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Solution to Home Assignment 2

Solution to Question 1. (i) We notice that0is perpendicular to any vec-
tor and as such 0 € M. Next we notice that if x, y € M~ then for any
meM

(x+y,m)=(x,my+(y,m)=0+0=0
which shows that x + y € M. Lastly, if x € M+ and «a is a scalar then
{(ax,m)y=a{x,m)=a0=0

from which we conclude that ax € M*. As M is not empty and
closed under addition and scalar multiplication we conclude that it
must be a subspace.

(i) Let {x,},en © M* beagiven sequence that converges to some x € .
Let m € M be given. Using the continuity of the inner product we
find that

(x,m)=lim (x,,m) = lim 0=0.
n—o0 xp€ML n—00
As the above holds for any m € M we find that x € M L. Thus, all lim-
its of sequences from M~ are in M+ which shows that it is a closed
set.
(iii) One inclusion in the identity is immediate. Indeed, since M c M we

have thatif x L yforall y € M then x L yforall xe M, i.e. M <ML,
Notice that we have in fact shown that if Ac B then B+ c A*.
Let us consider the other inclusion. Let x € M+ and let y € M. We
know that we can find a sequence of elements in M, { y”}nel\l’ such
that y, . Using the continuity of the inner product we see that
(0= Jim () = Jim 0=

which shows that x L y for all y € M. Thus M+ c M. Combining
this with the other inclusion proves the result.

(iv) As we saw in the previous sub-question proof, since M c spanM we
have that

(spanM)L c M*.

Conversely, assume that x € M+ and let y € spanM. By definition,
there exist yy,..., y, € M and scalars a;,..., a, such that

n
y=) aiyi.
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As such
n n n
<x,y>:<x,zaiyi>:za—i<x,y,-> _ $@ro-o
i=1 i=1 xeM+ ;3

Since y was arbitrary we conclude that x € (spanM )i which shows
that M+ c (spanM)l.

(v) This follows immediately from previous sub-questions.

(vi) For any given set A, since

At={xe |xLy VyeA}

we see that for any y € A and x € A* we have that (x,y) = 0. This
implies that A < A*+. Since A++ = (AL)L, a previous sub-question
guarantees that A+ is closed and consequently the inclusion we've
shown implies that A < A**. Note that this inclusion is alwasy true
and doesn’t require the set to be a subspace.

We shall now focus on showing the converse inclusion when the set
M is a subspace. Let i1 € M. Since ./ is a closed subspace in
Z (as you saw in the previous assignment) we know that P%fﬁ eM
exists. Moreover,

. . —1
m— P%m e .
On the other hand, since M < M and A+, isa subspace, we see

that
~ ~ 1L
m—P%meﬂ .

Using the fact that T = M we conclude that
- P e A0 (1) = (0.

In other words, m = Pm € M. As m was arbitrary we find that
M+ = M and conclude the proof.

Solution to Question 2. Let /71 be the set of all linearly independent sets
in 2. 1Ml # @ since X is not the trivial vector space. We define a partial
order of inclusion on 771:

A<B if AcCB,

We claim that any maximal element of this partial order must be a Hamel
basis for &. Indeed, if % is a maximal element of 771 and & # span%
then there exists x € 2"\ span3. The set B=RBU {x} is independent and
satisfies B < B. However, as B # % and & is maximal, we have reached
a contradiction.



To show that we have a maximal element we will invoke Zorn’s lemma.
Let C be a chain in 771 and define

U = UAEGA'

We claim that U is independent. Indeed, if x1,...,x; € U then there exist
Ai,..., A, € C such that x; € A; for i = 1,...,n. Since A;,...,A, arein a
chain, they have a maximum. Without loss of generality, this set is A,
and assuch foralli = 1,...,n we have that x; € A; ¢ A;. Since A; is inde-
pendent we find that {xy,..., x,} are independent. As, xi,...,x, € U were
arbitrary we see that every finite collection of vectors in U are indepen-
dent, or equivalently - U is independent. This implies that U € 171. By the
definition of the partial order of 771 we have that A < U for any A€ C and
we conclude that every chain in 771 have an upper bound. Thus we can
use Zorn's lemma and conclude the proof.

Solution to Question 3. Assume that a € span%. Then, there exists k € N,
ni,...,ng €N, and scalars ay,, ..., @y, such that

k
a=> apep,.
i=1

Let ng = max{ny,..., nx}. Since (eni)j =0 for any j > ny we see that

k k
“j:(zanien,-) :Zani (eﬂi)jzo
i=1 i=1

for all j > ny. Consequently, if @ has no zero entries it can’t be in span3%.

J

Solution to Question 4. We have seen in class thatforany a = (a;, ay,...) €
¢, (N) we have that the partial sums sequence

N
Sn= Z apeén
n=1

converges to a. To show that & is a Schauder basis we only need to show
the uniqueness of the coefficients. Indeed, assume that Sy = Zf)’:l a,(a)e,
converges to a in £, (N). By definition of the £, (N) norm we have that for
any neNandany a,be ¢), (N)

1

P
y |an—bn|'9) = la-bl,.

neN

lan — byl <

Consequently, for any n € N and any N = n we have that

la, —a,(a)| < ||a—§N||p.
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Taking N to we find that
0<la,-ay(a)l S]\l]i_rg()”a_SN”p =0.

Thus a,, (a) = a,, which shows the uniqueness of the partial sums expan-
sion.

Solution to Question 5. We start by noticing that since & is independent
it can’t contain the zero vector. This implies that e, # 0 for all n € N and
consequently that |le, || # 0 for all n € N.. This shows that 9%, is indeed well
defined. Denoting by x,, = ”‘;—l’l’n we see that B = {x,,},en is independent
as xj is just a scalar multiple of e,, which are independent.

Moreover, as A is Schauder, for any x € 2” we can find a unique sequence

of scalars, {a,(x)},en such that the partial sum sequence {Sy (x)} yen With

N
Sn(xX) =) ap(x)e,
n=1

converges to x. Defining ,,(x) = lle, |l @, (x) we see that

€n
llexnll

N N

Sn(xX) =) Bu)xn =) (lexll an(x) = Sn(x)
n=1 n=1

which converges to x. Thus, in order to show that % is a Schauder basis

we only need to show the uniqueness of the coefficients. Indeed, assume

that
N

In&x)= ) vn(X)xy

n=1
converges to x. Since

N
T (x) = Z (Yn(X))en

=1\ llenl

the uniqueness of the coefficients in the expansion with respect to % im-
ply that Téffﬁ) = @, (x). Consequently, Tn(x) = Sy(x) and the uniqueness
of the coefficients with respect to % has been shown. We conclude that

9B, is indeed a Schauder basis.

Solution to Question 6. Given a = (ay,...,ay,...) € {p(N) and 0 : N — N

we define
N

SN=. agmeom)-
n=1
We have that

max(N, M) p

Z QAg(n)€o(n)
n=min(N,M)+1

ISy = Sl =




max(N,M)
= 2 aww|”
n=min(N,M)+1
For a given € > 0 there exists ny € N such that for any N = ny
[e.@]
la,|P < €eP.

n=N
Since o is a bijection, there exists n; € N such that for all n = n; we have
that o (n) = ny and consequently, if min (IV, M) = n; we have that

max(N,M)

ISy = Smllyy = > |am|” < €P.
n=min(N,M)+1

As £ > 0 was arbitrary {Sy}yen is Cauchy and since £, (N) is a Banach
space, the sequence converges, which is what we wanted to show.

Solution to Question 7. ince M is countable we can find a sequence {e;,} ,en
such that M = {e,;},,c. Define the countable set

{X"  gieilqi€Q}, F=R,
{Xr  gieil gi€eQ+iQ}, F=C,
and the set M/ = UpenMy. M, is countable for any n € N and conse-

quently ./ is also countable.
Next, we define

n=

I, =spanfiey,..., e,}

and find that since Q and Q + iQ are dense in R and C respectively, and
since 2, is spanned by finitely many vectors, we have that .#, is dense
in &5. Indeed, given x = Z?:l a;e; we find sequences in Q or Q +iQ,
{@ik}i—1 . p ke SUuch that

lim a; = a;.

k—o0
The sequence {xy}ren € Ay defined by x, = Z?Zl a; re; will then con-
verge to x as

n
lxtn = xll = ) |k —ailleill — o.

i=1 k—o0
The fact that spanM = U,end, together with the density of /;, in 2,
implies that ./ is dense in spanM. Indeed, let x € spanM. Then, there
exists ny € N such that x € 25,,. Consequently we can find a sequence
{Xt}ken © Mn, < A that converges to x showing the density of ./ in
spanM.
What we have is enough to show the density of .# in 2', which will imply
its separability. To do so we will revert back to epsilons: Given x € 2" and
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€ >0 we can find x, € spanM such that ||x — x¢| < % Since ./ is dense in
spanM we can fine m, € ./ such that || x, — m.|| < % Thus

X —mell < llx = x|l + | xe — mell <e.
The fact that x and ¢ were arbitrary show the desired density.

Solution to Question 8. From a theorem from class it is enough to show
that ¢, (N) is not separable. Consider the family of vectors

gz{d:(dl,dg,...) |dn:001‘1, nel\l}

If dy # d, there must be an index ng € N such that d; ,, # d ,, which
imply that

ldy — ol = sup |dy,, — do,n| = |d1, g — dany| = 1
neN

(in fact, we have that ||d; —d>| = 1). Since the cardinality of & is 2N
which is uncountable, we conclude that ¢, (N) is not separable due to
another theorem from class.

Solution to Question 9. Denoting by e,, = ¢/ where n € Z we know that
due to Parseval’s identity we have that

2

2 2 1 (" /4
SN == [ =
On the other hand we find that

1 d inx 1 g —inx
(fren)=5- | feoemax=5- [ xetax

0 n=0
—inx 7[ . 0 n=0
—J _xe 7—[n+ 1 f e—mxdx n#0 = (—1)+1 .
n = n#0

2min 2min

in
=0

Thus

(_1)n+1 2

n

1 2
:E Z |<f’en>|2:%-

nez

Y=y ¥
neN n2 2 nezZ, nZ0
Solution to Question 10. Assume that % = {e,} ¢ is an orthonormal ba-
sis. Since # is infinite dimensional we know that 98 has a countable sub-
set. Let #1 = {e,} ,en be such subset. Consider the vector

1

x=) —ep.

neN
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Since Y ,en # < oo we know that x is a well defined vector in # and that
the above is its basis representation. Indeed, defining

we find, by Pythagoras’s theorem, that

max(N,M)

ISy=Sml*=" Y =
: n
min(N,M)+1

Since ) ,en # < oo we find that {Sy} yen is Cauchy and since the space is
complete it must converge.
Moreover, since

(x) ea> ;é 0

for an infinite set of vectors from our orthonormal set we can’t find a finite
setF ={eq,,..., €q,} such that x € span¥. Thus % can’'t be a Hamel basis.
To show the second statement we notice that if # has a countable Hamel
basis & = {x,},,en then by the process of the Gran-Schmidt procedure we
would have found a countable orthonormal basis that is a Hamel basis.
Indeed, for any n € N we can find k(n) € N such that the orthonormal set
{e1,..., exm} satisfies

span{x,...,x,} =span{ei,..., exm}-
This contradicts the first part of the problem, giving us the desired result.

Solution to Question 11. For a given x € 7 and k € N we define the set
) 1
Mi.(x) = {l €| x,epnl= E}'

We claim that My (x) must be finite. Indeed, if we can find a sequence
{in}hen < 9 such that |(x, ein>| > % then

Y [xen )=

neN neN

1
— =o0.
k

However, since % = {e;,} _. isorthonormal, the above contradicts Bessel’s
inequality.

To conclude the proof we notice that

neN

1
(x,e;)#0 < |(x,e,->|2Ef0rsomek€N © i €UpenMi(x).

As M(x) = UrenMi(x) is a countable union of finite sets, it is countable,
and we just showed that for any i ¢ M (x) we must have that (x, e;) = 0.
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Solution to Question 12. We start by claiming that %+ = {0}. Indeed, if
y € %+ then since y is also in # we find that

0=(yy)=y|".
This implies that y = 0, showing that Z* = {0}.
Assume now that .#Z+ = {0}. Since . is closed we know from a previous
question that
M= M =0+
where the last identity follows from the fact that every vector is perpen-
dicular to the zero vector.

Solution to Question 13. Let 771 be the set of all orthonormal sets in 7.
111 # ¢ since # is not the trivial vector space. We define a partial order on
111 by inclusion and claim that if 771 has a maximal element, B4, then
K = spanPBmax Which, according to a theorem from class, implies that
PBmax is an orthonormal basis for #Z°.

Indeed, if this is not the case then we can find some x in # \ x, where
H = span%Bpax. Since % is aclosed subspace of # the vector Px € X is

well defined and v = x— Pg(x) is a non-zero vector in # 28 Consequently,
the set

3= ‘%"”‘U{n ||}

is an orthonormal set that is larger than 9%, which is a contradiction.
To show that we have a maximal element we will invoke Zorn’s lemma. In
order to do that we will need to show that the conditions of the lemma
hold, i.e. that every chain in 777 has an upper bound.

Let C be a chain in 771 and define

U =UgecA.

We claim that U is orthonormal. Indeed, if x;, x, € U then there exist
Aj,, Ay € C such that x; € A; and x» € A,. Since A; and A, are in a chain,
one of these sets contains the other. Without loss of generality A, < A;.
Thus, x1, x € A;, and since A; is an orthonormal set we conclude that x;
and x, are of norm 1 and are orthogonal. As x; and x, were arbitrary we
conclude that U is orthonormal and as such in 771. By the definition of
the partial order of 771 we have that A < U for any A € C. We conclude
that every chain in 777 have an upper bound and conclude the proof.



