Functional Analysis and Applications Michaelmas 2023

Department of Mathematical Sciences, Durham University

Solution to Home Assignment 3

Solution to Question 1. Much like in class, it is immediate to notice that
(1) implies () — (iii). Since || x|l = 1 implies [l x|| = 1 itis also clear that (ii)
implies (ii7). In order to conclude the desired result we will show that (i)
implies (i) and that (iii) implies (1).

Assume that (i) holds and let x € & be such that || x||; = 1. Forany 0 < € <
1 define x. = ;. We find that

(B3P

——>1
llxe 2 _¢

and as (i) holds we find that
[E
1-¢

As the aibove holds for all 0 < € < 1, taking € to zero yields the inequality

lxll = ¢

Next we assume that (ii7) hold and consider x € 2. If x = 0 then (1) holds

trivially for any ¢ > 0. We can assume, therefore, that x # 0 and define

Yx = [ap;- We have that || yx [, = 1 and as (ii7) holds we conclude that

Pyl =

= y =
lxll2 c
which can be re-arranged to be | x|, < c [l x||;. Together with the case x =0
we conclude the proof.

= ”xs”l > -

Solution to Question 2. (i) Letusstart by assuming that there exists ¢ >
0 such that for any x € 2 we have that

xllz2 < cllxlly
and let {x,},en € X be a sequences that converges to x € Z in |-]|;.
Then by the pinching lemma we have that
O<lx—xplla=cllx—xul;

which shows that {x,},cn © 2 converges to x € 2 in [|-|l,. A sym-
metric argument shows that if there exists ¢ > 0 such that

1
lxll2 = = llxll
c

then if {x,},eny € converges to x € 2 in |-|l, then it must also con-
verge in ||-|l;. Combing the above with the fact that the topologies
of normed spaces are equal if and only if there exists c;, c2 > 0 such
that
Nl
c

< lxllz = cllxlh
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shows the first statement.
(ii) As we see from the above solution, due to the symmetry of the con-
dition, it is enough for us to show that the condition

xll2 =< cllxlly

implies that if {x,},en € 2 is Cauchy in ||-||; then it must be Cauchy
in [|-|l, as well. Indeed, given € > 0 we can find ny € N such that for
any n, m = ng we have that

€
”xn_xm”1<_-
c
Consequently, for any n, m = ny
”xn _xmllz = C”xn _xm”1 <E.

(iii) Assumethat (Z,|-ll;)is Banach and let {x,},cn be a Cauchy sequence
in |-]l2. According to the previous sub-question we know that as the
topologies are equivalent {x,},cy is Cauchy in |-[l;. Since (Z,I-lI;)
is Banach, there exists x € 2 such that {x;},,cny € 2 converges to
x € X in ||I-|l;. As was seen in the first sub-question this implies that
{Xn}nen € & converges to x € X in |||, which shows that (2, [|-]l») is
a Banach space. Replacing ||-||; with |||, proves the equivalence.

(iv) Again, it is enough to show only on direction. Let f: (Z,|-l;) —
% be continuous and assume that {x,},n converges to x in |-]l,.
According to the first sub-question we know that {x,},cn converges
to x in |-l;. As f is continuous under that topology we know that
lim,,— f(x,) = f(x), which shows the continuity under |-|5.

Solution to Question 3. We start with the case 1 < p < oo and g = co. By
definition

1 1
n P n P
max x| <|) [P <[). 1| max |xl
= i=1 L

i=1,.., i=1 =1,..,n
which shows that

1
(1) [xlleo = Ixllp = P | Xl oo -

The above inequalities are sharp as the standard basis vector e; = (1,0,...,0)
(or any other standard basis choice) gives equality on the left hand side
and the vector a = (1,1,...,1) gives equality on the right hand side.

Next, we consider the case 1 < p < g < co. Using the discrete Holder
inequality we find that with the choice r = % and its Holder conjugate

/ q
r = ——
q-p

*:\l —

1

n n T n ,
Yolxil? =) 1™ 1
i=1 i=1 i=1



from which we get that
a-p
lxllp =n v llxllg.
In addition,
n _ n _ n

2 1xil T < 1xlds P Y 1xal” < el P 3 1xl? | = lxll .

i=1 i=1 =1
Adding these two observations we conclude that in this case

ap

2) lxllg<llxll,=nrallxlg.

These inequalities are, again, sharp by choosing e; and a again.

Solution to Question 4. We start by noticing thatif a € £,, (N) for some 1 <
p <oothenlim,_ a, =0, and as such the sequence {a,} ¢ is bounded,
i.e. belongs to ¢ (N). Since the addition and scalar multiplication that is
defined in all of £, (N) —s, 1 < p < oo, is identical we conclude that ¢, (N)
is a subspace of ¢, (N) and as such we can consider the induced/re-
stricted norm |||, on it.

Next, we notice that forany n e N

1
v
lanl < | ) lalP| =llal,.
keN
Taking the supremum over n € N gives us

lale < llallp .

The converse, however, doesn’t hold. Indeed, consider the vectors

a,=) e;=|11,..., 1,  ,0,...
=1 n—th position
we see that
lanlle =1
1
lanll, = nv,

which shows that there can’t be a constant ¢ > 0 such that
lal <cllals

for all a € ¢, (N) since that would have implied that

1
nr =laply<clanlleo=c

for all n € N. Consequently the norm ||-||, and |- ||, are not equivalent on
¢, (N).
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Solution to Question 5. We assume that ||-||; is equivalent to ||-||, and |||,
is equivalent to |-||3. This implies that we can find constants ¢ > 0 and
d > 0 such that
x4
— =<lxlz=clxl,
c
and
1 xl2
—— =<lxllz=dlxll.
d
Combining the above we see that

lxIly
—— =<|xlz=cdlxll,
cd

which shows that |- ||; is equivalent to |-| 3.

Solution to Question 6. Let x € 2" and f € [ be given and assume that
{a;(x)};=1 ., are the unique scalars such that

.....

X= a;(x)e;.

n
i=1

1=

Then, by definition,
n
Bx=) a;(px)e;.
i=1

On the other hand,

px=p (Xn: ai(x)ei) = Xn: (Bai(x)e;.
i=1 i=1

From the uniqueness of the coefficients we must have that a; ( ,Bx) = Pa;(x)
foralli=1,...,n.
Similarly, for any x, y € 2 we have that

n
x+y=)Y ai(x+ye;
i=1
and
n n n
x+y=) aixei+) ai(yei=) (aix)+a;(y)e;,
i=1 i=1 i=1

which implies, due to the uniqueness of the coefficients again, that
a;j(x+y)=a;(x)+a;(y)

foralli=1,...,n.
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Solution to Question 7. Let 2" be a finite dimensional normed space.
From a previous question we know that if if two norms, |-|l; and |-|l,,
are equivalent then (X, ||-|l;) is a Banach space if and only if (2, [-]l2) is,
and since we know from class that all the norms are equivalent on a fi-
nite dimensional normed space, we conclude that it is enough for us to
find a norm on & under which it is a Banach space. We will consider the
Euclidean-like norm, defined in class:

I Xl Euctia =

d
Y lai(x)?
i=1

where x = Z?:l a;(x)e; is the unique representation of x with respect to a
basis {ey,..., e;} of . We know that it is anorm on .
Consider a Cauchy sequence {x,} . Since for any j € {1,...,d}

d
|afj(xn)_aj(xm)|:|(/¥j(xn_xm)|S 2:|05j(xn_xm)|2
i=1

2
= Z |aj (xn) —a; (xm)| = 1 xn — Xmllguclid
i=1

we see that {a; (x,)},en is Cauchy in F for any i = 1,...,d and conse-
quently it must converge to a scalar a;. We define

d
x=) aie;€X
i=1
and notice that
d
1xn = Xl guciia = 4| X @i (xn) — a;l? 2.0

i=1

This implies that (2, || lguciiqd) is @ Banach space, which is what we wanted
to show.

Solution to Question 8. Let .# be a closed subspace of # that is not #Z
and let v e Z \ /. Since ./ is a closed subspace of 7, P 4 v is a well
defined vector in .Z, and since v ¢ .# we have that v # P 4v. Moreover,
v—Pyv L . Define
v—-Pyv
X=——.
lv—Pauuvl
We find that ||x|| = 1 and since x L .Z

lx=yl=V1+]y[" 21,
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for any y € /. We have that

inf Jx- =1

Since, in addition,
inf [|x—y||=lx-0l=1
yel

we conclude that
it -y =1.
Solution to Question 9. Since T is a bijection from 2" to % we know that
themap 77! : % — 2 exists and satisfies
TT'=Idy, T 'T=Idg.
Let y1, y2 € % . We have that
y+y2=T(T7 (y1+y2).
On the other hand

=T(T™! T(T™! = T(17! T 1y,).
N+y=T(T" n)+T( J’z)TeL(m%( yi+T 7 y)

We conclude that
T(T (n+32)) =T (T '+ T y2),
which implies, due to the injectivity of T, that
T (n+y2) =T ' n+T 'y
Similarly, for any x € 2 and a scalar § we have that

-1 _ -1 _ _ -1
T (ﬁTx)TEL&’%T (T(Bx))=Bx=pT ' Tx.

For a given y € % we can find x), € 2 such that T'x, = y. Using the above
we conclude that

T~ (By) = Bxy =BT 'y
which concludes the linearity of T7!.

Solution to Question 10. The linearity follows from the fact that for any
functions f and g

m(x) (f(x) + g(x) = m(x) f(x) + m(x)g(x),
and for any function f and scalar a
m(x) (af(x)) = am(x) f(x).
The boundedness follows from the fact that for any f € Cla, b]

|m(x) f(x0)| = 1m(x)||f(x)] < (n%a%] |m(z)|) |f)] = Imllo | f0)],



which implies that for any f € Cla, b]

[Mflloo= max |MFE)| < lImlo max [£00] = Imleo] f]leo-

Solution to Question 11. We start by noticing that since k € C([a, b] x [a, b])
and f € Cla,b] we have that k(x,y) f(x) € C(la,b] x [a, b]) and as such
integrable. Known results from Analysis show that K f € C[a, b]. Let us
prove it:

b
|[Kf(x)-Kfy)|= ‘ f (k(x,2) - k(y,2)) f(2)dz
a

b b
sf |k(x,z)—k(y,z)||f(z)|dzs supb \k(x,z)—k(y,z)|f |f(z)|dz.
a z€la,b] a

Since k € C([a, b] x [a, b]) and [a, b] x [a, b] is compact, k is uniformly con-
tinuous on it, meaning that for any € > 0 there exists § > 0 such that if

\/(xl —x2)%+ (31— J/2)2 <6 then
|k(x1,J/1) - k(Xz,y2)| <E.

Thus, if |x — y| < § we find that \/(x—y)2+(z—z)2 <& and

b
[Kf-Kfm| e [ |l az
N

fixed constant

which shows the continuity.
Next we show the linearity: Given fi, f> € Cla, b] and a scalar a we see
from the properties of integration that

b b
K(fi+1) (x)=f k(x,y) (fl(y)+fz(y))dy=f k(x, y) Ai(ydy
a a

b
+f k(x,y)L(»)dy = K f1(x) + K fo(x)

and

b b
K(af) (x):f k(x,y) (af) (y)dy:af k(x, ) f(y)dy = aKf(x),
a a

which shows the desired properties.
Lastly we notice that for any x € [a, b]
[Kf )| =

b b
f k(x,y)f(y)dy sf |k, n||f)|dy

b
<l | ke lay.
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Thus

b b
IKfllo= sup || |kp|dy|||fle=|max | [k n|dy]|f]
x€la,b] \Ya a

x€la,b]

from which we conclude the boundedness of K. Note that the last equal-

ity holds due to the fact that | f |k(x, y)| dy is a continuous function of
X.

Solution to Question 12. Since 9 (T) is finite dimensional we can find a
basisforit, {ey, ..., e,}. Any x € 2 can be written uniquely as x = Zi:l ai(x)e;.
Consequently, any linear operator T : 9 (T) — ¥ satisfies

<) lai(x)| I Te;ll < \/Z Iai(x)lz\/z I Te;1I>.
i=1 i=1 i=1

We know that as & (T) is finite dimensional all the norms on it are equiv-
alent. Much like in the lectures we know that

Y ai@ei|| = /> laix)?
i=1 2 i=1

isanorm on X and as such there there exists ¢ > 0 such that

I Tx|l =

n
Y ai(x)Te;
i=1

lxll2 =

Ixll2 < cllx]l.

Consequently

n n
ITxll < Ilelz\/Z I Te;ll” < C\/Z I Te 11?1,
i:l l=1

which shows that T is bounded.

Solution to Question 13. We start by assuming that T is bounded. Let B
be a bounded set. Then, there exists M > 0 such that ||x|| < M for any
x € B. Since T is bounded there exists C > 0 such that for any x € 2

ITxIl < Cllxl

and consequently
sup||Tx||<supClx||<CM

X€EB X€B
which shows one direction.
Let us now assume that T takes bounded sets to bounded sets. This im-
plies that sup,c g, |xj=1 | TXIl < oo and consequently, as we saw in class, T
is bounded.
We enclose the proof: Consider the set B = {x€ 2 | || x| =1}. As B is
bounded we know that there exists C > 0 such that sup, 5 | Tx|l = C < co.
We claim that for any x € 2” we have that

ITxIl < Cllixl
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which will show the boundedness. As the above holds trivially for x =0
we can assume without loss of generality that x # 0. Defining y, = - we

(B
find that || yx|| = 1 and thus
ITxIl

X
i R

x| x|
which gives us the desired inequality.

Solution to Question 14. Let x € 2 (T) \ & (T) be given and let {x,},,en ©
2 (T) be a sequence that converges to x. Since every converging se-
quence is Cauchy and since T is bounded we see that for any n,m e N

” Txn_ Txm” = ”T(xn_xm)” = C”xn_xm” .

We conclude that {Tx,},¢y is also Cauchy (we saw this argument in a
previous question) and since % is a Banach space there exists y € % such
that lim,,_.o, Tx;, = y. We would like to define Tx= ¥, but in order to do
that we must show that the limit we found doesn’t depend on the choice
of the sequence {x},en-

Indeed, assume that {x,} ,en , {20} nen € 9 (T) both converge to x. Accord-
ing to what we've just shown, there exist y, and y, in % such that

Txp — Yx and Txp — ys.
n—oo n—oo

Defining the sequence

fn:{x% n=2k

Zok+1 NM=2k+1

which is also in 9 (T) and converges to xﬂand as such there exists y; such

that
However

Téon=Tx2n — yx
n—oo
Téon+1=Tzene1 — ¥z
n—oo
which shows that, due to the uniqueness of the limit and the fact that

subsequences of a converging sequence must converge to the same limit,
Yx = ¥z = ye. In other words, defining

Tx= lim Tx,
n—oo

1Given £ > 0 we find ni,n2 € N such that if n = n; we have that || x,, — x| < € and if
n = ny we have that ||z, — z|l < €. Then for any n = max{n;, np} we have that

15— xll = max{llx, — x|, llz, — x|} <e.
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where {x,},en € D (T) converges to x € D (T)\ D (T) doesn’t depend on
the choice of the sequence. We define

Tx— Tx, xEQZ(T),
B limy—.co TXp, X€D(TY\D(T), {xn}nen € D (T) converges to x.

and show that it is continuous and linear. We start by noticing that due
to the continuity of T on D (T), if {x,,} ,en € D (T) converges to x € D (T)
then
Tx=Tx= lim Tx,.
n—oo

This implies that we can define T on @ (T) as

Tx= lim Txy,, XeD(M\D(T), {xn}pen €D (T) converges to x.

n—oo

Consequently, for any x, y € 2 (T) we can find sequences {x,,} ,en » { y”}neN c
2 (T) such that x, X and yj, ¥ and since x, + y;, s Xtywe
—00 —00 —00

have that
T(x+y)= r}i_{roloT(xn+yn) = ,}ij{)lo(Txn+ Tyn)=Tx+Ty.

Similarly, for any given scalar a we have that and ax, . ax and as such

—00
T(ax)= lim T (ax,) = lim (aTx,)=aTx,
n—oo n—oo
which proves the linearity of the extension.

Next we focus on showing identity (2), which will imply boundedness of
T, as we saw in class. We starting by finding that

[ES I7x] _ | 7]
sup  ——— 2> — = up .
x€D(T), X0 Il x| xe(T), x20 x|l Tlgmy=1 xD(T), x#0 llxl

To show the reverse inequality we start by noticing that for any x € 2 (T)

(including x = 0)
I Txl
I Tx|l < sup ——|llx]l.

xX€D(T), x£0 [l xI]

Let x € 2 (T) and let {x,} ,en € D (T) converge to x. Then due to the con-
tinuity of the norm we see that

~ . o I T x| I Tx]
|Tx| = lim [ Tx,l <liminf{] sup ——|llx,ll= sup llxll,
n—oco n=00 | xea(1), x#0 [1XIl e (1), x#0 X

from which we conclude that for any x € & (T) that is not zero

| 7] <( || Txu)
— < sup ,

Il xea(T), xz0 11Xl
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and taking the supremum in the above over & (T) \ {0} gives the desired
second inequality. We thus conclude (2).

Lastly, The uniqueness of the extension follows from the fact that it is
continuous on ¥ (T) and equals to T on & (T). Indeed, assume that S is a
continuous extension of T and let x € & (T). There exists {x,},,en € D (T)
that converges to x and we must have that

Sx=1lim Sx, = lim Tx,=Tx.
n—oo Slgr)=T n—o0

As x was arbitrary we have that S=T.



