Solution to Home Assignment 1

Solution to Question 1. We start by assuming that the metric d is induced by a norm. In that case for any $x, y, z \in \mathscr{X}$

$$
d(x, y)=\|x-y\|=\|(x+z)-(y+z)\|=d(x+z, y+z),
$$

and any $x, y \in \mathscr{X}$ and scalar α

$$
d(\alpha x, \alpha y)=\|\alpha x-\alpha y\|=|\alpha|\|x-y\|=|\alpha| d(x, y) .
$$

Conversely, we assume that the two properties are valid and define

$$
\|x\|=d(x, 0) .
$$

We find that:

- $\|x\| \geq 0$ for all $x \in \mathscr{X}$ and $\|x\|=0$ if and only if $d(x, 0)=0$ which holds if and only if $x=0$.
- For any $x \in \mathscr{X}$ and a scalar α we have that

$$
\|\alpha x\|=d(\alpha x, 0)=d(\alpha x, \alpha 0)=|\alpha| d(x, 0)=|\alpha|\|x\| .
$$

- For any $x, y, z \in \mathscr{X}$ we have that

$$
\begin{gathered}
\|x+y\|=d(x+y, 0)=d(x+y-y, 0-y)=d(x,-y) \\
\leq d(x, 0)+d(-y, 0)=\|x\|+\|-y\|=\|x\|+|-1|\|y\|=\|x\|+\|y\| .
\end{gathered}
$$

As all three criteria for being a norm are satisfied, we conclude that $\|\cdot\|$ is indeed a norm.

Solution to Question 2. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a Cauchy sequence. There exists $n_{0} \in \mathbb{N}$ such that for any $n, m \geq n_{0}$ we have that

$$
d\left(x_{n}, x_{m}\right)<1
$$

Consequently, for any $x_{0} \in X$ and any $n \geq n_{0}$

$$
d\left(x_{n}, x_{0}\right) \leq d\left(x_{n_{0}}, x_{0}\right)+d\left(x_{n}, x_{n_{0}}\right)<d\left(x_{n_{0}}, x_{0}\right)+1 .
$$

We conclude that

$$
d\left(x_{n}, x_{0}\right) \leq \max \left\{d\left(x_{1}, x_{0}\right), \ldots, d\left(x_{n_{0}-1}, x_{0}\right), d\left(x_{n_{0}}, x_{0}\right)+1\right\} .
$$

As the right hand side is bounded uniformly in $n \in \mathbb{N}$ we conclude the desired boundedness.

Solution to Question 3. We start by assuming that A is dense in X. This means that $\bar{A}=X$. Given $x \in X$ we have that $x \in \bar{A}$ and as such we can find a sequence of elements from $A,\left\{x_{n}\right\}_{n \in \mathbb{N}}$, that converges to x. Conversely, assuming that for any $x \in X$ we can a sequence of elements from $A,\left\{x_{n}\right\}_{n \in \mathbb{N}}$, that converges to x we see that any given $x \in X$ is a limit
point of A, or $x \in \bar{A}$. Since x was arbitrary we find that $\bar{A}=X$ which shows the density.
Solution to Question 4. Denote by $A=\left\{x_{n}\right\}_{n \in \mathbb{N}}$. If every $x \in X$ is a limit of a subsequence of $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ then every $x \in X$ is a limit of a sequence of elements from A. Consequently, according to the previous question, A is dense in X. Since A is countable we conclude that X is separable.
The converse is a bit more delicate. Assume that A is a countable dense set. Since A is countable we can write is as a sequence $A=\left\{x_{n}\right\}_{n \in \mathbb{N}}$. According to our previous question we know that every $x \in X$ is a limit point of A - but this doesn't immediately mean that the sequence we extract from A is a subsequence of $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ in its current ordering! Let $\left\{a_{j}\right\}_{j \in \mathbb{N}} \subset A$ be the sequence that converges to x. By definition, for any $j \in \mathbb{N}$ we can find $n_{j} \in \mathbb{N}$ such that $a_{j}=x_{n_{j}}$. What we need to do is extract a subsequence of $\left\{a_{j}\right\}_{j \in \mathbb{N}},\left\{a_{j_{k}}\right\}_{k \in \mathbb{N}}$, such that $\left\{n_{j_{k}}\right\}_{k \in \mathbb{N}}$ is increasing. This way $\left\{x_{n_{j_{k}}}\right\}_{k \in \mathbb{N}}$ will converge to x as a subsequence of $\left\{a_{j}\right\}_{j \in \mathbb{N}}$ and will be a subsequence of the original $\left\{x_{n}\right\}_{n \in \mathbb{N}}$.
We start by choosing $n_{j_{1}}=n_{1}$. As $\left\{n_{j}\right\}_{j \in \mathbb{N}}$ must go to infinity as j goes to infinity we can find $j_{2} \in \mathbb{N}$ such that $n_{j_{2}}>n_{1}$. We continue inductively: $n_{j_{k}}$ is chosen so that $n_{j_{k}}>n_{j_{k-1}}$ and since $\left\{n_{j}\right\}_{j \in \mathbb{N}}$ must go to infinity as j goes to infinity we can find $j_{k+1} \in \mathbb{N}$ such that $n_{j_{k+1}}>n_{j_{k}}$. This concludes the proof.

Solution to Question 5. Assume that A is dense in X and let B be such that $A \subset X$. For any $x \in X$ we can find a sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}} \subset A$ that converges to x. Since $A \subset B$ we conclude that for any $x \in X$ we can find a sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}} \subset B$ that converges to x. This implies that B is dense, which is the desired result.

Solution to Question 6. To show that $\overline{\mathscr{M}}$ is a subspace we need to show that it is not empty and closed under addition and scalar multiplication. Since $\mathscr{M} \subseteq \overline{\mathscr{M}}$ and \mathscr{M} is not empty, we find that $\overline{\mathscr{M}}$ is not empty.
Next, let $x, y \in \overline{\mathscr{M}}$. We can find sequences of elements in $\mathscr{M},\left\{x_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{y_{n}\right\}_{n \in \mathbb{N}}$, that converge to x and y respectively. Since \mathscr{M} is a subspace we have that the sequence $\left\{x_{n}+y_{n}\right\}_{n \in \mathbb{N}}$ is in \mathscr{M} and since it converges to $x+y$ we conclude that $x+y \in \overline{\mathscr{M}}$.
Similarly, for any $x \in \overline{\mathscr{M}}$ and any scalar α we find a sequence of elements in $\mathscr{M},\left\{x_{n}\right\}_{n \in \mathbb{N}}$, that converges to x. As \mathscr{M} is a subspace the sequence $\left\{\alpha x_{n}\right\}_{n \in \mathbb{N}}$ is in \mathscr{M} and since it converges to αx we conclude that $\alpha x \in \overline{\mathscr{M}}$. The first part of the question is thus proved.
To show the second part we notice that the fact that $\overline{\operatorname{span} M}$ is a closed subspace follows immediately from the above proof. We are only left to
show that it is the smallest closed subspace that contains M. Indeed, let \mathcal{N} be a closed subspace that contains M. By definition this means that span $M \subseteq \mathcal{N}$ (since span M is the smallest subspace that contains M). Since \mathcal{N} is also a closed set we find that

$$
\overline{\operatorname{span} M} \subseteq \mathscr{N}
$$

which concludes the proof.
Solution to Question 7. In order to show that a norm is not induced from an inner product we will show that the parallelogram identity is not satisfied for some vectors. Consider the standard basis $\left(\boldsymbol{e}_{j}\right)_{j=1, \ldots, n} \subset \mathbb{F}^{n}$ where \boldsymbol{e}_{j} is the vector whose entries are zero besides the entry in the j-th position, which is 1 . We have that if $k \rho$ then

$$
\left\|\boldsymbol{e}_{j}-\boldsymbol{e}_{\boldsymbol{k}}\right\|_{p}=\left\|\boldsymbol{e}_{j}+\boldsymbol{e}_{\boldsymbol{k}}\right\|_{p}=(1+1)^{\frac{1}{p}}
$$

Since $\left\|\boldsymbol{e}_{j}\right\|_{p}=\left\|\boldsymbol{e}_{\boldsymbol{k}}\right\|_{p}=1$ we see that the parallelogram identity i satisfied if and only if

$$
2^{\frac{2}{p}}+2^{\frac{2}{p}}=2+2 .
$$

This holds if and only if $p=2$.
Solution to Question 8. Similar to the question before, in order to show that a norm is not induced from an inner product we will show that the parallelogram identity is not satisfied for some vectors. The idea is the same - find two vectors with "disjoint support". Indeed, let A and B be measurable sets in E with a the same finite measure μ. Define

$$
f=\chi_{A}, \quad g=\chi_{B} .
$$

We have that

$$
\begin{gathered}
\|f-g\|_{p}^{p}=\int_{E}\left|\chi_{A}(x)-\chi_{B}(x)\right|^{p} d x=\int_{E}\left(\chi_{A}(x)^{p}+\chi_{B}(x)^{p}\right) d x \\
=\int_{E}\left(\chi_{A}(x)+\chi_{B}(x)\right) d x=2 \mu .
\end{gathered}
$$

Similarly $\|f+g\|_{p}^{p}=2 \mu$. Since $\|f\|_{p}=\|g\|_{p}=\mu^{\frac{1}{p}}$ we see that the parallelogram identity i satisfied if and only if

$$
(2 \mu)^{\frac{2}{p}}+(2 \mu)^{\frac{2}{p}}=2 \mu^{\frac{2}{p}}+2 \mu^{\frac{2}{p}} .
$$

This holds if and only if $p=2$ (it is, in fact, the same identity as in the previous question).

Solution to Question 9. (i) We start with $1 \leq p<\infty$. For any $N \in \mathbb{N}$ and any $\boldsymbol{a}, \boldsymbol{b} \in \ell_{p}(\mathbb{N})$ we have that

$$
\begin{gathered}
\sum_{n=1}^{N}\left|a_{n}+b_{n}\right|^{p} \leq \sum_{n=1}^{N}\left(\left|a_{n}\right|+\left|b_{n}\right|\right)^{p} \leq 2^{p-1}\left(\sum_{n=1}^{N}\left|a_{n}\right|^{p}+\sum_{n=1}^{N}\left|b_{n}\right|^{p}\right) \\
\leq 2^{p-1}\left(\|\boldsymbol{a}\|^{p}+\|\boldsymbol{b}\|^{p}\right) .
\end{gathered}
$$

As this holds for every $N \in \mathbb{N}$ and the right hand side is independent of N, taking N to infinity shows that

$$
\sum_{n \in \mathbb{N}}\left|a_{n}+b_{n}\right|^{p} \leq 2^{p-1}\left(\sum_{n \in \mathbb{N}}\left|a_{n}\right|^{p}+\sum_{n \in \mathbb{N}}\left|b_{n}\right|^{p}\right)<\infty
$$

which proves that $\boldsymbol{a}+\boldsymbol{b} \in \ell_{p}(\mathbb{N})$. Similarly, for any $\boldsymbol{a} \in \ell_{p}(\mathbb{N})$ and a scalar α we have that

$$
\sum_{n=1}^{N}\left|\alpha a_{n}\right|^{p}=|\alpha|^{p} \sum_{n=1}^{N}\left|a_{n}\right|^{p} \underset{N \rightarrow \infty}{\longrightarrow}|\alpha|^{p} \sum_{n \in \mathbb{N}}\left|a_{n}\right|^{p}=|\alpha|^{p}\|\boldsymbol{a}\|_{p}^{p}<\infty
$$

which implies that $\alpha \boldsymbol{a} \in \ell_{p}(\mathbb{N})$ and $\|\alpha \boldsymbol{a}\|=|\alpha|\|\boldsymbol{a}\|_{p}$.
The case $p=\infty$ is more straightforward to show since

$$
\begin{gathered}
\|\boldsymbol{a}+\boldsymbol{b}\|_{\infty}=\sup _{n \in \mathbb{N}}\left|a_{n}+b_{n}\right| \leq \sup _{n \in \mathbb{N}}\left(\left|a_{n}\right|+\left|b_{n}\right|\right) \leq \sup _{n \in \mathbb{N}}\left|a_{n}\right|+\sup _{n \in \mathbb{N}}\left|b_{n}\right| \\
=\|\boldsymbol{a}\|_{\infty}+\|\boldsymbol{b}\|_{\infty}<\infty
\end{gathered}
$$

and for any scalar α

$$
\|\alpha \boldsymbol{a}\|_{\infty}=\sup _{n \in \mathbb{N}}\left|\alpha a_{n}\right|=|\alpha| \sup _{n \in \mathbb{N}}\left|a_{n}\right|=|\alpha|\|\boldsymbol{a}\|_{\infty}<\infty .
$$

(ii) To show that $\|\cdot\|_{p}$ is a norm we notice that in the previous sub-question we have shown the scaling property for the proposed norm, as well as the triangle inequality for the case where $p=\infty$. The triangle inequality for the case where $1 \leq p<\infty$ is nothing more than the discrete Minkowski's inequality. Consequently, in order to show that $\|\cdot\|_{p}$ is indeed a norm we only need to show that it has the positivity property.
We start with the case $1 \leq p<\infty$: By definition $\|\boldsymbol{a}\|_{p} \geq 0$.

$$
\begin{gathered}
\|\boldsymbol{a}\|_{p}=0 \Leftrightarrow \sum_{n \in \mathbb{N}}\left|a_{n}\right|^{p}=0 \underbrace{\Leftrightarrow}_{\begin{array}{c}
\text { non-negative } \\
\text { series }
\end{array}}\left|a_{n}\right|^{p}=0 \forall n \in \mathbb{N} \\
\Leftrightarrow a_{n}=0 \forall n \in \mathbb{N} \Leftrightarrow \boldsymbol{a}=\mathbf{0} .
\end{gathered}
$$

Similarly, for $p=\infty$: By definition $\|\boldsymbol{a}\|_{\infty} \geq 0$.

$$
\|\boldsymbol{a}\|_{\infty}=0 \Leftrightarrow \sup _{n \in \mathbb{N}}\left|a_{n}\right|=0 \underbrace{\Leftrightarrow}_{\begin{array}{c}
\text { non-negative } \\
\text { sequence }
\end{array}}\left|a_{n}\right|=0 \forall n \in \mathbb{N}
$$

$$
\Leftrightarrow a_{n}=0 \forall n \in \mathbb{N} \Leftrightarrow \boldsymbol{a}=\mathbf{0} .
$$

We thus conclude that $\|\cdot\|_{p}$ is indeed a norm on $\ell_{p}(\mathbb{N})$ for any $1 \leq$ $p \leq \infty$.
(iii) We start by noticing that for any $\boldsymbol{a}, \boldsymbol{b} \in \ell_{p}(\mathbb{N})$ we have that for any $j \in \mathbb{N}$

$$
\left|a_{j}-b_{j}\right| \leq\left(\sum_{j \in \mathbb{N}}\left|a_{j}-b_{j}\right|^{p}\right)^{\frac{1}{p}}=\|\boldsymbol{a}-\boldsymbol{b}\|_{p}
$$

when $1 \leq p<\infty$ and

$$
\left|a_{j}-b_{j}\right| \leq \sup _{j \in \mathbb{N}}\left|a_{j}-b_{j}\right|=\|\boldsymbol{a}-\boldsymbol{b}\|_{\infty}
$$

when $p=\infty$. In other words, for any $1 \leq p \leq \infty$ and any $j \in \mathbb{N}$ we have that

$$
\left|a_{j}-b_{j}\right| \leq\|\boldsymbol{a}-\boldsymbol{b}\|_{p} .
$$

Since the above holds for any $j \in \mathbb{N}$ we find that

$$
\sup _{j \in \mathbb{N}}\left|a_{j}-b_{j}\right| \leq\|\boldsymbol{a}-\boldsymbol{b}\|_{p} .
$$

Given a Cauchy sequence in $\ell_{p}(\mathbb{N}),\left\{\boldsymbol{a}_{n}\right\}_{n \in \mathbb{N}}$ we have that for any $\varepsilon>$ 0 there exists $n_{0} \in \mathbb{N}$ such that if $n, m \geq n_{0}$

$$
\left\|\boldsymbol{a}_{n}-\boldsymbol{a}_{m}\right\|_{p}<\varepsilon
$$

Consequently, for any $n, m \geq n_{0}$

$$
\sup _{j \in \mathbb{N}}\left|a_{n, j}-a_{m, j}\right| \leq\left\|\boldsymbol{a}_{n}-\boldsymbol{a}_{m}\right\|_{p}<\varepsilon,
$$

which shows that $\left\{a_{n, j}\right\}_{n \in \mathbb{N}}$ is Cauchy for any $j \in \mathbb{N}$ (in fact it is Cauchy uniformly in $j!$). Since this sequence is Cauchy in a complete space (\mathbb{F}) we know that there exists an element $a_{j} \in \mathbb{F}$ such that

$$
a_{n, j} \underset{n \rightarrow \infty}{\longrightarrow} a_{j}
$$

(iv) We need to divide our consideration to two cases: $1 \leq p<\infty$ and $p=\infty$. When $1 \leq p<\infty$ we have that for any $N \in \mathbb{N}$

$$
\sum_{j=1}^{N}\left|a_{j}\right|^{p}=\lim _{n \rightarrow \infty} \sum_{j=1}^{N}\left|a_{n, j}\right|^{p}=\liminf _{n \rightarrow \infty} \sum_{j=1}^{N}\left|a_{n, j}\right|^{p} \leq \liminf _{n \rightarrow \infty}\left\|\boldsymbol{a}_{n}\right\|_{p}^{p}
$$

Since $\left\{\boldsymbol{a}_{n}\right\}_{n \in \mathbb{N}}$ is Cauchy in $\ell_{p}(\mathbb{N})$ it must be bounded, i.e. $\sup _{n \in \mathbb{N}}\left\|\boldsymbol{a}_{n}\right\|_{p}<$ ∞ and the above implies that

$$
\sum_{j=1}^{N}\left|a_{j}\right|^{p} \leq \sup _{n \in \mathbb{N}}\left\|\boldsymbol{a}_{n}\right\|_{p}^{p}<\infty
$$

for any $N \in \mathbb{N}$. As the right hand side is independent of N we can take it to infinity and get that

$$
\|\boldsymbol{a}\|_{p}=\left(\sum_{j \in \mathbb{N}}\left|a_{j}\right|^{p}\right)^{\frac{1}{p}} \leq \sup _{n \in \mathbb{N}}\left\|\boldsymbol{a}_{n}\right\|_{p}<\infty
$$

showing that \boldsymbol{a} is in $\ell_{p}(\mathbb{N})$.
The case $p=\infty$ is similar but more straightforward: For any $j \in \mathbb{N}$

$$
\left|a_{j}\right|=\lim _{n \rightarrow \infty}\left|a_{n, j}\right|=\liminf _{n \rightarrow \infty}\left|a_{n, j}\right| \leq \liminf _{n \rightarrow \infty}\left\|\boldsymbol{a}_{n}\right\|_{\infty} .
$$

Consequently, as the right hand side is independent of j,

$$
\|\boldsymbol{a}\|_{\infty}=\sup _{j \in \mathbb{N}}\left|a_{j}\right| \leq \liminf _{n \rightarrow \infty}\left\|\boldsymbol{a}_{n}\right\|_{\infty} \leq \sup _{n \rightarrow \infty}\left\|\boldsymbol{a}_{n}\right\|_{\infty}<\infty
$$

which shows that $\boldsymbol{a} \in \ell_{\infty}(\mathbb{N})$.
Next we turn our attention to the requested inequality. Let $N \in \mathbb{N}$ be given and consider $p \in[1, \infty)$. Similarly to the proof above we find that

$$
\begin{aligned}
& \sum_{j=1}^{N}\left|a_{j}-a_{n, j}\right|^{p}=\lim _{m \rightarrow \infty} \sum_{j=1}^{N}\left|a_{m, j}-a_{n, j}\right|^{p} \\
= & \liminf _{m \rightarrow \infty} \sum_{j=1}^{N}\left|a_{m, j}-a_{n, j}\right|^{p} \leq \liminf _{n \rightarrow \infty}\left\|\boldsymbol{a}_{m}-\boldsymbol{a}_{n}\right\|_{p}^{p} .
\end{aligned}
$$

When $p=\infty$ we have that

$$
\begin{gathered}
\sup _{j \leq N}\left|a_{j}-a_{n, j}\right|=\sup _{j \leq N} \lim _{m \rightarrow \infty}\left|a_{m, j}-a_{n, j}\right|=\sup _{j \leq N} \liminf _{m \rightarrow \infty}\left|a_{m, j}-a_{n, j}\right| \\
\leq \sup _{j \leq N} \liminf _{n \rightarrow \infty}\left\|\boldsymbol{a}_{m}-\boldsymbol{a}_{n}\right\|_{\infty}=\liminf _{n \rightarrow \infty}\left\|\boldsymbol{a}_{m}-\boldsymbol{a}_{n}\right\|_{\infty} .
\end{gathered}
$$

We claim that these inequalities imply the convergence of $\left\{\boldsymbol{a}_{n}\right\}_{n \in \mathbb{N}}$ to \boldsymbol{a}. Indeed, given $\varepsilon>0$ we can find $n_{0} \in \mathbb{N}$ such that for any $n, m \geq n_{0}$ we have that

$$
\left\|\boldsymbol{a}_{m}-\boldsymbol{a}_{m}\right\|_{p}<\varepsilon .
$$

For any $n \geq n_{0}$ we have that

$$
\sum_{j=1}^{N}\left|a_{j}-a_{n, j}\right|^{p}<\varepsilon^{p}
$$

when $1 \leq p<\infty$ and

$$
\sup _{j \leq N}\left|a_{j}-a_{n, j}\right|<\varepsilon
$$

when $p=\infty$. As the right hand side in both cases is independent of N we conclude that for all $n \geq n_{0}$

$$
\left\|\boldsymbol{a}-\boldsymbol{a}_{n}\right\|_{p}<\varepsilon
$$

which shows the convergence. As we have shown that any Cauchy sequence in $\ell_{p}(\mathbb{N})$ has a limit in $\ell_{p}(\mathbb{N})$ we conclude that $\ell_{p}(\mathbb{N})$ is indeed a Banach space.
Solution to Question 10. (i) This follows from arithmetic of continuous functions since the zero function is continuous, addition of continuous functions is a continuous function, and scalar multiplication of continuous functions is a continuous function.
(ii) We have that

- $\|f\|_{\infty} \geq 0$ by definition and $\|f\|_{\infty}=0$ if and only if $\max _{x \in[a, b]}|f(x)|=$ 0 . Since $|f(x)|$ is non-negative we conclude that the above holds if and only if $f(x)=0$ for all $x \in[a, b]$, or equivalently if $f \equiv 0$.
- For any scalar α we have that

$$
\|\alpha f\|_{\infty}=\max _{x \in[a, b]}|\alpha f(x)|=|\alpha|\left(\max _{x \in[a, b]}|f(x)|\right)=|\alpha|\|f\|_{\infty}
$$

- For any $f, g \in C[a, b]$ we have that since for any $x \in[a, b]$

$$
|f(x)+g(x)| \leq|f(x)|+|g(x)| \leq\|f\|_{\infty}+\|g\|_{\infty}
$$

we have that

$$
\|f+g\|_{\infty}=\max _{x \in[a, b]}|f(x)+g(x)| \leq\|f\|_{\infty}+\|g\|_{\infty}
$$

From the above we conclude that $\|\cdot\|_{\infty}$ is indeed a norm on $C[a, b]$.
(iii) Let $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be a Cauchy sequence in $\left(C[a, b],\|\cdot\|_{\infty}\right)$. Since for any $x \in[a, b]$

$$
\left|f_{n}(x)-f_{m}(x)\right| \leq\left\|f_{n}-f_{m}\right\|_{\infty}
$$

we conclude (just like in the case of $\ell_{\infty}(\mathbb{N})$) that $\left\{f_{n}(x)\right\}_{n \in \mathbb{N}}$ is Cauchy in \mathbb{F}. Since \mathbb{F} is complete we find that for any $x \in[a, b]$ there exists $f(x)$ in \mathbb{F} such that $f_{n}(x) \underset{n \rightarrow \infty}{\longrightarrow} f(x)$. Moreover,

$$
\begin{gathered}
\left|f(x)-f_{n}(x)\right|=\lim _{m \rightarrow \infty}\left|f_{m}(x)-f_{n}(x)\right|=\liminf _{m \rightarrow \infty}\left|f_{m}(x)-f_{n}(x)\right| \\
\leq \lim _{m \rightarrow \infty}\left\|f_{m}-f_{n}\right\|_{\infty} .
\end{gathered}
$$

This implies that

$$
\left\|f-f_{n}\right\|_{\infty} \leq \lim _{m \rightarrow \infty}\left\|f_{m}-f_{n}\right\|_{\infty}
$$

and consequently that $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ converges in norm to f. We are only left with showing that f is in $C[a, b]$ to conclude that the space is complete and as such Banach. Since $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ are all continuous and converge uniformly (that is what the $\|\cdot\|_{\infty}$ is) to f, a theorem from Analysis I guarantees us that f is also continuous, which is what we wanted to show.

