Home Assignment 2

Exercise 1. Prove the following statement: Let \mathcal{H} be an inner product space and let *M* be a subset of \mathcal{H} . Then

- (i) M^{\perp} is a subspace of \mathcal{H} .
- (ii) M^{\perp} is a closed set.
- (iii) $M^{\perp} = \overline{M}^{\perp}$.
- (iv) $M^{\perp} = (\operatorname{span} M)^{\perp}$.
- (v) $M^{\perp} = \overline{\text{span}}M^{\perp}$.
- (vi) Let $M^{\perp \perp}$ be defined as $(M^{\perp})^{\perp}$. Then, if \mathcal{M} is a subspace of \mathcal{H} we have that $\mathcal{M}^{\perp \perp} = \overline{\mathcal{M}}$. *Hint: You could use the projection theorem.*

Exercise 2. Prove the following statement¹: Every non-zero vector space \mathcal{X} has a Hamel basis.

Hint: Define a partial order of inclusion on the set of all linearly independent sets in $\mathcal X$, i.e

$$A \leq B$$
 if $A \subset B$.

Show that the conditions of Zorn's lemma are satisfied in this case and conclude that a maximal element of this order must be a Hamel basis.

Exercise 3. Consider the set $\mathscr{B} = \{e_n\}_{n \in \mathbb{N}} \subset \ell_p(\mathbb{N})$ defined by

$$\boldsymbol{e}_n = \left(0, \ldots, 0, \underbrace{1}_{n-\text{th poistion}}, 0, \ldots\right).$$

Show that if $\mathbf{a} \in \operatorname{span} \mathscr{B}$ then there exists $n_0 \in \mathbb{N}$ such that $a_n = 0$ for all $n > n_0$. Conclude that if $\mathbf{a} \in \ell_p(\mathbb{N})$ has no zero entries then $\mathbf{a} \notin \operatorname{span} \mathscr{B}$.

Exercise 4. Show that the set $\mathscr{B} = \{e_n\}_{n \in \mathbb{N}}$ defined in the previous question is a Schauder basis for $\ell_p(\mathbb{N})$ when $1 \le p < \infty$.

Hint: Recall that you've shown that for any $a, b \in \ell_p(\mathbb{N})$ *and for any* $n \in \mathbb{N}$ *we have that*

$$|a_n-b_n|\leq \|\boldsymbol{a}-\boldsymbol{b}\|_p,$$

and use that to show the uniqueness of the expansion with respect to \mathcal{B} .

Exercise 5. Let \mathscr{X} be a Banach space with a Schuader basis $\mathscr{B} = \{e_n\}_{n \in \mathbb{N}}$. Is the set $\mathscr{B}_1 = \left\{\frac{e_n}{\|e_n\|}\right\}_{n \in \mathbb{N}}$ also a Schauder basis for \mathscr{X} ?

¹This is a challenging exercise!

Exercise 6. We say that a Sheauder basis $\mathscr{B} = \{e_n\}_{n \in \mathbb{N}}$ to a Banach space \mathscr{X} is *unconditional* if whenever $\sum_{n \in \mathbb{N}} a_n e_n$ converges so does $\sum_{n \in \mathbb{N}} a_{\sigma(n)} e_{\sigma(n)}$ for any bijection $\sigma : \mathbb{N} \to \mathbb{N}$ (i.e. the order of summation doesn't impact the convergence of the series). Show that the standard basis for $\ell_p(\mathbb{N})$, with $1 \le p < \infty$, $\mathscr{B} = \{e_n\}_{n \in \mathbb{N}}$, defined in Exercise 4 is an unconditional basis.

Exercise 7. Prove the following statement: Let \mathscr{X} be a normed space over \mathbb{R} or \mathbb{C} . If *M* is a countable set and span*M* is dense in \mathscr{X} then \mathscr{X} is separable.

Exercise 8. Show that $\ell_{\infty}(\mathbb{N})$ can't have a Schauder basis.

Exercise 9. Consider the Hilbert space $L^2[-\pi,\pi]$ with the inner product

$$\langle f,g\rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)\overline{g(x)} dx$$

Use the fact that $\{e^{inx}\}_{n \in \mathbb{Z}}$ (notice $n \in \mathbb{Z}$ and not in \mathbb{N} !) is an orthonormal basis for $L^2[-\pi,\pi]$ (no proof is required) and show that

$$\sum_{n\in\mathbb{N}}\frac{1}{n^2}=\frac{\pi^2}{6}.$$

Hint: Consider the function f(x) = x*.*

Exercise 10. Let \mathcal{H} be an infinite dimensional Hilbert space. Show that there is no orthonormal basis for \mathcal{H} that is a Hamel basis. Conclude that Hilbert spaces can't have a countable Hamel basis.

Exercise 11. Prove the following statement: Let \mathscr{H} be an inner product space and let $\mathscr{B} = \{e_{\alpha}\}_{\alpha \in \mathscr{G}}$ be orthonormal. If \mathscr{G} is uncountable, then for any $x \in \mathscr{H}$ we have that $\langle x, e_{\alpha} \rangle \neq 0$ for at most a countable subset of \mathscr{B} , $\{e_{\alpha_n}\}_{n \in \mathbb{N}}$.

Hint: For a given $x \in \mathcal{H}$ *and* $k \in \mathbb{N}$ *consider the set*

$$M_k(x) = \left\{ i \in \mathcal{G} \mid |\langle x, e_i \rangle| \ge \frac{1}{k} \right\}$$

and use Bessel's inequality to show that $M_k(x)$ must be finite.

Exercise 12. Let \mathscr{M} be a closed subspace of a Hilbert space \mathscr{H} . Show that $\mathscr{M} = \mathscr{H}$ if and only if $\mathscr{M}^{\perp} = \{0\}$.

Exercise 13. Prove the following statement: Every non-trivial Hilbert space has an orthonormal basis.

Hint: Use Zorn's lemma on the collection of orthonormal sets and the inclusion partial order.

2