Home Assignment 3

Exercise 1. Prove the following statement: The condition

(1) $\|x\|_2 \le c \|x\|_1$

for some c > 0 and all $x \in \mathcal{X}$ is equivalent to any (and all) of the following:

- (i) For any $x \in \mathcal{X}$ with $||x||_2 > 1$ we have that $||x||_1 > \frac{1}{c}$.
- (ii) For any $x \in \mathcal{X}$ with $||x||_2 \ge 1$ we have that $||x||_1 \ge \frac{1}{c}$.
- (iii) For any $x \in \mathcal{X}$ with $||x||_2 = 1$ we have that $||x||_1 \ge \frac{1}{c}$

Exercise 2. Prove the following statement: Let \mathscr{X} be a vector space and let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two norms on \mathscr{X} . Then if the topologies of the normed spaces $(\mathscr{X}, \|\cdot\|_1)$ and $(\mathscr{X}, \|\cdot\|_2)$ are equivalent we have that:

- (i) The sequence $\{x_n\}_{n \in \mathbb{N}} \subset \mathcal{X}$ converges to $x \in \mathcal{X}$ in $(\mathcal{X}, \|\cdot\|_1)$ if and only if it converges to x in $(\mathcal{X}, \|\cdot\|_2)$.
- (ii) The sequence $\{x_n\}_{n \in \mathbb{N}} \subset \mathcal{X}$ is Cauchy in $(\mathcal{X}, \|\cdot\|_1)$ if and only if it Cauchy in $(\mathcal{X}, \|\cdot\|_2)$.
- (iii) $(\mathcal{X}, \|\cdot\|_1)$ is a Banach space if and only if $(\mathcal{X}, \|\cdot\|_2)$ is.
- (iv) Given an additional normed space \mathscr{Y} we have that $f : \mathscr{Y} \to (\mathscr{X}, \|\cdot\|_1)$ is continuous if and only if $f : \mathscr{Y} \to (\mathscr{X}, \|\cdot\|_2)$ is.

Exercise 3. Show that for any $1 \le p, q \le \infty$ the norms

$$\|x\|_{p} = \begin{cases} \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{p}} & 1 \le p < \infty \\ \max_{i=1,\dots,n} |x_{i}| & p = \infty \end{cases}$$

are equivalent on \mathbb{R}^n or \mathbb{C}^n .

Hint: You may use without proof the following discrete Hölder inequality:

$$\sum_{i=1}^{n} |a_i b_i| \le \left(\sum_{i=1}^{n} |a_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |b_i|^q\right)^{\frac{1}{q}}.$$

where $p, q \in (1, \infty)$ are Hölder conjugates.

Exercise 4. Consider the space $\ell_p(\mathbb{N})$ for some $1 \le p < \infty$. Show that $\ell_p(\mathbb{N}) \subset_{\neq} \ell_{\infty}(\mathbb{N})$ and conclude that the norm of $\ell_{\infty}(\mathbb{N})$, $\|\cdot\|_{\infty}$, is a norm on $\ell_p(\mathbb{N})$. Show that this norm is not equivalent to the standard norm $\|\cdot\|_p$.

Exercise 5. Prove the following statement: The notion of equivalence of norms is transitive, i.e. if $\|\cdot\|_1$ is equivalent to $\|\cdot\|_2$ and $\|\cdot\|_2$ is equivalent to $\|\cdot\|_3$ then $\|\cdot\|_1$ is equivalent to $\|\cdot\|_3$

Exercise 6. Prove the following statement: Let $\{e_1, ..., e_n\}$ be a basis for a vector space \mathcal{X} . For a given $x \in \mathcal{X}$ let $\{\alpha_i(x)\}_{i=1,...,n}$ be the unique scalars such that

$$x = \sum_{i=1}^{n} \alpha_i(x) e_i.$$

Show that for any $x \in \mathcal{X}$ and any scalar β we have that

$$\alpha_i(\beta x) = \beta \alpha_i(x),$$

and for any $x, y \in \mathcal{X}$

$$\alpha_i(x+y) = \alpha_i(x) + \alpha_i(y)$$

Exercise 7. Prove the following statement: Any finite dimensional normed space $(\mathcal{X}, \|\cdot\|)$ is complete. Consequently, any finite dimensional subspace \mathcal{M} of a Banach space \mathcal{X} is closed.

Exercise 8. Show an improved version of F. Riesz's lemma in the special case where the space is an inner product space: Let \mathcal{H} be an inner product subspace and let \mathcal{M} be a closed subspace of \mathcal{H} . If $\mathcal{M} \neq \mathcal{H}$ then there exists $x \in \mathcal{H}$ of norm 1 such that

$$\inf_{y\in\mathcal{M}}\|x-y\|=1$$

Exercise 9. Let \mathscr{X} and \mathscr{Y} be vector spaces and assume that $T : \mathscr{X} \to \mathscr{Y}$ is linear and a bijection. Show that T^{-1} is also a linear operator.

Exercise 10. Consider the multiplication operator $M : (C[a, b], \|\cdot\|_{\infty}) \to (C[a, b], \|\cdot\|_{\infty})$ defined by

$$Mf(x) = m(x)f(x)$$

where $m \in C[a, b]$. Show that *M* is a linear bounded operator.

Exercise 11. Consider the kernel operator $K : (C[a, b], \|\cdot\|_{\infty}) \to (C[a, b], \|\cdot\|_{\infty})$ defined by

$$Kf(x) = \int_{a}^{b} k(x, y) f(y) dy,$$

where $k(x, y) \in C([a, b] \times [a, b])$. Show that *K* is a linear bounded operator.

Exercise 12. Prove the following statement: Let \mathscr{X} and \mathscr{Y} be two normed spaces and let $T : \mathscr{D}(T) \subseteq \mathscr{X} \to \mathscr{Y}$ be a linear operator. If dim $\mathscr{D}(T) < \infty$ then *T* is bounded.

Exercise 13. Let \mathscr{X} and \mathscr{Y} be normed spaces and let $T \in L(\mathscr{X}, \mathscr{Y})$. Show that *T* is bounded if and only if *T* maps bounded sets into bounded sets.

Exercise 14. Prove the following statement: Let \mathscr{X} and \mathscr{Y} be two normed spaces and let $T : \mathscr{D}(T) \subset \mathscr{X} \to \mathscr{Y}$ be a bounded linear operator. If \mathscr{Y} is a Banach space, then *T* can be uniquely extended to $\overline{\mathscr{D}(T)}$, i.e. there exists a unique linear bounded operator $\widetilde{T} : \overline{\mathscr{D}(T)} \subset \mathscr{X} \to \mathscr{Y}$ such that $\widetilde{T}|_{\mathscr{D}(T)} = T$. Moreover

$$\sup_{x\in\overline{\mathscr{D}(T)},\ x\neq 0}\frac{\left\|\widetilde{T}x\right\|}{\left\|x\right\|} = \sup_{x\in\overline{\mathscr{D}(T)},\ x\neq 0}\frac{\left\|Tx\right\|}{\left\|x\right\|}.$$