Solution to Home Assignment 2

Solution to Question 1. (i) We notice that 0 is perpendicular to any vector and as such $0 \in M^{\perp}$. Next we notice that if $x, y \in M^{\perp}$ then for any $m \in M$

$$
\langle x+y, m\rangle=\langle x, m\rangle+\langle y, m\rangle=0+0=0
$$

which shows that $x+y \in M^{\perp}$. Lastly, if $x \in M^{\perp}$ and α is a scalar then

$$
\langle\alpha x, m\rangle=\alpha\langle x, m\rangle=\alpha 0=0
$$

from which we conclude that $\alpha x \in M^{\perp}$. As M^{\perp} is not empty and closed under addition and scalar multiplication we conclude that it must be a subspace.
(ii) Let $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset M^{\perp}$ be a given sequence that converges to some $x \in \mathscr{H}$. Let $m \in M$ be given. Using the continuity of the inner product we find that

$$
\langle x, m\rangle=\lim _{n \rightarrow \infty}\left\langle x_{n}, m\right\rangle \underset{x_{n} \in M^{\perp}}{=} \lim _{n \rightarrow \infty} 0=0 .
$$

As the above holds for any $m \in M$ we find that $x \in M^{\perp}$. Thus, all limits of sequences from M^{\perp} are in M^{\perp} which shows that it is a closed set.
(iii) One inclusion in the identity is immediate. Indeed, since $M \subset \bar{M}$ we have that if $x \perp y$ for all $y \in \bar{M}$ then $x \perp y$ for all $x \in M$, i.e. $\bar{M}^{\perp} \subset M^{\perp}$. Notice that we have in fact shown that if $A \subset B$ then $B^{\perp} \subset A^{\perp}$. Let us consider the other inclusion. Let $x \in M^{\perp}$ and let $y \in \bar{M}$. We know that we can find a sequence of elements in $M,\left\{y_{n}\right\}_{n \in \mathbb{N}}$, such that $y_{n} \underset{n \rightarrow \infty}{\longrightarrow} y$. Using the continuity of the inner product we see that

$$
\langle x, y\rangle=\lim _{n \rightarrow \infty}\left\langle x, y_{n}\right\rangle \underset{x \in M^{\perp}}{=} \lim _{n \rightarrow \infty} 0=0,
$$

which shows that $x \perp y$ for all $y \in \bar{M}$. Thus $M^{\perp} \subset \bar{M}^{\perp}$. Combining this with the other inclusion proves the result.
(iv) As we saw in the previous sub-question proof, since $M \subset \operatorname{span} M$ we have that

$$
(\operatorname{span} M)^{\perp} \subset M^{\perp}
$$

Conversely, assume that $x \in M^{\perp}$ and let $y \in \operatorname{span} M$. By definition, there exist $y_{1}, \ldots, y_{n} \in M$ and scalars $\alpha_{1}, \ldots, \alpha_{n}$ such that

$$
y=\sum_{i=1}^{n} \alpha_{i} y_{i} .
$$

As such

$$
\langle x, y\rangle=\left\langle x, \sum_{i=1}^{n} \alpha_{i} y_{i}\right\rangle=\sum_{i=1}^{n} \overline{\alpha_{i}}\left\langle x, y_{i}\right\rangle \underset{x \in M^{\perp}}{=} \sum_{i=1}^{n} \overline{\alpha_{i}} \cdot 0=0 .
$$

Since y was arbitrary we conclude that $x \in(\operatorname{span} M)^{\perp}$ which shows that $M^{\perp} \subset(\operatorname{span} M)^{\perp}$.
(v) This follows immediately from previous sub-questions.
(vi) For any given set A, since

$$
A^{\perp}=\{x \in \mathscr{H} \mid x \perp y, \forall y \in A\}
$$

we see that for any $y \in A$ and $x \in A^{\perp}$ we have that $\langle x, y\rangle=0$. This implies that $A \subset A^{\perp \perp}$. Since $A^{\perp \perp}=\left(A^{\perp}\right)^{\perp}$, a previous sub-question guarantees that $A^{\perp \perp}$ is closed and consequently the inclusion we've shown implies that $\bar{A} \subset A^{\perp \perp}$. Note that this inclusion is alwasy true and doesn't require the set to be a subspace.
We shall now focus on showing the converse inclusion when the set \mathscr{M} is a subspace. Let $\widetilde{m} \in \mathscr{M}^{\perp \perp}$. Since $\overline{\mathscr{M}}$ is a closed subspace in \mathscr{H} (as you saw in the previous assignment) we know that $P_{\overline{\mathscr{M}}} \widetilde{m} \in \overline{\mathscr{M}}$ exists. Moreover,

$$
\widetilde{m}-P_{\bar{M}} \widetilde{m} \in \bar{M}^{\perp}
$$

On the other hand, since $\overline{\mathscr{M}} \subset \mathscr{M}^{\perp \perp}$, and $\mathscr{M}^{\perp \perp}$ is a subspace, we see that

$$
\widetilde{m}-P_{\bar{M}} \widetilde{m} \in \mathscr{M}^{\perp \perp} .
$$

Using the fact that $\overline{\mathscr{M}}^{\perp}=\mathscr{M}^{\perp}$ we conclude that

$$
\widetilde{m}-P_{\bar{M}} \widetilde{m} \in \mathscr{M}^{\perp} \cap\left(\mathscr{M}^{\perp}\right)^{\perp}=\{0\}
$$

In other words, $\widetilde{m}=P_{\bar{M}} \widetilde{m} \in \bar{M}$. As \widetilde{m} was arbitrary we find that $\mathscr{M}^{\perp \perp} \subset \bar{M}$ and conclude the proof.

Solution to Question 2. Let M be the set of all linearly independent sets in $\mathscr{X} . m \neq \varnothing$ since \mathscr{X} is not the trivial vector space. We define a partial order of inclusion on m :

$$
A \leq B \quad \text { if } \quad A \subset B
$$

We claim that any maximal element of this partial order must be a Hamel basis for \mathscr{X}. Indeed, if \mathscr{B} is a maximal element of m and $\mathscr{X} \neq \operatorname{span} \mathscr{B}$ then there exists $x \in \mathscr{X} \backslash \operatorname{span} \mathscr{B}$. The set $\widetilde{\mathscr{B}}=\mathscr{B} \cup\{x\}$ is independent and satisfies $\mathscr{B} \leq \widetilde{\mathscr{B}}$. However, as $\mathscr{B} \neq \widetilde{\mathscr{B}}$ and \mathscr{B} is maximal, we have reached a contradiction.

To show that we have a maximal element we will invoke Zorn's lemma. Let C be a chain in M and define

$$
U=\cup_{A \in \mathcal{C}} A .
$$

We claim that U is independent. Indeed, if $x_{1}, \ldots, x_{n} \in U$ then there exist $A_{1}, \ldots, A_{n} \in \mathcal{C}$ such that $x_{i} \in A_{i}$ for $i=1, \ldots, n$. Since A_{1}, \ldots, A_{n} are in a chain, they have a maximum. Without loss of generality, this set is A_{1}, and as such for all $i=1, \ldots, n$ we have that $x_{i} \in A_{i} \subset A_{1}$. Since A_{1} is independent we find that $\left\{x_{1}, \ldots, x_{n}\right\}$ are independent. As, $x_{1}, \ldots, x_{n} \in U$ were arbitrary we see that every finite collection of vectors in U are independent, or equivalently - U is independent. This implies that $U \in M$. By the definition of the partial order of M we have that $A \leq U$ for any $A \in C$ and we conclude that every chain in M have an upper bound. Thus we can use Zorn's lemma and conclude the proof.

Solution to Question 3. Assume that $\boldsymbol{a} \in \operatorname{span} \mathscr{B}$. Then, there exists $k \in \mathbb{N}$, $n_{1}, \ldots, n_{k} \in \mathbb{N}$, and scalars $\alpha_{n_{1}}, \ldots, \alpha_{n_{k}}$ such that

$$
\boldsymbol{a}=\sum_{i=1}^{k} \alpha_{n_{i}} \boldsymbol{e}_{n_{i}}
$$

Let $n_{0}=\max \left\{n_{1}, \ldots, n_{k}\right\}$. Since $\left(\boldsymbol{e}_{n_{i}}\right)_{j}=0$ for any $j>n_{0}$ we see that

$$
a_{j}=\left(\sum_{i=1}^{k} \alpha_{n_{i}} \boldsymbol{e}_{n_{i}}\right)_{j}=\sum_{i=1}^{k} \alpha_{n_{i}}\left(\boldsymbol{e}_{n_{i}}\right)_{j}=0
$$

for all $j>n_{0}$. Consequently, if \boldsymbol{a} has no zero entries it can't be in span \mathscr{B}.
Solution to Question 4. We have seen in class that for any $\boldsymbol{a}=\left(a_{1}, a_{2}, \ldots\right) \in$ $\ell_{p}(\mathbb{N})$ we have that the partial sums sequence

$$
S_{N}=\sum_{n=1}^{N} a_{n} \boldsymbol{e}_{n}
$$

converges to \boldsymbol{a}. To show that \mathscr{B} is a Schauder basis we only need to show the uniqueness of the coefficients. Indeed, assume that $\widetilde{S}_{N}=\sum_{n=1}^{N} \alpha_{n}(\boldsymbol{a}) \boldsymbol{e}_{n}$ converges to \boldsymbol{a} in $\ell_{p}(\mathbb{N})$. By definition of the $\ell_{p}(\mathbb{N})$ norm we have that for any $n \in \mathbb{N}$ and any $\boldsymbol{a}, \boldsymbol{b} \in \ell_{p}(\mathbb{N})$

$$
\left|a_{n}-b_{n}\right| \leq\left(\sum_{n \in \mathbb{N}}\left|a_{n}-b_{n}\right|^{p}\right)^{\frac{1}{p}}=\|\boldsymbol{a}-\boldsymbol{b}\|_{p} .
$$

Consequently, for any $n \in \mathbb{N}$ and any $N \geq n$ we have that

$$
\left|a_{n}-\alpha_{n}(\boldsymbol{a})\right| \leq\left\|\boldsymbol{a}-\widetilde{S}_{N}\right\|_{p}
$$

Taking N to we find that

$$
0 \leq\left|a_{n}-\alpha_{n}(\boldsymbol{a})\right| \leq \lim _{N \rightarrow \infty}\left\|\boldsymbol{a}-\widetilde{S}_{N}\right\|_{p}=0 .
$$

Thus $\alpha_{n}(\boldsymbol{a})=a_{n}$ which shows the uniqueness of the partial sums expansion.

Solution to Question 5. We start by noticing that since \mathscr{B} is independent it can't contain the zero vector. This implies that $e_{n} \neq 0$ for all $n \in \mathbb{N}$ and consequently that $\left\|e_{n}\right\| \neq 0$ for all $n \in \mathbb{N}$. This shows that \mathscr{B}_{1} is indeed well defined. Denoting by $x_{n}=\frac{e_{n}}{\|e\|_{n}}$ we see that $\mathscr{B}_{1}=\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is independent as x_{n} is just a scalar multiple of e_{n}, which are independent.
Moreover, as \mathscr{B} is Schauder, for any $x \in \mathscr{X}$ we can find a unique sequence of scalars, $\left\{\alpha_{n}(x)\right\}_{n \in \mathbb{N}}$ such that the partial sum sequence $\left\{S_{N}(x)\right\}_{N \in \mathbb{N}}$ with

$$
S_{N}(x)=\sum_{n=1}^{N} \alpha_{n}(x) e_{n}
$$

converges to x. Defining $\beta_{n}(x)=\left\|e_{n}\right\| \alpha_{n}(x)$ we see that

$$
\widetilde{S}_{N}(x)=\sum_{n=1}^{N} \beta_{n}(x) x_{n}=\sum_{n=1}^{N}\left(\left\|e_{n}\right\| \alpha_{n}(x)\right) \frac{e_{n}}{\left\|e_{n}\right\|}=S_{N}(x)
$$

which converges to x. Thus, in order to show that \mathscr{R}_{1} is a Schauder basis we only need to show the uniqueness of the coefficients. Indeed, assume that

$$
T_{N}(x)=\sum_{n=1}^{N} \gamma_{n}(x) x_{n}
$$

converges to x. Since

$$
T_{N}(x)=\sum_{n=1}^{N}\left(\frac{\gamma_{n}(x)}{\left\|e_{n}\right\|}\right) e_{n}
$$

the uniqueness of the coefficients in the expansion with respect to \mathscr{B} imply that $\frac{\gamma_{n}(x)}{\left\|e_{n}\right\|}=\alpha_{n}(x)$. Consequently, $T_{N}(x)=\widetilde{S}_{N}(x)$ and the uniqueness of the coefficients with respect to \mathscr{B}_{1} has been shown. We conclude that \mathscr{B}_{1} is indeed a Schauder basis.

Solution to Question 6. Given $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}, \ldots\right) \in \ell_{p}(\mathbb{N})$ and $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ we define

$$
S_{N}=\sum_{n=1}^{N} a_{\sigma(n)} \boldsymbol{e}_{\sigma(n)} .
$$

We have that

$$
\left\|S_{N}-S_{M}\right\|_{p}^{p}=\left\|\sum_{n=\min (N, M)+1}^{\max (N, M)} a_{\sigma(n)} \boldsymbol{e}_{\sigma(n)}\right\|^{p}
$$

$$
=\sum_{n=\min (N, M)+1}^{\max (N, M)}\left|a_{\sigma(n)}\right|^{p} .
$$

For a given $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that for any $N \geq n_{0}$

$$
\sum_{n=N}^{\infty}\left|a_{n}\right|^{p}<\varepsilon^{p} .
$$

Since σ is a bijection, there exists $n_{1} \in \mathbb{N}$ such that for all $n \geq n_{1}$ we have that $\sigma(n) \geq n_{0}$ and consequently, if $\min (N, M) \geq n_{1}$ we have that

$$
\left\|S_{N}-S_{M}\right\|_{p}^{p}=\sum_{n=\min (N, M)+1}^{\max (N, M)}\left|a_{\sigma(n)}\right|^{p}<\varepsilon^{p} .
$$

As $\varepsilon>0$ was arbitrary $\left\{S_{N}\right\}_{N \in \mathbb{N}}$ is Cauchy and since $\ell_{p}(\mathbb{N})$ is a Banach space, the sequence converges, which is what we wanted to show.

Solution to Question 7. ince M is countable we can find a sequence $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ such that $M=\left\{e_{n}\right\}_{n \in \mathbb{N}}$. Define the countable set

$$
\mathscr{M}_{n}= \begin{cases}\left\{\sum_{i=1}^{n} q_{i} e_{i} \mid q_{i} \in \mathbb{Q}\right\}, & \mathbb{F}=\mathbb{R}, \\ \left\{\sum_{i=1}^{n} q_{i} e_{i} \mid q_{i} \in \mathbb{Q}+i \mathbb{Q}\right\}, & \mathbb{F}=\mathbb{C},\end{cases}
$$

and the set $\mathscr{M}=\cup_{n \in \mathbb{N}} \mathscr{M}_{n} . \mathscr{M}_{n}$ is countable for any $n \in \mathbb{N}$ and consequently \mathscr{M} is also countable.
Next, we define

$$
X_{n}=\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}
$$

and find that since \mathbb{Q} and $\mathbb{Q}+i \mathbb{Q}$ are dense in \mathbb{R} and \mathbb{C} respectively, and since \mathscr{X}_{n} is spanned by finitely many vectors, we have that \mathscr{M}_{n} is dense in X_{n}. Indeed, given $x=\sum_{i=1}^{n} \alpha_{i} e_{i}$ we find sequences in \mathbb{Q} or $\mathbb{Q}+i \mathbb{Q}$, $\left\{\alpha_{i, k}\right\}_{i=1, \ldots, n, k \in \mathbb{N}}$, such that

$$
\lim _{k \rightarrow \infty} \alpha_{i, k}=\alpha_{i}
$$

The sequence $\left\{x_{k}\right\}_{k \in \mathbb{N}} \subset \mathscr{M}_{n}$ defined by $x_{n}=\sum_{i=1}^{n} \alpha_{i, k} e_{i}$ will then converge to x as

$$
\left\|x_{n}-x\right\| \leq \sum_{i=1}^{n}\left|\alpha_{i, k}-\alpha_{i}\right|\left\|e_{i}\right\| \underset{k \rightarrow \infty}{\longrightarrow} 0
$$

The fact that $\operatorname{span} M=\cup_{n \in \mathbb{N}} X_{n}$ together with the density of \mathscr{M}_{n} in X_{n} implies that \mathscr{M} is dense in $\operatorname{span} M$. Indeed, let $x \in \operatorname{span} M$. Then, there exists $n_{0} \in \mathbb{N}$ such that $x \in \mathscr{X}_{n_{0}}$. Consequently we can find a sequence $\left\{x_{k}\right\}_{k \in \mathbb{N}} \subset \mathscr{M}_{n_{0}} \subset \mathscr{M}$ that converges to x showing the density of \mathscr{M} in $\operatorname{span} M$.
What we have is enough to show the density of \mathscr{M} in \mathscr{X}, which will imply its separability. To do so we will revert back to epsilons: Given $x \in \mathscr{X}$ and
$\varepsilon>0$ we can find $x_{\varepsilon} \in \operatorname{span} M$ such that $\left\|x-x_{\varepsilon}\right\|<\frac{\varepsilon}{2}$. Since \mathscr{M} is dense in span M we can fine $m_{\varepsilon} \in \mathscr{M}$ such that $\left\|x_{\varepsilon}-m_{\varepsilon}\right\|<\frac{\varepsilon}{2}$. Thus

$$
\left\|x-m_{\varepsilon}\right\| \leq\left\|x-x_{\varepsilon}\right\|+\left\|x_{\varepsilon}-m_{\varepsilon}\right\|<\varepsilon .
$$

The fact that x and ε were arbitrary show the desired density.
Solution to Question 8. From a theorem from class it is enough to show that $\ell_{\infty}(\mathbb{N})$ is not separable. Consider the family of vectors

$$
\mathscr{D}=\left\{\boldsymbol{d}=\left(d_{1}, d_{2}, \ldots\right) \mid d_{n}=0 \text { or } 1, n \in \mathbb{N}\right\}
$$

If $\boldsymbol{d}_{1} \neq \boldsymbol{d}_{2}$ there must be an index $n_{0} \in \mathbb{N}$ such that $d_{1, n_{0}} \neq d_{2, n_{0}}$ which imply that

$$
\left\|\boldsymbol{d}_{1}-\boldsymbol{d}_{2}\right\|=\sup _{n \in \mathbb{N}}\left|d_{1, n}-d_{2, n}\right| \geq\left|d_{1, n_{0}}-d_{2, n_{0}}\right|=1
$$

(in fact, we have that $\left\|\boldsymbol{d}_{1}-\boldsymbol{d}_{2}\right\|=1$). Since the cardinality of \mathscr{D} is $2^{\mathbb{N}}$, which is uncountable, we conclude that $\ell_{\infty}(\mathbb{N})$ is not separable due to another theorem from class.

Solution to Question 9. Denoting by $\boldsymbol{e}_{n}=e^{i n x}$ where $n \in \mathbb{Z}$ we know that due to Parseval's identity we have that

$$
\sum_{n \in \mathbb{Z}}\left|\left\langle f, \boldsymbol{e}_{n}\right\rangle\right|^{2}=\|f\|_{L^{2}[-\pi, \pi]}^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x^{2} d x=\frac{\pi^{2}}{3} .
$$

On the other hand we find that

$$
\begin{gathered}
\left\langle f, \boldsymbol{e}_{n}\right\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \overline{e^{i n x}} d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x e^{-i n x} d x \\
=\left\{\begin{array}{ll}
0 & n=0 \\
-\left.\frac{x e^{-i n x}}{2 \pi i n}\right|_{-\pi} ^{\pi}+\frac{1}{2 \pi i n} \underbrace{\int_{-\pi}^{\pi} e^{-i n x}}_{=0} d x & n \neq 0=\left\{\begin{array}{ll}
0 & n=0 \\
\frac{(-1)^{n+1}}{i n} & n \neq 0
\end{array} .\right.
\end{array} . .\right.
\end{gathered}
$$

Thus

$$
\sum_{n \in \mathbb{N}} \frac{1}{n^{2}}=\frac{1}{2} \sum_{n \in \mathbb{Z}, n \neq 0}\left|\frac{(-1)^{n+1}}{i n}\right|^{2}=\frac{1}{2} \sum_{n \in \mathbb{Z}}\left|\left\langle f, \boldsymbol{e}_{n}\right\rangle\right|^{2}=\frac{\pi^{2}}{6} .
$$

Solution to Question 10. Assume that $\mathscr{B}=\left\{e_{\alpha}\right\}_{\alpha \in \mathscr{I}}$ is an orthonormal basis. Since \mathscr{H} is infinite dimensional we know that \mathscr{B} has a countable subset. Let $\mathscr{B}_{1}=\left\{e_{n}\right\}_{n \in \mathbb{N}}$ be such subset. Consider the vector

$$
x=\sum_{n \in \mathbb{N}} \frac{1}{n} e_{n} .
$$

Since $\sum_{n \in \mathbb{N}} \frac{1}{n^{2}}<\infty$ we know that x is a well defined vector in \mathscr{H} and that the above is its basis representation. Indeed, defining

$$
S_{N}=\sum_{n=1}^{N} \frac{1}{n} e_{n}
$$

we find, by Pythagoras's theorem, that

$$
\left\|S_{N}-S_{M}\right\|^{2}=\sum_{\min (N, M)+1}^{\max (N, M)} \frac{1}{n^{2}} .
$$

Since $\sum_{n \in \mathbb{N}} \frac{1}{n^{2}}<\infty$ we find that $\left\{S_{N}\right\}_{N \in \mathbb{N}}$ is Cauchy and since the space is complete it must converge.
Moreover, since

$$
\left\langle x, e_{\alpha}\right\rangle \neq 0
$$

for an infinite set of vectors from our orthonormal set we can't find a finite set $\mathscr{F}=\left\{e_{\alpha_{1}}, \ldots, e_{\alpha_{n}}\right\}$ such that $x \in \operatorname{span} \mathscr{F}$. Thus \mathscr{B} can't be a Hamel basis. To show the second statement we notice that if \mathscr{H} has a countable Hamel basis $\mathscr{B}=\left\{x_{n}\right\}_{n \in \mathbb{N}}$ then by the process of the Gran-Schmidt procedure we would have found a countable orthonormal basis that is a Hamel basis. Indeed, for any $n \in \mathbb{N}$ we can find $k(n) \in \mathbb{N}$ such that the orthonormal set $\left\{e_{1}, \ldots, e_{k(n)}\right\}$ satisfies

$$
\operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\}=\operatorname{span}\left\{e_{1}, \ldots, e_{k(n)}\right\}
$$

This contradicts the first part of the problem, giving us the desired result.
Solution to Question 11. For a given $x \in \mathscr{H}$ and $k \in \mathbb{N}$ we define the set

$$
M_{k}(x)=\left\{i \in \mathscr{I}| |\left\langle x, e_{i}\right\rangle \left\lvert\, \geq \frac{1}{k}\right.\right\} .
$$

We claim that $M_{k}(x)$ must be finite. Indeed, if we can find a sequence $\left\{i_{n}\right\}_{n \in \mathbb{N}} \subset \mathscr{I}$ such that $\left|\left\langle x, e_{i_{n}}\right\rangle\right| \geq \frac{1}{k}$ then

$$
\sum_{n \in \mathbb{N}}\left|\left\langle x, e_{i_{n}}\right\rangle\right|^{2} \geq \sum_{n \in \mathbb{N}} \frac{1}{k}=\infty
$$

However, since $\widetilde{\mathscr{B}}=\left\{e_{i_{n}}\right\}_{n \in \mathbb{N}}$ is orthonormal, the above contradicts Bessel's inequality.
To conclude the proof we notice that

$$
\left\langle x, e_{i}\right\rangle \neq 0 \quad \Leftrightarrow \quad\left|\left\langle x, e_{i}\right\rangle\right| \geq \frac{1}{k} \text { for some } k \in \mathbb{N} \quad \Leftrightarrow \quad i \in \cup_{k \in \mathbb{N}} M_{k}(x) .
$$

As $M(x)=\cup_{k \in \mathbb{N}} M_{k}(x)$ is a countable union of finite sets, it is countable, and we just showed that for any $i \notin M(x)$ we must have that $\left\langle x, e_{i}\right\rangle=0$.

Solution to Question 12. We start by claiming that $\mathscr{H}^{\perp}=\{0\}$. Indeed, if $y \in \mathscr{H}^{\perp}$ then since y is also in \mathscr{H} we find that

$$
0=\langle y, y\rangle=\|y\|^{2} .
$$

This implies that $y=0$, showing that $\mathscr{H}^{\perp}=\{0\}$.
Assume now that $\mathscr{M}^{\perp}=\{0\}$. Since \mathscr{M} is closed we know from a previous question that

$$
\mathscr{M}=\mathscr{M}^{\perp \perp}=\{0\}^{\perp}=\mathscr{H}
$$

where the last identity follows from the fact that every vector is perpendicular to the zero vector.

Solution to Question 13. Let m be the set of all orthonormal sets in \mathscr{H}. $m \neq \varnothing$ since \mathscr{H} is not the trivial vector space. We define a partial order on m by inclusion and claim that if m has a maximal element, $\mathscr{B}_{\text {max }}$, then $\mathscr{H}=\overline{\operatorname{span} \mathscr{B}_{\text {max }}}$ which, according to a theorem from class, implies that $\mathscr{B}_{\text {max }}$ is an orthonormal basis for \mathscr{H}.
Indeed, if this is not the case then we can find some x in $\mathscr{H} \backslash \widetilde{\mathscr{H}}$, where $\widetilde{\mathscr{H}}=\overline{\operatorname{span} \mathscr{B}_{\text {max }}}$. Since $\widetilde{\mathscr{H}}$ is a closed subspace of \mathscr{H} the vector $P_{\mathscr{H}} x \in \widetilde{\mathscr{H}}$ is well defined and $v=x-P_{\widetilde{\mathscr{H}}}(x)$ is a non-zero vector in $\widetilde{\mathscr{H}}^{\perp}$. Consequently, the set

$$
\widetilde{\mathscr{B}}=\mathscr{B}_{\max } \cup\left\{\frac{v}{\|v\|}\right\}
$$

is an orthonormal set that is larger than $\mathscr{B}_{\text {max }}$, which is a contradiction. To show that we have a maximal element we will invoke Zorn's lemma. In order to do that we will need to show that the conditions of the lemma hold, i.e. that every chain in M has an upper bound.
Let \mathcal{C} be a chain in M and define

$$
U=\cup_{A \in \mathcal{C}} A .
$$

We claim that U is orthonormal. Indeed, if $x_{1}, x_{2} \in U$ then there exist $A_{1},, A_{2} \in C$ such that $x_{1} \in A_{1}$ and $x_{2} \in A_{2}$. Since A_{1} and A_{2} are in a chain, one of these sets contains the other. Without loss of generality $A_{2} \subseteq A_{1}$. Thus, $x_{1}, x_{2} \in A_{1}$, and since A_{1} is an orthonormal set we conclude that x_{1} and x_{2} are of norm 1 and are orthogonal. As x_{1} and x_{2} were arbitrary we conclude that U is orthonormal and as such in m. By the definition of the partial order of M we have that $A \leq U$ for any $A \in C$. We conclude that every chain in M have an upper bound and conclude the proof.

