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Solution to Home Assignment 1

Solution to Question 1. We start by assuming that the metric d is induced
by a norm. In that case for any x, y,z € X

d(x,9) = [x=y] = e+ 2= (y+2)| =d(x+2.y+2),
and any x, y € £ and scalar a
d(ax,ay)=|ax—ay| =lal|x-y| =lald(x,y).
Conversely, we assume that the two properties are valid and define
lxll = d(x,0).
We find that:

e x|l =0 for all x € & and | x|| = 0 if and only if d (x,0) = 0 which
holds if and only if x = 0.
» Forany x € 2" and a scalar @ we have that

laxll =d(ax,0) =d(ax,a0) =|ald(x,0) = |al || x]|.
e For any x, y,z€ 2 we have that
|x+y|=d(x+y0)=d(x+y—y0-y)=d(x,-y)
<d(x,00+d(-y,0) = lxll+ |-y = lxll +1-11 | ¥ = lxll + ]| ¥ -

As all three criteria for being a norm are satisfied, we conclude that ||| is
indeed a norm.

Solution to Question 2. Let {x,},y be a Cauchy sequence. There exists
np € N such that for any n, m = ny we have that

d(x,,x,) <1.
Consequently, for any xp € X and any n = nyg
d (xn, X0) < d (Xny, X0) + d (Xn, Xny) < d (Xny, X0) + 1.
We conclude that
d (xp, x0) <max{d (x1,%o),...,d (Xny—1,X0), d (Xny Xo) + 1}

As the right hand side is bounded uniformly in n € N we conclude the
desired boundedness.

Solution to Question 3. We start by assuming that A is dense in X. This
means that A = X. Given x € X we have that x € A and as such we can
find a sequence of elements from A, {x,},cn, that converges to x.

Conversely, assuming that for any x € X we can a sequence of elements
from A, {x,},en, that converges to x we see that any given x € X is a limit
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point of A, or x € A. Since x was arbitrary we find that A = X which shows
the density.

Solution to Question 4. Denote by A = {x,},,en. If every x € X is a limit
of a subsequence of {x,},c\ then every x € X is a limit of a sequence of
elements from A. Consequently, according to the previous question, A is
dense in X. Since A is countable we conclude that X is separable.

The converse is a bit more delicate. Assume that A is a countable dense
set. Since A is countable we can write is as a sequence A = {x;},en. AcC-
cording to our previous question we know that every x € X is a limit
point of A - but this doesn’t immediately mean that the sequence we
extract from A is a subsequence of {x,},cn in its current ordering! Let
{a j}j o © A be the sequence that converges to x. By definition, for any
Jj€Nwe canfind nj € Nsuch that a; = x,;. What we need to do is extract

a subsequence of {a]-}jeN, {ajk}keN, such that {nfk}kel\l is increasing. This

way {xn i }k N will converge to x as a subsequence of {a j}j o and will be
€

a subsequence of the original {x,},cn.

We start by choosing nj, = n;. As {n f}j o Must go to infinity as j goes to
infinity we can find j> € N such that n;, > n;. We continue inductively:
nj, is chosen so that nj, > nj, , andsince {n j}j <« Must go to infinity as j
goes to infinity we can find ji.; € N'such that nj,,, > n;, . This concludes
the proof.

Solution to Question 5. Assume that A is dense in X and let B be such
that A c X. For any x € X we can find a sequence {a,},c\ < A that con-
verges to x. Since A c B we conclude that for any x € X we can find a
sequence {ay},en € B that converges to x. This implies that B is dense,
which is the desired result.

Solution to Question 6. To show that .Z is a subspace we need to show
that it is not empty and closed under addition and scalar multiplication.
Since L < J and /. is not empty, we find that ./ is not empty.

Next, let x, y € M. We can find sequences of elements in ./, {x,},en and
{¥n},cnp that converge to x and y respectively. Since ./ is a subspace
we have that the sequence {x, + y,} sen 18 in . and since it converges to
x+ y we conclude that x+ y € /.

Similarly, for any x € .Z and any scalar a we find a sequence of elements
in A, {xn},en, that converges to x. As . is a subspace the sequence
{ax,},en is in A and since it converges to ax we conclude that ax € M.
The first part of the question is thus proved.

To show the second part we notice that the fact that spanM is a closed
subspace follows immediately from the above proof. We are only left to
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show that it is the smallest closed subspace that contains M. Indeed,
let /¥ be a closed subspace that contains M. By definition this means
that spanM < /' (since spanM is the smallest subspace that contains M).
Since ./ is also a closed set we find that

spanM < N
which concludes the proof.

Solution to Question 7. In order to show that a norm is not induced from
an inner product we will show that the parallelogram identity is not satis-
fied for some vectors. Consider the standard basis (e f)jzl,...,n c " where
e; is the vector whose entries are zero besides the entry in the j—th posi-

tion, which is 1. We have that if k 4 then
1
lej—exl, =llej+ex],=a+17.

Since || ej || p= ekl p=1wesee that the parallelogram identity i satisfied
if and only if

ST
ST

2
This holds if and only if p = 2.

+2P =2+2.

Solution to Question 8. Similar to the question before, in order to show
that a norm is not induced from an inner product we will show that the
parallelogram identity is not satisfied for some vectors. The idea is the
same - find two vectors with “disjoint support”. Indeed, let A and B be
measurable sets in E with a the same finite measure u. Define

f:XA) 8= XB-

We have that

||f—8||5=fE|XA(X)—XB(X)|de=fE(XA(x)”+xB(x)”)dx

:L(XA(X) +XB(X)) dx = 2”

Similarly || f + g||5 =2u. Since ||f||p = ||g||p = ,u% we see that the parallel-
ogram identity i satisfied if and only if

(Z,u)% + (Zu)% = 2,u% +2y%.

This holds if and only if p = 2 (it is, in fact, the same identity as in the
previous question).
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Solution to Question 9. (i) We start with 1 < p <oco. For any N € N and

(ii)

any a, b € ¢, (N) we have that

N N . N N
X‘,lan"'bnwS Z(lan|+|bn|)p52p_ Zlan|p+Z|bn|p
n=1 n=1 n=1 n=1

<277 (lal” +11bII").
As this holds for every N € N and the right hand side is independent
of N, taking N to infinity shows that

Z |5ln‘i'bnlpszp_1 Z lan|P + Z |bylP | < o0
neN neN neN

which proves that a + b € £, (N). Similarly, for any a € £,,(N) and a
scalar a we have that

N N

Y laanl? =lal” ) lanl? — |al? ) Ianlp:|a|p||a||z<oo

N—oo

n=1 n=1 neN
which implies that aa € £, (N) and |aall = |al [ al,.
The case p = oo is more straightforward to show since

la+ bllo, = supl|ay + by| < sup (lay| +|by,]) < sup|ay,|+sup| byl

neN neN neN neN
= ll@lloo + 1Bl oo <00

and for any scalar a

laalloo =suplaa,| = |alsupla,l = lalllalls < oo.
neN neN

To show that | -]l , is a norm we notice that in the previous sub-question
we have shown the scaling property for the proposed norm, as well
as the triangle inequality for the case where p = co. The triangle in-
equality for the case where 1 < p < oo is nothing more than the dis-
crete Minkowski’s inequality. Consequently, in order to show that
-l , is indeed a norm we only need to show that it has the positivity
property.
We start with the case 1 < p < oo: By definition lal, = 0.

lall,=0 < ) la,’=0 = la,P =0 VneN

neN .
non-negative

series
< a,=0VneN & a=0.
Similarly, for p = co: By definition || all», = 0.
laleo=0 < supla,|l=0 < la,| =0 VneN

neN .
non-negative

sequence



< ap=0VneN & a=0.
We thus conclude that |-||, is indeed a norm on ¢, (N) for any 1 <
p < oo.
(iii) We start by noticing that for any a, b € £, (N) we have that for any
JEN
1
P
-2 (a0’ <=1,
JeN
when 1 < p <ooand

|a]-—bj| SSup|aj—bj| =lla- bl
JjeN

when p = oco. In other words, for any 1 < p < oo and any j € N we
have that

|aj —bj| < IIa—bllp.

Since the above holds for any j € N we find that

sup|aj—bj|<lla-bl,.

JjeN
Given a Cauchy sequence in £, (N), {ay} e we have that for any € >
0 there exists ng € N such that if n, m = ng

lan—amll, <e.

Consequently, for any n, m = ny

sup |an,j— am,j| < @ — aml, <e,

JjeN
which shows that {a, j} ., is Cauchy for any j € N (in fact it is Cauchy
uniformly in j!). Since this sequence is Cauchy in a complete space
(F) we know that there exists an element a; € F such that

anj — aj.

n—oo

)

(iv) We need to divide our consideration to two cases: 1 < p < oo and
p =o0. When 1 < p < co we have that for any N e N

n—oo

N N N
szllajl” = ,}iglgoj;|an,j|” :1iminfj;|a,,,j|” <liminf|la,|}.

Since {a,} ,en is Cauchy in £, (N) it must be bounded, i.e. sup,,cy | @ |l p <
oo and the above implies that

N
Z |aj|p <sup IIanllz <00
j=1 neN



for any N € N. As the right hand side is independent of N we can
take it to infinity and get that

1
p
lal,=|) |a;|”| =supllasl,<oco
jeN neN
showing that a is in £, (N).
The case p = oo is similar but more straightforward: For any j € N
|aj| = lim [y ;| =liminf|a,, ;| <liminflla,ll.

Consequently, as the right hand side is independent of j,

lalleo = sup |a;| <liminfllay o < sup a,lle < oo

jeN oo n—00

which shows that a € £, (N).
Next we turn our attention to the requested inequality. Let N € N be
given and consider p € [1,00). Similarly to the proof above we find
that

m—o0 &=

N N
> laj—an;|” = lim 3 |ap,;— an;|”
j=1 j=1

N
=liminf am i — ay |’ <liminf|la,, — a,|”.
mm};l m,j = an,j|” <lminfllan - axll,

When p = oo we have that
sup|a;j — an, ;| =sup lim |am,j— an ;| = supliminf|an, ; — an,j
jsN jsN M0 jsN M—oo
<supliminf|a,, — a;| =liminf|la,, — a;| -
We claim that these inequalities imply the convergence of {a,,} ,cn tO
a. Indeed, given € > 0 we can find ny € N such that for any n, m = ng
we have that
l@m—amll, <e.
For any n = ny we have that
N

> laj—an;|” <e”
j=1

when 1 < p < oo and

sup|a;—an, | <e
jsN

when p = co. As the right hand side in both cases is independent of
N we conclude that for all n = ny

la—anl,<e,
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which shows the convergence. As we have shown that any Cauchy
sequence in £, (N) has a limit in £, (N) we conclude that £, (N) is
indeed a Banach space.

Solution to Question 10. (i) This follows from arithmetic of continuous
functions since the zero function is continuous, addition of contin-
uous functions is a continuous function, and scalar multiplication
of continuous functions is a continuous function.

(i) We have that
. ||f||OO > 0 by definition and ||f||OO = 0ifand only if maXye(q4 ) |f(x)| =
0. Since | f(x) | is non-negative we conclude that the above holds
ifand only if f(x) =0 for all x € [a, b], or equivalently if f = 0.
« For any scalar @ we have that

Jaf oo = max [af (o] = ai | max |70l = 1ai ] f]...
« For any f, g € Cla, b] we have that since for any x € [a, b]

|[f)+ g = [f]+]80] = [ fllo+ &l

we have that
1+ 8l = max |70+ 00| < /oo * 8

From the above we conclude that |||, is indeed a norm on C[a, b].
(i) Let {f,},cn be a Cauchy sequence in (Cla, b], ||-lo). Since for any
X € [a, b]
| ) = fin ()| < [ fr = fin o
we conclude (justlike in the case of £, (N)) that { f,,(x)} ., is Cauchy
in F. Since F is complete we find that for any x € [a, b] there exists
f(x) inF such that f,(x) el f(x). Moreover,

|f ()= fa@)] = Hm_|fin(x) = fu ()| = Kminf| £ (x) = f ()]
< lim || fin— fu o -

m-—oo

This implies that
|f = Falloo = Jim [ fon = falloo

and consequently that { fn}ne,\I converges in norm to f. We are only
left with showing that f is in Cla, b] to conclude that the space is
complete and as such Banach. Since {f,} ., are all continuous and
converge uniformly (that is what the ||-||, is) to f, a theorem from
Analysis I guarantees us that f is also continuous, which is what we
wanted to show.



