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Solution to Home Assignment 1
Solution to Question 1. We start by assuming that the metric d is induced
by a norm. In that case for any x, y, z ∈X

d
(
x, y

)= ∥∥x − y
∥∥= ∥∥(x + z)− (

y + z
)∥∥= d

(
x + z, y + z

)
,

and any x, y ∈X and scalar α

d
(
αx,αy

)= ∥∥αx −αy
∥∥= |α|∥∥x − y

∥∥= |α|d(x, y).

Conversely, we assume that the two properties are valid and define

‖x‖ = d (x,0) .

We find that:

• ‖x‖ ≥ 0 for all x ∈X and ‖x‖ = 0 if and only if d (x,0) = 0 which
holds if and only if x = 0.

• For any x ∈X and a scalar α we have that

‖αx‖ = d (αx,0) = d (αx,α0) = |α|d (x,0) = |α|‖x‖ .

• For any x, y, z ∈X we have that∥∥x + y
∥∥= d

(
x + y,0

)= d
(
x + y − y,0− y

)= d
(
x,−y

)
≤ d (x,0)+d

(−y,0
)= ‖x‖+∥∥−y

∥∥= ‖x‖+|−1|∥∥y
∥∥= ‖x‖+∥∥y

∥∥ .

As all three criteria for being a norm are satisfied, we conclude that ‖·‖ is
indeed a norm.

Solution to Question 2. Let {xn}n∈N be a Cauchy sequence. There exists
n0 ∈N such that for any n,m ≥ n0 we have that

d (xn , xm) < 1.

Consequently, for any x0 ∈ X and any n ≥ n0

d (xn , x0) ≤ d
(
xn0 , x0

)+d
(
xn , xn0

)< d
(
xn0 , x0

)+1.

We conclude that

d (xn , x0) ≤ max
{
d (x1, x0) , . . . ,d

(
xn0−1, x0

)
,d

(
xn0 , x0

)+1
}

.

As the right hand side is bounded uniformly in n ∈ N we conclude the
desired boundedness.

Solution to Question 3. We start by assuming that A is dense in X . This
means that A = X . Given x ∈ X we have that x ∈ A and as such we can
find a sequence of elements from A, {xn}n∈N, that converges to x.
Conversely, assuming that for any x ∈ X we can a sequence of elements
from A, {xn}n∈N, that converges to x we see that any given x ∈ X is a limit
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point of A, or x ∈ A. Since x was arbitrary we find that A = X which shows
the density.

Solution to Question 4. Denote by A = {xn}n∈N. If every x ∈ X is a limit
of a subsequence of {xn}n∈N then every x ∈ X is a limit of a sequence of
elements from A. Consequently, according to the previous question, A is
dense in X . Since A is countable we conclude that X is separable.
The converse is a bit more delicate. Assume that A is a countable dense
set. Since A is countable we can write is as a sequence A = {xn}n∈N. Ac-
cording to our previous question we know that every x ∈ X is a limit
point of A - but this doesn’t immediately mean that the sequence we
extract from A is a subsequence of {xn}n∈N in its current ordering! Let{

a j
}

j∈N ⊂ A be the sequence that converges to x. By definition, for any
j ∈Nwe can find n j ∈N such that a j = xn j . What we need to do is extract
a subsequence of

{
a j

}
j∈N,

{
a jk

}
k∈N, such that

{
n jk

}
k∈N is increasing. This

way
{

xn jk

}
k∈N will converge to x as a subsequence of

{
a j

}
j∈N and will be

a subsequence of the original {xn}n∈N.
We start by choosing n j1 = n1. As

{
n j

}
j∈N must go to infinity as j goes to

infinity we can find j2 ∈ N such that n j2 > n1. We continue inductively:
n jk is chosen so that n jk > n jk−1 and since

{
n j

}
j∈N must go to infinity as j

goes to infinity we can find jk+1 ∈N such that n jk+1 > n jk . This concludes
the proof.

Solution to Question 5. Assume that A is dense in X and let B be such
that A ⊂ X . For any x ∈ X we can find a sequence {an}n∈N ⊂ A that con-
verges to x. Since A ⊂ B we conclude that for any x ∈ X we can find a
sequence {an}n∈N ⊂ B that converges to x. This implies that B is dense,
which is the desired result.

Solution to Question 6. To show that M is a subspace we need to show
that it is not empty and closed under addition and scalar multiplication.
Since M ⊆M and M is not empty, we find that M is not empty.
Next, let x, y ∈M. We can find sequences of elements in M, {xn}n∈N and{

yn
}

n∈N, that converge to x and y respectively. Since M is a subspace
we have that the sequence

{
xn + yn

}
n∈N is in M and since it converges to

x + y we conclude that x + y ∈M.
Similarly, for any x ∈M and any scalar α we find a sequence of elements
in M, {xn}n∈N, that converges to x. As M is a subspace the sequence
{αxn}n∈N is in M and since it converges to αx we conclude that αx ∈M.
The first part of the question is thus proved.
To show the second part we notice that the fact that spanM is a closed
subspace follows immediately from the above proof. We are only left to
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show that it is the smallest closed subspace that contains M . Indeed,
let N be a closed subspace that contains M . By definition this means
that spanM ⊆N (since spanM is the smallest subspace that contains M).
Since N is also a closed set we find that

spanM ⊆N

which concludes the proof.

Solution to Question 7. In order to show that a norm is not induced from
an inner product we will show that the parallelogram identity is not satis-
fied for some vectors. Consider the standard basis

(
e j

)
j=1,...,n ⊂ Fn where

e j is the vector whose entries are zero besides the entry in the j−th posi-
tion, which is 1. We have that if k 6 j then∥∥e j −ek

∥∥
p = ∥∥e j +ek

∥∥
p = (1+1)

1
p .

Since
∥∥e j

∥∥
p = ‖ek‖p = 1 we see that the parallelogram identity i satisfied

if and only if

2
2
p +2

2
p = 2+2.

This holds if and only if p = 2.

Solution to Question 8. Similar to the question before, in order to show
that a norm is not induced from an inner product we will show that the
parallelogram identity is not satisfied for some vectors. The idea is the
same - find two vectors with “disjoint support”. Indeed, let A and B be
measurable sets in E with a the same finite measure µ. Define

f =χA, g =χB .

We have that∥∥ f − g
∥∥p

p =
∫

E

∣∣χA(x)−χB (x)
∣∣p d x =

∫
E

(
χA(x)p +χB (x)p)

d x

=
∫

E

(
χA(x)+χB (x)

)
d x = 2µ.

Similarly
∥∥ f + g

∥∥p
p = 2µ. Since

∥∥ f
∥∥

p = ∥∥g
∥∥

p =µ 1
p we see that the parallel-

ogram identity i satisfied if and only if(
2µ

) 2
p + (

2µ
) 2

p = 2µ
2
p +2µ

2
p .

This holds if and only if p = 2 (it is, in fact, the same identity as in the
previous question).
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Solution to Question 9. (i) We start with 1 ≤ p <∞. For any N ∈N and
any a,b ∈ `p (N) we have that

N∑
n=1

|an +bn |p ≤
N∑

n=1
(|an |+ |bn |)p ≤ 2p−1

(
N∑

n=1
|an |p +

N∑
n=1

|bn |p
)

≤ 2p−1 (‖a‖p +‖b‖p)
.

As this holds for every N ∈N and the right hand side is independent
of N , taking N to infinity shows that∑

n∈N
|an +bn |p ≤ 2p−1

( ∑
n∈N

|an |p + ∑
n∈N

|bn |p
)
<∞

which proves that a +b ∈ `p (N). Similarly, for any a ∈ `p (N) and a
scalar α we have that

N∑
n=1

|αan |p = |α|p
N∑

n=1
|an |p −→

N→∞
|α|p ∑

n∈N
|an |p = |α|p ‖a‖p

p <∞

which implies that αa ∈ `p (N) and ‖αa‖ = |α|‖a‖p .
The case p =∞ is more straightforward to show since

‖a +b‖∞ = sup
n∈N

|an +bn | ≤ sup
n∈N

(|an |+ |bn |) ≤ sup
n∈N

|an |+ sup
n∈N

|bn |

= ‖a‖∞+‖b‖∞ <∞
and for any scalar α

‖αa‖∞ = sup
n∈N

|αan | = |α|sup
n∈N

|an | = |α|‖a‖∞ <∞.

(ii) To show that ‖·‖p is a norm we notice that in the previous sub-question
we have shown the scaling property for the proposed norm, as well
as the triangle inequality for the case where p =∞. The triangle in-
equality for the case where 1 ≤ p <∞ is nothing more than the dis-
crete Minkowski’s inequality. Consequently, in order to show that
‖·‖p is indeed a norm we only need to show that it has the positivity
property.
We start with the case 1 ≤ p <∞: By definition ‖a‖p ≥ 0.

‖a‖p = 0 ⇔ ∑
n∈N

|an |p = 0 ⇔︸︷︷︸
non-negative

series

|an |p = 0 ∀n ∈N

⇔ an = 0 ∀n ∈N ⇔ a = 0.

Similarly, for p =∞: By definition ‖a‖∞ ≥ 0.

‖a‖∞ = 0 ⇔ sup
n∈N

|an | = 0 ⇔︸︷︷︸
non-negative

sequence

|an | = 0 ∀n ∈N
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⇔ an = 0 ∀n ∈N ⇔ a = 0.

We thus conclude that ‖·‖p is indeed a norm on `p (N) for any 1 ≤
p ≤∞.

(iii) We start by noticing that for any a,b ∈ `p (N) we have that for any
j ∈N ∣∣a j −b j

∣∣≤ (∑
j∈N

∣∣a j −b j
∣∣p

) 1
p

= ‖a −b‖p

when 1 ≤ p <∞ and∣∣a j −b j
∣∣≤ sup

j∈N

∣∣a j −b j
∣∣= ‖a −b‖∞

when p = ∞. In other words, for any 1 ≤ p ≤ ∞ and any j ∈ N we
have that ∣∣a j −b j

∣∣≤ ‖a −b‖p .

Since the above holds for any j ∈N we find that

sup
j∈N

∣∣a j −b j
∣∣≤ ‖a −b‖p .

Given a Cauchy sequence in `p (N), {an}n∈N we have that for any ε>
0 there exists n0 ∈N such that if n,m ≥ n0

‖an −am‖p < ε.

Consequently, for any n,m ≥ n0

sup
j∈N

∣∣an, j −am, j
∣∣≤ ‖an −am‖p < ε,

which shows that
{

an, j
}

n∈N is Cauchy for any j ∈N (in fact it is Cauchy
uniformly in j !). Since this sequence is Cauchy in a complete space
(F) we know that there exists an element a j ∈ F such that

an, j −→
n→∞ a j .

(iv) We need to divide our consideration to two cases: 1 ≤ p < ∞ and
p =∞. When 1 ≤ p <∞ we have that for any N ∈N

N∑
j=1

∣∣a j
∣∣p = lim

n→∞

N∑
j=1

∣∣an, j
∣∣p = liminf

n→∞

N∑
j=1

∣∣an, j
∣∣p ≤ liminf

n→∞ ‖an‖p
p .

Since {an}n∈N is Cauchy in`p (N) it must be bounded, i.e. supn∈N ‖an‖p <
∞ and the above implies that

N∑
j=1

∣∣a j
∣∣p ≤ sup

n∈N
‖an‖p

p <∞
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for any N ∈ N. As the right hand side is independent of N we can
take it to infinity and get that

‖a‖p =
(∑

j∈N

∣∣a j
∣∣p

) 1
p

≤ sup
n∈N

‖an‖p <∞

showing that a is in `p (N).
The case p =∞ is similar but more straightforward: For any j ∈N∣∣a j

∣∣= lim
n→∞

∣∣an, j
∣∣= liminf

n→∞
∣∣an, j

∣∣≤ liminf
n→∞ ‖an‖∞ .

Consequently, as the right hand side is independent of j ,

‖a‖∞ = sup
j∈N

∣∣a j
∣∣≤ liminf

n→∞ ‖an‖∞ ≤ sup
n→∞

‖an‖∞ <∞

which shows that a ∈ `∞ (N).
Next we turn our attention to the requested inequality. Let N ∈N be
given and consider p ∈ [1,∞). Similarly to the proof above we find
that

N∑
j=1

∣∣a j −an, j
∣∣p = lim

m→∞

N∑
j=1

∣∣am, j −an, j
∣∣p

= liminf
m→∞

N∑
j=1

∣∣am, j −an, j
∣∣p ≤ liminf

n→∞ ‖am −an‖p
p .

When p =∞ we have that

sup
j≤N

∣∣a j −an, j
∣∣= sup

j≤N
lim

m→∞
∣∣am, j −an, j

∣∣= sup
j≤N

liminf
m→∞

∣∣am, j −an, j
∣∣

≤ sup
j≤N

liminf
n→∞ ‖am −an‖∞ = liminf

n→∞ ‖am −an‖∞ .

We claim that these inequalities imply the convergence of {an}n∈N to
a. Indeed, given ε> 0 we can find n0 ∈N such that for any n,m ≥ n0

we have that
‖am −am‖p < ε.

For any n ≥ n0 we have that

N∑
j=1

∣∣a j −an, j
∣∣p < εp

when 1 ≤ p <∞ and

sup
j≤N

∣∣a j −an, j
∣∣< ε

when p =∞. As the right hand side in both cases is independent of
N we conclude that for all n ≥ n0

‖a −an‖p < ε,
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which shows the convergence. As we have shown that any Cauchy
sequence in `p (N) has a limit in `p (N) we conclude that `p (N) is
indeed a Banach space.

Solution to Question 10. (i) This follows from arithmetic of continuous
functions since the zero function is continuous, addition of contin-
uous functions is a continuous function, and scalar multiplication
of continuous functions is a continuous function.

(ii) We have that
• ∥∥ f

∥∥∞ ≥ 0 by definition and
∥∥ f

∥∥∞ = 0 if and only if maxx∈[a,b]
∣∣ f (x)

∣∣=
0. Since

∣∣ f (x)
∣∣ is non-negative we conclude that the above holds

if and only if f (x) = 0 for all x ∈ [a,b], or equivalently if f ≡ 0.
• For any scalar α we have that∥∥α f

∥∥∞ = max
x∈[a,b]

∣∣α f (x)
∣∣= |α|

(
max

x∈[a,b]

∣∣ f (x)
∣∣)= |α|∥∥ f

∥∥∞ .

• For any f , g ∈C [a,b] we have that since for any x ∈ [a,b]∣∣ f (x)+ g (x)
∣∣≤ ∣∣ f (x)

∣∣+ ∣∣g (x)
∣∣≤ ∥∥ f

∥∥∞+∥∥g
∥∥∞

we have that∥∥ f + g
∥∥∞ = max

x∈[a,b]

∣∣ f (x)+ g (x)
∣∣≤ ∥∥ f

∥∥∞+∥∥g
∥∥∞ .

From the above we conclude that ‖·‖∞ is indeed a norm on C [a,b].
(iii) Let

{
fn

}
n∈N be a Cauchy sequence in (C [a,b] ,‖·‖∞). Since for any

x ∈ [a,b] ∣∣ fn(x)− fm(x)
∣∣≤ ∥∥ fn − fm

∥∥∞
we conclude (just like in the case of`∞ (N)) that

{
fn(x)

}
n∈N is Cauchy

in F. Since F is complete we find that for any x ∈ [a,b] there exists
f (x) in F such that fn(x) −→

n→∞ f (x). Moreover,∣∣ f (x)− fn(x)
∣∣= lim

m→∞
∣∣ fm(x)− fn(x)

∣∣= liminf
m→∞

∣∣ fm(x)− fn(x)
∣∣

≤ lim
m→∞

∥∥ fm − fn
∥∥∞ .

This implies that∥∥ f − fn
∥∥∞ ≤ lim

m→∞
∥∥ fm − fn

∥∥∞

and consequently that
{

fn
}

n∈N converges in norm to f . We are only
left with showing that f is in C [a,b] to conclude that the space is
complete and as such Banach. Since

{
fn

}
n∈N are all continuous and

converge uniformly (that is what the ‖·‖∞ is) to f , a theorem from
Analysis I guarantees us that f is also continuous, which is what we
wanted to show.


