_j - b_j| \leq \sup_{j \in \mathbb{N}} |a_j - b_j| = ||\boldsymbol{a} - \boldsymbol{b}||_{\infty}$$

when $p = \infty$. In other words, for any $1 \le p \le \infty$ and any $j \in \mathbb{N}$ we have that

$$|a_j - b_j| \leq \|\boldsymbol{a} - \boldsymbol{b}\|_p$$

Since the above holds for any $j \in \mathbb{N}$ we find that

$$\sup_{j\in\mathbb{N}} \left| a_j - b_j \right| \leq \|\boldsymbol{a} - \boldsymbol{b}\|_p.$$

Given a Cauchy sequence in $\ell_p(\mathbb{N})$, $\{a_n\}_{n \in \mathbb{N}}$ we have that for any $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that if $n, m \ge n_0$

$$\|\boldsymbol{a}_n - \boldsymbol{a}_m\|_p < \varepsilon.$$

Consequently, for any $n, m \ge n_0$

$$\sup_{j\in\mathbb{N}} |a_{n,j}-a_{m,j}| \leq ||\boldsymbol{a}_n-\boldsymbol{a}_m||_p < \varepsilon,$$

which shows that $\{a_{n,j}\}_{n \in \mathbb{N}}$ is Cauchy for any $j \in \mathbb{N}$ (in fact it is Cauchy *uniformly in j*!). Since this sequence is Cauchy in a complete space (F) we know that there exists an element $a_j \in F$ such that

$$a_{n,j} \xrightarrow[n \to \infty]{} a_j.$$

(iv) We need to divide our consideration to two cases: $1 \le p < \infty$ and $p = \infty$. When $1 \le p < \infty$ we have that for any $N \in \mathbb{N}$

$$\sum_{j=1}^{N} |a_{j}|^{p} = \lim_{n \to \infty} \sum_{j=1}^{N} |a_{n,j}|^{p} = \liminf_{n \to \infty} \sum_{j=1}^{N} |a_{n,j}|^{p} \le \liminf_{n \to \infty} ||a_{n}||_{p}^{p}.$$

Since $\{a_n\}_{n \in \mathbb{N}}$ is Cauchy in $\ell_p(\mathbb{N})$ it must be bounded, i.e. $\sup_{n \in \mathbb{N}} ||a_n||_p < \infty$ and the above implies that

$$\sum_{j=1}^{N} |a_j|^p \leq \sup_{n \in \mathbb{N}} \|\boldsymbol{a}_n\|_p^p < \infty$$

for any $N \in \mathbb{N}$. As the right hand side is independent of *N* we can take it to infinity and get that

$$\|\boldsymbol{a}\|_{p} = \left(\sum_{j \in \mathbb{N}} |a_{j}|^{p}\right)^{\frac{1}{p}} \leq \sup_{n \in \mathbb{N}} \|\boldsymbol{a}_{n}\|_{p} < \infty$$

showing that \boldsymbol{a} is in $\ell_p(\mathbb{N})$.

The case $p = \infty$ is similar but more straightforward: For any $j \in \mathbb{N}$

$$|a_j| = \lim_{n \to \infty} |a_{n,j}| = \liminf_{n \to \infty} |a_{n,j}| \le \liminf_{n \to \infty} ||a_n||_{\infty}.$$

Consequently, as the right hand side is independent of *j*,

$$\|\boldsymbol{a}\|_{\infty} = \sup_{j \in \mathbb{N}} |a_j| \le \liminf_{n \to \infty} \|\boldsymbol{a}_n\|_{\infty} \le \sup_{n \to \infty} \|\boldsymbol{a}_n\|_{\infty} < \infty$$

which shows that $a \in \ell_{\infty}(\mathbb{N})$.

Next we turn our attention to the requested inequality. Let $N \in \mathbb{N}$ be given and consider $p \in [1,\infty)$. Similarly to the proof above we find that

$$\sum_{j=1}^{N} |a_j - a_{n,j}|^p = \lim_{m \to \infty} \sum_{j=1}^{N} |a_{m,j} - a_{n,j}|^p$$
$$= \liminf_{m \to \infty} \sum_{j=1}^{N} |a_{m,j} - a_{n,j}|^p \le \liminf_{n \to \infty} ||a_m - a_n||_p^p.$$

When $p = \infty$ we have that

$$\sup_{j \le N} |a_j - a_{n,j}| = \sup_{j \le N} \lim_{m \to \infty} |a_{m,j} - a_{n,j}| = \sup_{j \le N} \liminf_{m \to \infty} |a_{m,j} - a_{n,j}|$$
$$\leq \sup_{j \le N} \liminf_{n \to \infty} ||a_m - a_n||_{\infty} = \liminf_{n \to \infty} ||a_m - a_n||_{\infty}.$$

We claim that these inequalities imply the convergence of $\{a_n\}_{n \in \mathbb{N}}$ to a. Indeed, given $\varepsilon > 0$ we can find $n_0 \in \mathbb{N}$ such that for any $n, m \ge n_0$ we have that

$$\|\boldsymbol{a}_m-\boldsymbol{a}_m\|_p<\varepsilon.$$

For any $n \ge n_0$ we have that

$$\sum_{j=1}^{N} \left| a_j - a_{n,j} \right|^p < \varepsilon^p$$

when $1 \le p < \infty$ and

$$\sup_{j\leq N} \left| a_j - a_{n,j} \right| < \varepsilon$$

when $p = \infty$. As the right hand side in both cases is independent of *N* we conclude that for all $n \ge n_0$

$$\|\boldsymbol{a}-\boldsymbol{a}_n\|_p < \varepsilon,$$

which shows the convergence. As we have shown that any Cauchy sequence in $\ell_p(\mathbb{N})$ has a limit in $\ell_p(\mathbb{N})$ we conclude that $\ell_p(\mathbb{N})$ is indeed a Banach space.

- **Solution to Question 10**. (i) This follows from arithmetic of continuous functions since the zero function is continuous, addition of continuous functions is a continuous function, and scalar multiplication of continuous functions is a continuous function.
 - (ii) We have that
 - $||f||_{\infty} \ge 0$ by definition and $||f||_{\infty} = 0$ if and only if $\max_{x \in [a,b]} |f(x)| = 0$. Since |f(x)| is non-negative we conclude that the above holds if and only if f(x) = 0 for all $x \in [a, b]$, or equivalently if $f \equiv 0$.
 - For any scalar α we have that

$$\left\|\alpha f\right\|_{\infty} = \max_{x \in [a,b]} \left|\alpha f(x)\right| = |\alpha| \left(\max_{x \in [a,b]} \left|f(x)\right|\right) = |\alpha| \left\|f\right\|_{\infty}$$

• For any $f, g \in C[a, b]$ we have that since for any $x \in [a, b]$

$$|f(x) + g(x)| \le |f(x)| + |g(x)| \le ||f||_{\infty} + ||g||_{\infty}$$

we have that

$$||f+g||_{\infty} = \max_{x \in [a,b]} |f(x)+g(x)| \le ||f||_{\infty} + ||g||_{\infty}.$$

From the above we conclude that $\|\cdot\|_{\infty}$ is indeed a norm on C[a, b]. (iii) Let $\{f_n\}_{n \in \mathbb{N}}$ be a Cauchy sequence in $(C[a, b], \|\cdot\|_{\infty})$. Since for any $x \in [a, b]$

$$\left|f_n(x) - f_m(x)\right| \le \left\|f_n - f_m\right\|_{c}$$

we conclude (just like in the case of $\ell_{\infty}(\mathbb{N})$) that $\{f_n(x)\}_{n \in \mathbb{N}}$ is Cauchy in \mathbb{F} . Since \mathbb{F} is complete we find that for any $x \in [a, b]$ there exists f(x) in \mathbb{F} such that $f_n(x) \xrightarrow[n \to \infty]{} f(x)$. Moreover,

$$\begin{split} \left| f(x) - f_n(x) \right| &= \lim_{m \to \infty} \left| f_m(x) - f_n(x) \right| = \liminf_{m \to \infty} \left| f_m(x) - f_n(x) \right| \\ &\leq \lim_{m \to \infty} \left\| f_m - f_n \right\|_{\infty}. \end{split}$$

This implies that

$$\|f - f_n\|_{\infty} \le \lim_{m \to \infty} \|f_m - f_n\|_{\infty}$$

and consequently that $\{f_n\}_{n\in\mathbb{N}}$ converges in norm to f. We are only left with showing that f is in C[a, b] to conclude that the space is complete and as such Banach. Since $\{f_n\}_{n\in\mathbb{N}}$ are all continuous and converge uniformly (that is what the $\|\cdot\|_{\infty}$ is) to f, a theorem from Analysis I guarantees us that f is also continuous, which is what we wanted to show.