Solution to Home Assignment 2

Solution to Question 1. (i) We notice that 0 is perpendicular to any vector and as such $0 \in M^{\perp}$. Next we notice that if $x, y \in M^{\perp}$ then for any $m \in M$

$$\langle x + y, m \rangle = \langle x, m \rangle + \langle y, m \rangle = 0 + 0 = 0$$

which shows that $x + y \in M^{\perp}$. Lastly, if $x \in M^{\perp}$ and α is a scalar then

$$\langle \alpha x, m \rangle = \alpha \langle x, m \rangle = \alpha 0 = 0$$

from which we conclude that $\alpha x \in M^{\perp}$. As M^{\perp} is not empty and closed under addition and scalar multiplication we conclude that it must be a subspace.

(ii) Let {*x_n*}_{*n*∈ℕ} ⊂ *M*[⊥] be a given sequence that converges to some *x* ∈ ℋ.
Let *m* ∈ *M* be given. Using the continuity of the inner product we find that

$$\langle x,m\rangle = \lim_{n\to\infty} \langle x_n,m\rangle \underset{x_n\in M^{\perp}}{=} \lim_{n\to\infty} 0 = 0.$$

As the above holds for any $m \in M$ we find that $x \in M^{\perp}$. Thus, all limits of sequences from M^{\perp} are in M^{\perp} which shows that it is a closed set.

(iii) One inclusion in the identity is immediate. Indeed, since $M \subset \overline{M}$ we have that if $x \perp y$ for all $y \in \overline{M}$ then $x \perp y$ for all $x \in M$, i.e. $\overline{M}^{\perp} \subset M^{\perp}$. Notice that we have in fact shown that if $A \subset B$ then $B^{\perp} \subset A^{\perp}$. Let us consider the other inclusion. Let $x \in M^{\perp}$ and let $y \in \overline{M}$. We

know that we can find a sequence of elements in M, $\{y_n\}_{n \in \mathbb{N}}$, such that $y_n \xrightarrow[n \to \infty]{} y$. Using the continuity of the inner product we see that

$$\langle x, y \rangle = \lim_{n \to \infty} \langle x, y_n \rangle \underset{x \in M^{\perp}}{=} \lim_{n \to \infty} 0 = 0,$$

which shows that $x \perp y$ for all $y \in \overline{M}$. Thus $M^{\perp} \subset \overline{M}^{\perp}$. Combining this with the other inclusion proves the result.

(iv) As we saw in the previous sub-question proof, since $M \subset \operatorname{span} M$ we have that

$$(\operatorname{span} M)^{\perp} \subset M^{\perp}.$$

Conversely, assume that $x \in M^{\perp}$ and let $y \in \text{span}M$. By definition, there exist $y_1, \ldots, y_n \in M$ and scalars $\alpha_1, \ldots, \alpha_n$ such that

$$y = \sum_{i=1}^n \alpha_i y_i.$$

As such

$$\langle x, y \rangle = \left\langle x, \sum_{i=1}^{n} \alpha_i y_i \right\rangle = \sum_{i=1}^{n} \overline{\alpha_i} \langle x, y_i \rangle = \sum_{x \in M^{\perp}} \sum_{i=1}^{n} \overline{\alpha_i} \cdot 0 = 0.$$

Since *y* was arbitrary we conclude that $x \in (\operatorname{span} M)^{\perp}$ which shows that $M^{\perp} \subset (\operatorname{span} M)^{\perp}$.

- (v) This follows immediately from previous sub-questions.
- (vi) For any given set A, since

$$A^{\perp} = \left\{ x \in \mathcal{H} \mid x \perp y, \ \forall y \in A \right\}$$

we see that for any $y \in A$ and $x \in A^{\perp}$ we have that $\langle x, y \rangle = 0$. This implies that $A \subset A^{\perp \perp}$. Since $A^{\perp \perp} = (A^{\perp})^{\perp}$, a previous sub-question guarantees that $A^{\perp \perp}$ is closed and consequently the inclusion we've shown implies that $\overline{A} \subset A^{\perp \perp}$. Note that this inclusion is alwasy true and doesn't require the set to be a subspace.

We shall now focus on showing the converse inclusion when the set \mathcal{M} is a subspace. Let $\tilde{m} \in \mathcal{M}^{\perp \perp}$. Since $\overline{\mathcal{M}}$ is a closed subspace in \mathcal{H} (as you saw in the previous assignment) we know that $P_{\overline{\mathcal{M}}} \tilde{m} \in \overline{\mathcal{M}}$ exists. Moreover,

$$\widetilde{m} - P_{\overline{\mathcal{M}}} \widetilde{m} \in \overline{\mathcal{M}}^{\perp}.$$

On the other hand, since $\overline{\mathcal{M}} \subset \mathcal{M}^{\perp \perp}$, and $\mathcal{M}^{\perp \perp}$ is a subspace, we see that

 $\widetilde{m} - P_{\overline{\mathcal{M}}} \widetilde{m} \in \mathcal{M}^{\perp \perp}.$

Using the fact that $\overline{\mathcal{M}}^{\perp} = \mathcal{M}^{\perp}$ we conclude that

$$\widetilde{m} - P_{\mathcal{M}} \widetilde{m} \in \mathcal{M}^{\perp} \cap \left(\mathcal{M}^{\perp}\right)^{\perp} = \{0\}.$$

In other words, $\tilde{m} = P_{\overline{\mathcal{M}}} \tilde{m} \in \overline{M}$. As \tilde{m} was arbitrary we find that $\mathcal{M}^{\perp\perp} \subset \overline{M}$ and conclude the proof.

Solution to Question 2. Let \mathcal{M} be the set of all linearly independent sets in \mathcal{X} . $\mathcal{M} \neq \emptyset$ since \mathcal{X} is not the trivial vector space. We define a partial order of inclusion on \mathcal{M} :

$$A \leq B$$
 if $A \subset B$,

We claim that any maximal element of this partial order must be a Hamel basis for \mathscr{X} . Indeed, if \mathscr{B} is a maximal element of \mathscr{M} and $\mathscr{X} \neq \operatorname{span}\mathscr{B}$ then there exists $x \in \mathscr{X} \setminus \operatorname{span}\mathscr{B}$. The set $\widetilde{\mathscr{B}} = \mathscr{B} \cup \{x\}$ is independent and satisfies $\mathscr{B} \leq \widetilde{\mathscr{B}}$. However, as $\mathscr{B} \neq \widetilde{\mathscr{B}}$ and \mathscr{B} is maximal, we have reached a contradiction.

2

To show that we have a maximal element we will invoke Zorn's lemma. Let C be a chain in \mathcal{M} and define

$$U = \cup_{A \in \mathcal{C}} A.$$

We claim that *U* is independent. Indeed, if $x_1, ..., x_n \in U$ then there exist $A_1, ..., A_n \in C$ such that $x_i \in A_i$ for i = 1, ..., n. Since $A_1, ..., A_n$ are in a chain, they have a maximum. Without loss of generality, this set is A_1 , and as such for all i = 1, ..., n we have that $x_i \in A_i \subset A_1$. Since A_1 is independent we find that $\{x_1, ..., x_n\}$ are independent. As, $x_1, ..., x_n \in U$ were arbitrary we see that every finite collection of vectors in *U* are independent, or equivalently - *U* is independent. This implies that $U \in \mathcal{M}$. By the definition of the partial order of \mathcal{M} we have that $A \leq U$ for any $A \in C$ and we conclude that every chain in \mathcal{M} have an upper bound. Thus we can use Zorn's lemma and conclude the proof.

Solution to Question 3. Assume that $a \in \text{span}\mathcal{B}$. Then, there exists $k \in \mathbb{N}$, $n_1, \ldots, n_k \in \mathbb{N}$, and scalars $\alpha_{n_1}, \ldots, \alpha_{n_k}$ such that

$$\boldsymbol{a} = \sum_{i=1}^k \alpha_{n_i} \boldsymbol{e}_{n_i}$$

Let $n_0 = \max\{n_1, \dots, n_k\}$. Since $(\boldsymbol{e}_{n_i})_i = 0$ for any $j > n_0$ we see that

$$a_j = \left(\sum_{i=1}^k \alpha_{n_i} \boldsymbol{e}_{n_i}\right)_j = \sum_{i=1}^k \alpha_{n_i} \left(\boldsymbol{e}_{n_i}\right)_j = 0$$

for all $j > n_0$. Consequently, if *a* has no zero entries it can't be in span \mathscr{B} .

Solution to Question 4. We have seen in class that for any $\mathbf{a} = (a_1, a_2, ...) \in \ell_p(\mathbb{N})$ we have that the partial sums sequence

$$S_N = \sum_{n=1}^N a_n \boldsymbol{e}_n$$

converges to **a**. To show that \mathscr{B} is a Schauder basis we only need to show the uniqueness of the coefficients. Indeed, assume that $\widetilde{S}_N = \sum_{n=1}^N \alpha_n(\mathbf{a}) \mathbf{e}_n$ converges to **a** in $\ell_p(\mathbb{N})$. By definition of the $\ell_p(\mathbb{N})$ norm we have that for any $n \in \mathbb{N}$ and any $\mathbf{a}, \mathbf{b} \in \ell_p(\mathbb{N})$

$$|a_n - b_n| \leq \left(\sum_{n \in \mathbb{N}} |a_n - b_n|^p\right)^{\frac{1}{p}} = \|\boldsymbol{a} - \boldsymbol{b}\|_p.$$

Consequently, for any $n \in \mathbb{N}$ and any $N \ge n$ we have that

$$|a_n-\alpha_n(\boldsymbol{a})| \leq \|\boldsymbol{a}-\widetilde{S}_N\|_p.$$

Taking N to we find that

$$0 \le |a_n - \alpha_n(\boldsymbol{a})| \le \lim_{N \to \infty} \|\boldsymbol{a} - \widetilde{S}_N\|_p = 0.$$

Thus $\alpha_n(\mathbf{a}) = a_n$ which shows the uniqueness of the partial sums expansion.

Solution to Question 5. We start by noticing that since \mathscr{B} is independent it can't contain the zero vector. This implies that $e_n \neq 0$ for all $n \in \mathbb{N}$ and consequently that $||e_n|| \neq 0$ for all $n \in \mathbb{N}$. This shows that \mathscr{B}_1 is indeed well defined. Denoting by $x_n = \frac{e_n}{\|e\|_n}$ we see that $\mathscr{B}_1 = \{x_n\}_{n \in \mathbb{N}}$ is independent as x_n is just a scalar multiple of e_n , which are independent.

Moreover, as \mathscr{B} is Schauder, for any $x \in \mathscr{X}$ we can find a unique sequence of scalars, $\{\alpha_n(x)\}_{n \in \mathbb{N}}$ such that the partial sum sequence $\{S_N(x)\}_{N \in \mathbb{N}}$ with

$$S_N(x) = \sum_{n=1}^N \alpha_n(x) e_n$$

converges to *x*. Defining $\beta_n(x) = ||e_n|| \alpha_n(x)$ we see that

$$\widetilde{S}_N(x) = \sum_{n=1}^N \beta_n(x) x_n = \sum_{n=1}^N \left(\|e_n\| \,\alpha_n(x) \right) \frac{e_n}{\|e_n\|} = S_N(x)$$

which converges to x. Thus, in order to show that \mathscr{B}_1 is a Schauder basis we only need to show the uniqueness of the coefficients. Indeed, assume that

$$T_N(x) = \sum_{n=1}^N \gamma_n(x) x_n$$

converges to *x*. Since

$$T_N(x) = \sum_{n=1}^N \left(\frac{\gamma_n(x)}{\|e_n\|} \right) e_n$$

the uniqueness of the coefficients in the expansion with respect to \mathscr{B} imply that $\frac{\gamma_n(x)}{\|e_n\|} = \alpha_n(x)$. Consequently, $T_N(x) = \widetilde{S}_N(x)$ and the uniqueness of the coefficients with respect to \mathscr{B}_1 has been shown. We conclude that \mathscr{B}_1 is indeed a Schauder basis.

Solution to Question 6. Given $a = (a_1, ..., a_n, ...) \in \ell_p(\mathbb{N})$ and $\sigma : \mathbb{N} \to \mathbb{N}$ we define

$$S_N = \sum_{n=1}^N a_{\sigma(n)} \boldsymbol{e}_{\sigma(n)}.$$

We have that

$$\|S_N - S_M\|_p^p = \left\|\sum_{n=\min(N,M)+1}^{\max(N,M)} a_{\sigma(n)} \boldsymbol{e}_{\sigma(n)}\right\|^p$$

$$=\sum_{n=\min(N,M)+1}^{\max(N,M)} \left|a_{\sigma(n)}\right|^p.$$

For a given $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that for any $N \ge n_0$

$$\sum_{n=N}^{\infty} |a_n|^p < \varepsilon^p.$$

Since σ is a bijection, there exists $n_1 \in \mathbb{N}$ such that for all $n \ge n_1$ we have that $\sigma(n) \ge n_0$ and consequently, if $\min(N, M) \ge n_1$ we have that

$$||S_N - S_M||_p^p = \sum_{n=\min(N,M)+1}^{\max(N,M)} |a_{\sigma(n)}|^p < \varepsilon^p.$$

As $\varepsilon > 0$ was arbitrary $\{S_N\}_{N \in \mathbb{N}}$ is Cauchy and since $\ell_p(\mathbb{N})$ is a Banach space, the sequence converges, which is what we wanted to show.

Solution to Question 7. ince *M* is countable we can find a sequence $\{e_n\}_{n \in \mathbb{N}}$ such that $M = \{e_n\}_{n \in \mathbb{N}}$. Define the countable set

$$\mathcal{M}_{n} = \begin{cases} \left\{ \sum_{i=1}^{n} q_{i} e_{i} \mid q_{i} \in \mathbb{Q} \right\}, & \mathbb{F} = \mathbb{R}, \\ \left\{ \sum_{i=1}^{n} q_{i} e_{i} \mid q_{i} \in \mathbb{Q} + i \mathbb{Q} \right\}, & \mathbb{F} = \mathbb{C}, \end{cases}$$

and the set $\mathcal{M} = \bigcup_{n \in \mathbb{N}} \mathcal{M}_n$. \mathcal{M}_n is countable for any $n \in \mathbb{N}$ and consequently \mathcal{M} is also countable.

Next, we define

$$\mathscr{X}_n = \operatorname{span} \{e_1, \ldots, e_n\}$$

and find that since \mathbb{Q} and $\mathbb{Q} + i\mathbb{Q}$ are dense in \mathbb{R} and \mathbb{C} respectively, and since \mathcal{X}_n is spanned by finitely many vectors, we have that \mathcal{M}_n is dense in \mathcal{X}_n . Indeed, given $x = \sum_{i=1}^n \alpha_i e_i$ we find sequences in \mathbb{Q} or $\mathbb{Q} + i\mathbb{Q}$, $\{\alpha_{i,k}\}_{i=1,\dots,n,k\in\mathbb{N}}$, such that

$$\lim_{k\to\infty}\alpha_{i,k}=\alpha_i.$$

The sequence $\{x_k\}_{k \in \mathbb{N}} \subset \mathcal{M}_n$ defined by $x_n = \sum_{i=1}^n \alpha_{i,k} e_i$ will then converge to *x* as

$$\|x_n - x\| \leq \sum_{i=1}^n |\alpha_{i,k} - \alpha_i| \|e_i\| \underset{k \to \infty}{\longrightarrow} 0.$$

The fact that span $M = \bigcup_{n \in \mathbb{N}} \mathcal{X}_n$ together with the density of \mathcal{M}_n in \mathcal{X}_n implies that \mathcal{M} is dense in spanM. Indeed, let $x \in \text{span}M$. Then, there exists $n_0 \in \mathbb{N}$ such that $x \in \mathcal{X}_{n_0}$. Consequently we can find a sequence $\{x_k\}_{k \in \mathbb{N}} \subset \mathcal{M}_{n_0} \subset \mathcal{M}$ that converges to x showing the density of \mathcal{M} in spanM.

What we have is enough to show the density of \mathcal{M} in \mathcal{X} , which will imply its separability. To do so we will revert back to epsilons: Given $x \in \mathcal{X}$ and

6

 $\varepsilon > 0$ we can find $x_{\varepsilon} \in \operatorname{span} M$ such that $||x - x_{\varepsilon}|| < \frac{\varepsilon}{2}$. Since \mathcal{M} is dense in $\operatorname{span} M$ we can fine $m_{\varepsilon} \in \mathcal{M}$ such that $||x_{\varepsilon} - m_{\varepsilon}|| < \frac{\varepsilon}{2}$. Thus

$$\|x - m_{\varepsilon}\| \le \|x - x_{\varepsilon}\| + \|x_{\varepsilon} - m_{\varepsilon}\| < \varepsilon.$$

The fact that *x* and ε were arbitrary show the desired density.

Solution to Question 8. From a theorem from class it is enough to show that $\ell_{\infty}(\mathbb{N})$ is not separable. Consider the family of vectors

$$\mathcal{D} = \{ \boldsymbol{d} = (d_1, d_2, \dots) \mid d_n = 0 \text{ or } 1, n \in \mathbb{N} \}$$

If $d_1 \neq d_2$ there must be an index $n_0 \in \mathbb{N}$ such that $d_{1,n_0} \neq d_{2,n_0}$ which imply that

$$\|\boldsymbol{d}_1 - \boldsymbol{d}_2\| = \sup_{n \in \mathbb{N}} |d_{1,n} - d_{2,n}| \ge |d_{1,n_0} - d_{2,n_0}| = 1$$

(in fact, we have that $\|\boldsymbol{d}_1 - \boldsymbol{d}_2\| = 1$). Since the cardinality of \mathcal{D} is $2^{\mathbb{N}}$, which is uncountable, we conclude that $\ell_{\infty}(\mathbb{N})$ is not separable due to another theorem from class.

Solution to Question 9. Denoting by $e_n = e^{inx}$ where $n \in \mathbb{Z}$ we know that due to Parseval's identity we have that

$$\sum_{n \in \mathbb{Z}} |\langle f, \boldsymbol{e}_n \rangle|^2 = \|f\|_{L^2[-\pi,\pi]}^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{\pi^2}{3}$$

On the other hand we find that

$$\langle f, \boldsymbol{e}_n \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \overline{e^{inx}} dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} x e^{-inx} dx$$
$$= \begin{cases} 0 & n = 0\\ -\frac{x e^{-inx}}{2\pi i n} |_{-\pi}^{\pi} + \frac{1}{2\pi i n} \int_{-\pi}^{\pi} e^{-inx} dx & n \neq 0 = \begin{cases} 0 & n = 0\\ \frac{(-1)^{n+1}}{in} & n \neq 0 \end{cases}$$

Thus

$$\sum_{n \in \mathbb{N}} \frac{1}{n^2} = \frac{1}{2} \sum_{n \in \mathbb{Z}, n \neq 0} \left| \frac{(-1)^{n+1}}{in} \right|^2 = \frac{1}{2} \sum_{n \in \mathbb{Z}} \left| \langle f, \boldsymbol{e}_n \rangle \right|^2 = \frac{\pi^2}{6}.$$

Solution to Question 10. Assume that $\mathscr{B} = \{e_{\alpha}\}_{\alpha \in \mathcal{G}}$ is an orthonormal basis. Since \mathscr{H} is infinite dimensional we know that \mathscr{B} has a countable subset. Let $\mathscr{B}_1 = \{e_n\}_{n \in \mathbb{N}}$ be such subset. Consider the vector

$$x = \sum_{n \in \mathbb{N}} \frac{1}{n} e_n$$

Since $\sum_{n \in \mathbb{N}} \frac{1}{n^2} < \infty$ we know that *x* is a well defined vector in \mathcal{H} and that the above is its basis representation. Indeed, defining

$$S_N = \sum_{n=1}^N \frac{1}{n} e_n$$

we find, by Pythagoras's theorem, that

$$||S_N - S_M||^2 = \sum_{\min(N,M)+1}^{\max(N,M)} \frac{1}{n^2}.$$

Since $\sum_{n \in \mathbb{N}} \frac{1}{n^2} < \infty$ we find that $\{S_N\}_{N \in \mathbb{N}}$ is Cauchy and since the space is complete it must converge.

Moreover, since

$$\langle x, e_{\alpha} \rangle \neq 0$$

for an infinite set of vectors from our orthonormal set we *can't* find a finite set $\mathcal{F} = \{e_{\alpha_1}, \dots, e_{\alpha_n}\}$ such that $x \in \operatorname{span} \mathcal{F}$. Thus \mathcal{B} can't be a Hamel basis. To show the second statement we notice that if \mathcal{H} has a countable Hamel basis $\mathcal{B} = \{x_n\}_{n \in \mathbb{N}}$ then by the process of the Gran-Schmidt procedure we would have found a countable orthonormal basis that is a Hamel basis. Indeed, for any $n \in \mathbb{N}$ we can find $k(n) \in \mathbb{N}$ such that the orthonormal set $\{e_1, \dots, e_{k(n)}\}$ satisfies

$$\operatorname{span} \{x_1, \dots, x_n\} = \operatorname{span} \{e_1, \dots, e_{k(n)}\}.$$

This contradicts the first part of the problem, giving us the desired result.

Solution to Question 11. For a given $x \in \mathcal{H}$ and $k \in \mathbb{N}$ we define the set

$$M_k(x) = \left\{ i \in \mathcal{G} \mid |\langle x, e_i \rangle| \ge \frac{1}{k} \right\}.$$

We claim that $M_k(x)$ must be finite. Indeed, if we can find a sequence $\{i_n\}_{n \in \mathbb{N}} \subset \mathcal{G}$ such that $|\langle x, e_{i_n} \rangle| \ge \frac{1}{k}$ then

$$\sum_{n\in\mathbb{N}} |\langle x, e_{i_n} \rangle|^2 \ge \sum_{n\in\mathbb{N}} \frac{1}{k} = \infty.$$

However, since $\widetilde{\mathscr{B}} = \{e_{i_n}\}_{n \in \mathbb{N}}$ is orthonormal, the above contradicts Bessel's inequality.

To conclude the proof we notice that

$$\langle x, e_i \rangle \neq 0 \quad \Leftrightarrow \quad |\langle x, e_i \rangle| \geq \frac{1}{k} \text{ for some } k \in \mathbb{N} \quad \Leftrightarrow \quad i \in \bigcup_{k \in \mathbb{N}} M_k(x).$$

As $M(x) = \bigcup_{k \in \mathbb{N}} M_k(x)$ is a countable union of finite sets, it is countable, and we just showed that for any $i \notin M(x)$ we must have that $\langle x, e_i \rangle = 0$.

Solution to Question 12. We start by claiming that $\mathcal{H}^{\perp} = \{0\}$. Indeed, if $y \in \mathcal{H}^{\perp}$ then since *y* is also in \mathcal{H} we find that

$$0 = \langle y, y \rangle = \left\| y \right\|^2.$$

This implies that y = 0, showing that $\mathcal{H}^{\perp} = \{0\}$.

Assume now that $\mathcal{M}^{\perp} = \{0\}$. Since \mathcal{M} is closed we know from a previous question that

$$\mathscr{M} = \mathscr{M}^{\perp \perp} = \{0\}^{\perp} = \mathscr{H}$$

where the last identity follows from the fact that every vector is perpendicular to the zero vector.

Solution to Question 13. Let \mathcal{M} be the set of all orthonormal sets in \mathcal{H} . $\mathcal{M} \neq \emptyset$ since \mathcal{H} is not the trivial vector space. We define a partial order on \mathcal{M} by inclusion and claim that if \mathcal{M} has a maximal element, \mathcal{B}_{max} , then $\mathcal{H} = \overline{\text{span}\mathcal{B}_{max}}$ which, according to a theorem from class, implies that \mathcal{B}_{max} is an orthonormal basis for \mathcal{H} .

Indeed, if this is not the case then we can find some x in $\mathcal{H} \setminus \widetilde{\mathcal{H}}$, where $\widetilde{\mathcal{H}} = \operatorname{span} \mathscr{B}_{\max}$. Since $\widetilde{\mathcal{H}}$ is a closed subspace of \mathcal{H} the vector $P_{\widetilde{\mathcal{H}}} x \in \widetilde{\mathcal{H}}$ is well defined and $v = x - P_{\widetilde{\mathcal{H}}}(x)$ is a non-zero vector in $\widetilde{\mathcal{H}}^{\perp}$. Consequently, the set

$$\widetilde{\mathscr{B}} = \mathscr{B}_{\max} \cup \left\{ \frac{\nu}{\|\nu\|} \right\}$$

is an orthonormal set that is larger than \mathscr{B}_{max} , which is a contradiction. To show that we have a maximal element we will invoke Zorn's lemma. In order to do that we will need to show that the conditions of the lemma hold, i.e. that every chain in \mathcal{M} has an upper bound. Let C be a chain in \mathcal{M} and define

$$U = \cup_{A \in \mathcal{C}} A.$$

We claim that *U* is orthonormal. Indeed, if $x_1, x_2 \in U$ then there exist $A_1, A_2 \in C$ such that $x_1 \in A_1$ and $x_2 \in A_2$. Since A_1 and A_2 are in a chain, one of these sets contains the other. Without loss of generality $A_2 \subseteq A_1$. Thus, $x_1, x_2 \in A_1$, and since A_1 is an orthonormal set we conclude that x_1 and x_2 are of norm 1 and are orthogonal. As x_1 and x_2 were arbitrary we conclude that *U* is orthonormal and as such in \mathcal{M} . By the definition of the partial order of \mathcal{M} we have that $A \leq U$ for any $A \in C$. We conclude that every chain in \mathcal{M} have an upper bound and conclude the proof.