Solution to Home Assignment 3

Solution to Question 1. Much like in class, it is immediate to notice that (1) implies (i) - (iii). Since $\|x\|=1$ implies $\|x\| \geq 1$ it is also clear that ($i i$) implies (i ii). In order to conclude the desired result we will show that (i) implies ($\mathrm{i} i$) and that ($\mathrm{i} i \mathrm{i}$) implies (1).
Assume that (i) holds and let $x \in \mathscr{X}$ be such that $\|x\|_{2} \geq 1$. For any $0<\varepsilon<$ 1 define $x_{\varepsilon}=\frac{x}{1-\varepsilon}$. We find that

$$
\left\|x_{\varepsilon}\right\|_{2}=\frac{\|x\|_{2}}{1-\varepsilon}>1,
$$

and as (i) holds we find that

$$
\frac{\|x\|_{1}}{1-\varepsilon}=\left\|x_{\varepsilon}\right\|_{1}>\frac{1}{c} .
$$

As the above holds for all $0<\varepsilon<1$, taking ε to zero yields the inequality $\|x\|_{1} \geq \frac{1}{c}$.
Next we assume that (iii) hold and consider $x \in \mathscr{X}$. If $x=0$ then (1) holds trivially for any $c>0$. We can assume, therefore, that $x \neq 0$ and define $y_{x}=\frac{x}{\|x\|_{2}}$. We have that $\left\|y_{x}\right\|_{2}=1$ and as (iii) holds we conclude that

$$
\frac{\|x\|_{1}}{\|x\|_{2}}=\left\|y_{x}\right\|_{1} \geq \frac{1}{c}
$$

which can be re-arranged to be $\|x\|_{2} \leq c\|x\|_{1}$. Together with the case $x=0$ we conclude the proof.
Solution to Question 2. (i) Let us start by assuming that there exists $c>$ 0 such that for any $x \in \mathscr{X}$ we have that

$$
\|x\|_{2} \leq c\|x\|_{1}
$$

and let $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset \mathscr{X}$ be a sequences that converges to $x \in \mathscr{X}$ in $\|\cdot\|_{1}$. Then by the pinching lemma we have that

$$
0 \leq\left\|x-x_{n}\right\|_{2} \leq c\left\|x-x_{n}\right\|_{1}
$$

which shows that $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset \mathscr{X}$ converges to $x \in \mathscr{X}$ in $\|\cdot\|_{2}$. A symmetric argument shows that if there exists $c>0$ such that

$$
\|x\|_{2} \geq \frac{1}{c}\|x\|_{1}
$$

then if $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset \mathscr{X}$ converges to $x \in \mathscr{X}$ in $\|\cdot\|_{2}$ then it must also converge in $\|\cdot\|_{1}$. Combing the above with the fact that the topologies of normed spaces are equal if and only if there exists $c_{1}, c_{2}>0$ such that

$$
\frac{\|x\|_{1}}{c} \leq\|x\|_{2} \leq c\|x\|_{1}
$$

shows the first statement.
(ii) As we see from the above solution, due to the symmetry of the condition, it is enough for us to show that the condition

$$
\|x\|_{2} \leq c\|x\|_{1}
$$

implies that if $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset \mathscr{X}$ is Cauchy in $\|\cdot\|_{1}$ then it must be Cauchy in $\|\cdot\|_{2}$ as well. Indeed, given $\varepsilon>0$ we can find $n_{0} \in \mathbb{N}$ such that for any $n, m \geq n_{0}$ we have that

$$
\left\|x_{n}-x_{m}\right\|_{1}<\frac{\varepsilon}{c} .
$$

Consequently, for any $n, m \geq n_{0}$

$$
\left\|x_{n}-x_{m}\right\|_{2} \leq c\left\|x_{n}-x_{m}\right\|_{1}<\varepsilon .
$$

(iii) Assume that $\left(\mathscr{X},\|\cdot\|_{1}\right)$ is Banach and let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a Cauchy sequence in $\|\cdot\|_{2}$. According to the previous sub-question we know that as the topologies are equivalent $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is Cauchy in $\|\cdot\|_{1}$. Since $\left(\mathscr{X},\|\cdot\|_{1}\right)$ is Banach, there exists $x \in \mathscr{X}$ such that $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset \mathscr{X}$ converges to $x \in \mathscr{X}$ in $\|\cdot\|_{1}$. As was seen in the first sub-question this implies that $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset \mathscr{X}$ converges to $x \in \mathscr{X}$ in $\|\cdot\|_{2}$, which shows that $\left(\mathcal{X},\|\cdot\|_{2}\right)$ is a Banach space. Replacing $\|\cdot\|_{1}$ with $\|\cdot\|_{2}$ proves the equivalence.
(iv) Again, it is enough to show only on direction. Let $f:\left(\mathscr{X},\|\cdot\|_{1}\right) \rightarrow$ \mathscr{y} be continuous and assume that $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ converges to x in $\|\cdot\|_{2}$. According to the first sub-question we know that $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ converges to x in $\|\cdot\|_{1}$. As f is continuous under that topology we know that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(x)$, which shows the continuity under $\|\cdot\|_{2}$.

Solution to Question 3. We start with the case $1<p<\infty$ and $q=\infty$. By definition

$$
\max _{i=1, \ldots, n}\left|x_{i}\right| \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}} \leq\left(\sum_{i=1}^{n} 1\right)^{\frac{1}{p}} \max _{i=1, \ldots, n}\left|x_{i}\right|
$$

which shows that

$$
\begin{equation*}
\|x\|_{\infty} \leq\|x\|_{p} \leq n^{\frac{1}{p}}\|x\|_{\infty} . \tag{1}
\end{equation*}
$$

The above inequalities are sharp as the standard basis vector $\boldsymbol{e}_{1}=(1,0, \ldots, 0)$ (or any other standard basis choice) gives equality on the left hand side and the vector $a=(1,1, \ldots, 1)$ gives equality on the right hand side.
Next, we consider the case $1<p<q<\infty$. Using the discrete Hölder inequality we find that with the choice $r=\frac{q}{p}$ and its Hölder conjugate $r^{\prime}=\frac{q}{q-p}$

$$
\sum_{i=1}^{n}\left|x_{i}\right|^{p} \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{r p}\right)^{\frac{1}{r}}\left(\sum_{i=1}^{n} 1^{r^{\prime}}\right)^{\frac{1}{r^{\prime}}}
$$

from which we get that

$$
\|x\|_{p} \leq n^{\frac{q-p}{p q}}\|x\|_{q} .
$$

In addition,

$$
\sum_{i=1}^{n}\left|x_{i}\right|^{q} \leq\|x\|_{\infty}^{q-p} \sum_{i=1}^{n}\left|x_{i}\right|^{p} \leq\|x\|_{p}^{q-p}\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)=\|x\|_{p}^{q} .
$$

Adding these two observations we conclude that in this case

$$
\begin{equation*}
\|x\|_{q} \leq\|x\|_{p} \leq n^{\frac{q-p}{p q}}\|x\|_{q} . \tag{2}
\end{equation*}
$$

These inequalities are, again, sharp by choosing \boldsymbol{e}_{1} and a again.

Solution to Question 4. We start by noticing that if $\boldsymbol{a} \in \ell_{p}(\mathbb{N})$ for some $1 \leq$ $p<\infty$ then $\lim _{n \rightarrow \infty} a_{n}=0$, and as such the sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is bounded, i.e. belongs to $\ell_{\infty}(\mathbb{N})$. Since the addition and scalar multiplication that is defined in all of $\ell_{p}(\mathbb{N})-\mathrm{s}, \mathrm{l} \leq p \leq \infty$, is identical we conclude that $\ell_{p}(\mathbb{N})$ is a subspace of $\ell_{\infty}(\mathbb{N})$ and as such we can consider the induced/restricted norm $\|\cdot\|_{\infty}$ on it.
Next, we notice that for any $n \in \mathbb{N}$

$$
\left|a_{n}\right| \leq\left(\sum_{k \in \mathbb{N}}\left|a_{k}\right|^{p}\right)^{\frac{1}{p}}=\|\boldsymbol{a}\|_{p}
$$

Taking the supremum over $n \in \mathbb{N}$ gives us

$$
\|\boldsymbol{a}\|_{\infty} \leq\|\boldsymbol{a}\|_{p}
$$

The converse, however, doesn't hold. Indeed, consider the vectors

$$
\boldsymbol{a}_{n}=\sum_{i=1}^{n} \boldsymbol{e}_{i}=(1,1, \ldots, \underbrace{1}_{n \text {-th position }}, 0, \ldots) .
$$

we see that

$$
\begin{gathered}
\left\|\boldsymbol{a}_{n}\right\|_{\infty}=1 \\
\left\|\boldsymbol{a}_{n}\right\|_{p}=n^{\frac{1}{p}}
\end{gathered}
$$

which shows that there can't be a constant $c>0$ such that

$$
\|\boldsymbol{a}\| \leq c\|\boldsymbol{a}\|_{\infty}
$$

for all $\boldsymbol{a} \in \ell_{p}(\mathbb{N})$ since that would have implied that

$$
n^{\frac{1}{p}}=\left\|\boldsymbol{a}_{n}\right\|_{p} \leq c\left\|\boldsymbol{a}_{n}\right\|_{\infty}=c
$$

for all $n \in \mathbb{N}$. Consequently the norm $\|\cdot\|_{p}$ and $\|\cdot\|_{\infty}$ are not equivalent on $\ell_{p}(\mathbb{N})$.

Solution to Question 5. We assume that $\|\cdot\|_{1}$ is equivalent to $\|\cdot\|_{2}$ and $\|\cdot\|_{2}$ is equivalent to $\|\cdot\|_{3}$. This implies that we can find constants $c>0$ and $d>0$ such that

$$
\frac{\|x\|_{1}}{c} \leq\|x\|_{2} \leq c\|x\|_{1}
$$

and

$$
\frac{\|x\|_{2}}{d} \leq\|x\|_{3} \leq d\|x\|_{2}
$$

Combining the above we see that

$$
\frac{\|x\|_{1}}{c d} \leq\|x\|_{3} \leq c d\|x\|_{1},
$$

which shows that $\|\cdot\|_{1}$ is equivalent to $\|\cdot\|_{3}$.
Solution to Question 6. Let $x \in \mathscr{X}$ and $\beta \in \mathbb{F}$ be given and assume that $\left\{\alpha_{i}(x)\right\}_{i=1, \ldots, n}$ are the unique scalars such that

$$
x=\sum_{i=1}^{n} \alpha_{i}(x) e_{i} .
$$

Then, by definition,

$$
\beta x=\sum_{i=1}^{n} \alpha_{i}(\beta x) e_{i} .
$$

On the other hand,

$$
\beta x=\beta\left(\sum_{i=1}^{n} \alpha_{i}(x) e_{i}\right)=\sum_{i=1}^{n}\left(\beta \alpha_{i}(x)\right) e_{i} .
$$

From the uniqueness of the coefficients we must have that $\alpha_{i}(\beta x)=\beta \alpha_{i}(x)$ for all $i=1, \ldots, n$.
Similarly, for any $x, y \in \mathscr{X}$ we have that

$$
x+y=\sum_{i=1}^{n} \alpha_{i}(x+y) e_{i}
$$

and

$$
x+y=\sum_{i=1}^{n} \alpha_{i}(x) e_{i}+\sum_{i=1}^{n} \alpha_{i}(y) e_{i}=\sum_{i=1}^{n}\left(\alpha_{i}(x)+\alpha_{i}(y)\right) e_{i},
$$

which implies, due to the uniqueness of the coefficients again, that

$$
\alpha_{i}(x+y)=\alpha_{i}(x)+\alpha_{i}(y)
$$

for all $i=1, \ldots, n$.

Solution to Question 7. Let \mathscr{X} be a finite dimensional normed space. From a previous question we know that if if two norms, $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$, are equivalent then $\left(\mathcal{X},\|\cdot\|_{1}\right)$ is a Banach space if and only if $\left(X,\|\cdot\|_{2}\right)$ is, and since we know from class that all the norms are equivalent on a finite dimensional normed space, we conclude that it is enough for us to find a norm on \mathscr{X} under which it is a Banach space. We will consider the Euclidean-like norm, defined in class:

$$
\|x\|_{\text {Euclid }}=\sqrt{\sum_{i=1}^{d}\left|\alpha_{i}(x)\right|^{2}}
$$

where $x=\sum_{i=1}^{d} \alpha_{i}(x) e_{i}$ is the unique representation of x with respect to a basis $\left\{e_{1}, \ldots, e_{d}\right\}$ of \mathscr{X}. We know that it is a norm on \mathscr{X}.
Consider a Cauchy sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$. Since for any $j \in\{1, \ldots, d\}$

$$
\begin{gathered}
\left|\alpha_{j}\left(x_{n}\right)-\alpha_{j}\left(x_{m}\right)\right|=\left|\alpha_{j}\left(x_{n}-x_{m}\right)\right| \leq \sqrt{\sum_{i=1}^{d}\left|\alpha_{j}\left(x_{n}-x_{m}\right)\right|^{2}} \\
=\sqrt{\sum_{i=1}^{d}\left|\alpha_{j}\left(x_{n}\right)-\alpha_{i}\left(x_{m}\right)\right|^{2}}=\left\|x_{n}-x_{m}\right\|_{\text {Euclid }}
\end{gathered}
$$

we see that $\left\{\alpha_{i}\left(x_{n}\right)\right\}_{n \in \mathbb{N}}$ is Cauchy in \mathbb{F} for any $i=1, \ldots, d$ and consequently it must converge to a scalar α_{i}. We define

$$
x=\sum_{i=1}^{d} \alpha_{i} e_{i} \in \mathscr{X}
$$

and notice that

$$
\left\|x_{n}-x\right\|_{\text {Euclid }}=\sqrt{\sum_{i=1}^{d}\left|\alpha_{i}\left(x_{n}\right)-\alpha_{i}\right|^{2}} \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

This implies that $\left(\mathscr{X},\|\cdot\|_{\text {Euclid }}\right)$ is a Banach space, which is what we wanted to show.

Solution to Question 8. Let \mathscr{M} be a closed subspace of \mathscr{H} that is not \mathscr{H} and let $v \in \mathscr{H} \backslash \mathscr{M}$. Since \mathscr{M} is a closed subspace of $\mathscr{H}, P_{\mathscr{M}} v$ is a well defined vector in \mathscr{M}, and since $v \notin \mathscr{M}$ we have that $v \neq P_{\mathscr{M}} \nu$. Moreover, $\nu-P_{\mathscr{M}} v \perp \mathscr{M}$. Define

$$
x=\frac{v-P_{\mathscr{M}} v}{\left\|v-P_{\mathscr{M}} v\right\|} .
$$

We find that $\|x\|=1$ and since $x \perp \mathscr{M}$

$$
\|x-y\|=\sqrt{1+\|y\|^{2}} \geq 1
$$

for any $y \in \mathscr{M}$. We have that

$$
\inf _{y \in \mathscr{M}}\|x-y\| \geq 1
$$

Since, in addition,

$$
\inf _{y \in \mathscr{M}}\|x-y\| \leq\|x-0\|=1
$$

we conclude that

$$
\inf _{y \in, \mathcal{M}}\|x-y\|=1
$$

Solution to Question 9. Since T is a bijection from \mathscr{X} to \mathscr{y} we know that the map $T^{-1}: \mathscr{Y} \rightarrow \mathcal{X}$ exists and satisfies

$$
T T^{-1}=I d_{y}, \quad T^{-1} T=I d_{x} .
$$

Let $y_{1}, y_{2} \in \mathscr{Y}$. We have that

$$
y_{1}+y_{2}=T\left(T^{-1}\left(y_{1}+y_{2}\right)\right) .
$$

On the other hand

$$
y_{1}+y_{2}=T\left(T^{-1} y_{1}\right)+T\left(T^{-1} y_{2}\right) \underset{T \in L(x, \mathscr{Y})}{=} T\left(T^{-1} y_{1}+T^{-1} y_{2}\right) .
$$

We conclude that

$$
T\left(T^{-1}\left(y_{1}+y_{2}\right)\right)=T\left(T^{-1} y_{1}+T^{-1} y_{2}\right)
$$

which implies, due to the injectivity of T, that

$$
T^{-1}\left(y_{1}+y_{2}\right)=T^{-1} y_{1}+T^{-1} y_{2}
$$

Similarly, for any $x \in \mathscr{X}$ and a scalar β we have that

$$
T^{-1}(\beta T x) \underset{T \in L(x, y)}{=} T^{-1}(T(\beta x))=\beta x=\beta T^{-1} T x
$$

For a given $y \in \mathscr{Y}$ we can find $x_{y} \in \mathscr{X}$ such that $T x_{y}=y$. Using the above we conclude that

$$
T^{-1}(\beta y)=\beta x_{y}=\beta T^{-1} y
$$

which concludes the linearity of T^{-1}.
Solution to Question 10. The linearity follows from the fact that for any functions f and g

$$
m(x)(f(x)+g(x))=m(x) f(x)+m(x) g(x)
$$

and for any function f and scalar α

$$
m(x)(\alpha f(x))=\alpha m(x) f(x)
$$

The boundedness follows from the fact that for any $f \in C[a, b]$

$$
|m(x) f(x)|=|m(x)||f(x)| \leq\left(\max _{z \in[a, b]}|m(z)|\right)|f(x)|=\|m\|_{\infty}|f(x)|
$$

which implies that for any $f \in C[a, b]$

$$
\|M f\|_{\infty}=\max _{x \in[a, b]}|M f(x)| \leq\|m\|_{\infty} \max _{x \in[a, b]}|f(x)|=\|m\|_{\infty}\|f\|_{\infty}
$$

Solution to Question 11. We start by noticing that since $k \in C([a, b] \times[a, b])$ and $f \in C[a, b]$ we have that $k(x, y) f(x) \in C([a, b] \times[a, b])$ and as such integrable. Known results from Analysis show that $K f \in C[a, b]$. Let us prove it:

$$
\begin{gathered}
|K f(x)-K f(y)|=\left|\int_{a}^{b}(k(x, z)-k(y, z)) f(z) d z\right| \\
\leq \int_{a}^{b}|k(x, z)-k(y, z)||f(z)| d z \leq \sup _{z \in[a, b]}|k(x, z)-k(y, z)| \int_{a}^{b}|f(z)| d z .
\end{gathered}
$$

Since $k \in C([a, b] \times[a, b])$ and $[a, b] \times[a, b]$ is compact, k is uniformly continuous on it, meaning that for any $\varepsilon>0$ there exists $\delta>0$ such that if $\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}<\delta$ then

$$
\left|k\left(x_{1}, y_{1}\right)-k\left(x_{2}, y_{2}\right)\right|<\varepsilon .
$$

Thus, if $|x-y|<\delta$ we find that $\sqrt{(x-y)^{2}+(z-z)^{2}}<\delta$ and

$$
|K f(x)-K f(y)| \leq \varepsilon \underbrace{\int_{a}^{b}|f(z)| d z}_{\text {fixed constant }}
$$

which shows the continuity.
Next we show the linearity: Given $f_{1}, f_{2} \in C[a, b]$ and a scalar α we see from the properties of integration that

$$
\begin{aligned}
K\left(f_{1}+f_{2}\right)(x) & =\int_{a}^{b} k(x, y)\left(f_{1}(y)+f_{2}(y)\right) d y=\int_{a}^{b} k(x, y) f_{1}(y) d y \\
& +\int_{a}^{b} k(x, y) f_{2}(y) d y=K f_{1}(x)+K f_{2}(x)
\end{aligned}
$$

and

$$
K(\alpha f)(x)=\int_{a}^{b} k(x, y)(\alpha f)(y) d y=\alpha \int_{a}^{b} k(x, y) f(y) d y=\alpha K f(x),
$$

which shows the desired properties.
Lastly we notice that for any $x \in[a, b]$

$$
\begin{gathered}
|K f(x)|=\left|\int_{a}^{b} k(x, y) f(y) d y\right| \leq \int_{a}^{b}|k(x, y)||f(y)| d y \\
\leq\|f\|_{\infty} \int_{a}^{b}|k(x, y)| d y
\end{gathered}
$$

Thus

$$
\|K f\|_{\infty} \leq \sup _{x \in[a, b]}\left(\int_{a}^{b}|k(x, y)| d y\right)\|f\|_{\infty}=\left(\max _{x \in[a, b]} \int_{a}^{b}|k(x, y)| d y\right)\|f\|_{\infty}
$$

from which we conclude the boundedness of K. Note that the last equality holds due to the fact that $\int_{a}^{b}|k(x, y)| d y$ is a continuous function of x.

Solution to Question 12. Since $\mathscr{D}(T)$ is finite dimensional we can find a basis for it, $\left\{e_{1}, \ldots, e_{n}\right\}$. Any $x \in \mathscr{X}$ can be written uniquely as $x=\sum_{i=1}^{n} \alpha_{i}(x) e_{i}$. Consequently, any linear operator $T: \mathscr{D}(T) \rightarrow \mathscr{Y}$ satisfies

$$
\|T x\|=\left\|\sum_{i=1}^{n} \alpha_{i}(x) T e_{i}\right\| \leq \sum_{i=1}^{n}\left|\alpha_{i}(x)\right|\left\|T e_{i}\right\| \leq \sqrt{\sum_{i=1}^{n}\left|\alpha_{i}(x)\right|^{2}} \sqrt{\sum_{i=1}^{n}\left\|T e_{i}\right\|^{2}} .
$$

We know that as $\mathscr{D}(T)$ is finite dimensional all the norms on it are equivalent. Much like in the lectures we know that

$$
\|x\|_{2}=\left\|\sum_{i=1}^{n} \alpha_{i}(x) e_{i}\right\|_{2}=\sqrt{\sum_{i=1}\left|\alpha_{i}(x)\right|^{2}}
$$

is a norm on \mathscr{X} and as such there there exists $c>0$ such that

$$
\|x\|_{2} \leq c\|x\| .
$$

Consequently

$$
\|T x\| \leq\|x\|_{2} \sqrt{\sum_{i=1}^{n}\left\|T e_{i}\right\|^{2}} \leq c \sqrt{\sum_{i=1}^{n}\left\|T e_{i}\right\|^{2}}\|x\|,
$$

which shows that T is bounded.
Solution to Question 13. We start by assuming that T is bounded. Let B be a bounded set. Then, there exists $M>0$ such that $\|x\| \leq M$ for any $x \in B$. Since T is bounded there exists $C>0$ such that for any $x \in \mathscr{X}$

$$
\|T x\| \leq C\|x\|
$$

and consequently

$$
\sup _{x \in B}\|T x\| \leq \sup _{x \in B} C\|x\| \leq C M
$$

which shows one direction.
Let us now assume that T takes bounded sets to bounded sets. This implies that $\sup _{x \in \mathscr{X},\|x\|=1}\|T x\|<\infty$ and consequently, as we saw in class, T is bounded.
We enclose the proof: Consider the set $B=\{x \in \mathscr{X} \mid\|x\|=1\}$. As B is bounded we know that there exists $C>0$ such that $\sup _{x \in B}\|T x\|=C<\infty$. We claim that for any $x \in \mathscr{X}$ we have that

$$
\|T x\| \leq C\|x\|
$$

which will show the boundedness. As the above holds trivially for $x=0$ we can assume without loss of generality that $x \neq 0$. Defining $y_{x}=\frac{x}{\|x\|}$ we find that $\left\|y_{x}\right\|=1$ and thus

$$
\frac{\|T x\|}{\|x\|}=\left\|T\left(\frac{x}{\|x\|}\right)\right\|=\|T y\| \leq C
$$

which gives us the desired inequality.
Solution to Question 14. Let $x \in \overline{\mathscr{D}(T)} \backslash \mathscr{D}(T)$ be given and let $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset$ $\mathscr{D}(T)$ be a sequence that converges to x. Since every converging sequence is Cauchy and since T is bounded we see that for any $n, m \in \mathbb{N}$

$$
\left\|T x_{n}-T x_{m}\right\|=\left\|T\left(x_{n}-x_{m}\right)\right\| \leq C\left\|x_{n}-x_{m}\right\| .
$$

We conclude that $\left\{T x_{n}\right\}_{n \in \mathbb{N}}$ is also Cauchy (we saw this argument in a previous question) and since \mathscr{y} is a Banach space there exists $y \in \mathscr{Y}$ such that $\lim _{n \rightarrow \infty} T x_{n}=y$. We would like to define $\widetilde{T} x=y$, but in order to do that we must show that the limit we found doesn't depend on the choice of the sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$.
Indeed, assume that $\left\{x_{n}\right\}_{n \in \mathbb{N}},\left\{z_{n}\right\}_{n \in \mathbb{N}} \subset \mathscr{D}(T)$ both converge to x. According to what we've just shown, there exist y_{x} and y_{z} in \mathscr{y} such that

$$
T x_{n} \underset{n \rightarrow \infty}{\longrightarrow} y_{x}, \quad \text { and } \quad T x_{n} \underset{n \rightarrow \infty}{\longrightarrow} y_{z} .
$$

Defining the sequence

$$
\xi_{n}= \begin{cases}x_{2 k} & n=2 k \\ z_{2 k+1} & n=2 k+1\end{cases}
$$

which is also in $\mathscr{D}(T)$ and converges to $x \square^{1]}$ and as such there exists y_{ξ} such that

$$
T \xi_{n} \underset{n \rightarrow \infty}{\longrightarrow} y_{\xi}
$$

However

$$
\begin{aligned}
T \xi_{2 n} & =T x_{2 n} \underset{n \rightarrow \infty}{\longrightarrow} y_{x} \\
T \xi_{2 n+1} & =T z_{2 n+1}^{\longrightarrow} y_{z}
\end{aligned}
$$

which shows that, due to the uniqueness of the limit and the fact that subsequences of a converging sequence must converge to the same limit, $y_{x}=y_{z}=y_{\xi}$. In other words, defining

$$
\widetilde{T} x=\lim _{n \rightarrow \infty} T x_{n}
$$

[^0]where $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset \mathscr{D}(T)$ converges to $x \in \overline{\mathscr{D}(T)} \backslash \mathscr{D}(T)$ doesn't depend on the choice of the sequence. We define
\[

\widetilde{T} x= $$
\begin{cases}T x, & x \in \mathscr{D}(T), \\ \lim _{n \rightarrow \infty} T x_{n}, & x \in \overline{\mathscr{D}(T)} \backslash \mathscr{D}(T),\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset \mathscr{D}(T) \text { converges to } x .\end{cases}
$$
\]

and show that it is continuous and linear. We start by noticing that due to the continuity of T on $\mathscr{D}(T)$, if $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset \mathscr{D}(T)$ converges to $x \in \mathscr{D}(T)$ then

$$
\widetilde{T} x=T x=\lim _{n \rightarrow \infty} T x_{n} .
$$

This implies that we can define \widetilde{T} on $\overline{\mathscr{D}(T)}$ as

$$
\widetilde{T} x=\lim _{n \rightarrow \infty} T x_{n}, \quad x \in \overline{\mathscr{D}(T)} \backslash \mathscr{D}(T),\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset \mathscr{D}(T) \text { converges to } x .
$$

Consequently, for any $x, y \in \overline{\mathscr{D}(T)}$ we can find sequences $\left\{x_{n}\right\}_{n \in \mathbb{N}},\left\{y_{n}\right\}_{n \in \mathbb{N}} \subset$ $\mathscr{D}(T)$ such that $x_{n} \underset{n \rightarrow \infty}{\longrightarrow} x$ and $y_{n} \underset{n \rightarrow \infty}{\longrightarrow} y$, and since $x_{n}+y_{n} \underset{n \rightarrow \infty}{\longrightarrow} x+y$ we have that

$$
\widetilde{T}(x+y)=\lim _{n \rightarrow \infty} T\left(x_{n}+y_{n}\right)=\lim _{n \rightarrow \infty}\left(T x_{n}+T y_{n}\right)=\widetilde{T} x+\widetilde{T} y .
$$

Similarly, for any given scalar α we have that and $\alpha x_{n} \underset{n \rightarrow \infty}{\longrightarrow} \alpha x$ and as such

$$
\widetilde{T}(\alpha x)=\lim _{n \rightarrow \infty} T\left(\alpha x_{n}\right)=\lim _{n \rightarrow \infty}\left(\alpha T x_{n}\right)=\alpha \widetilde{T} x,
$$

which proves the linearity of the extension.
Next we focus on showing identity (2), which will imply boundedness of \widetilde{T}, as we saw in class. We starting by finding that

$$
\sup _{x \in \mathscr{\mathscr { D } (T)}, x \neq 0} \frac{\|\widetilde{T} x\|}{\|x\|} \geq \sup _{x \in \mathscr{D}(T), x \neq 0} \frac{\|\widetilde{T} x\|}{\|x\|} \underset{\widetilde{T} \mid \mathscr{D}(T)=T}{=} \sup _{x \in \mathscr{D}(T), x \neq 0} \frac{\|T x\|}{\|x\|} .
$$

To show the reverse inequality we start by noticing that for any $x \in \mathscr{D}(T)$ (including $x=0$)

$$
\|T x\| \leq\left(\sup _{x \in \mathscr{D}(T), x \neq 0} \frac{\|T x\|}{\|x\|}\right)\|x\| .
$$

Let $x \in \overline{\mathscr{D}(T)}$ and let $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset \mathscr{D}(T)$ converge to x. Then due to the continuity of the norm we see that

$$
\|\widetilde{T} x\|=\lim _{n \rightarrow \infty}\left\|T x_{n}\right\| \leq \liminf _{n \rightarrow \infty}\left(\sup _{x \in \mathscr{D}(T), x \neq 0} \frac{\|T x\|}{\|x\|}\right)\left\|x_{n}\right\|=\left(\sup _{x \in \mathscr{D}(T), x \neq 0} \frac{\|T x\|}{\|x\|}\right)\|x\|,
$$

from which we conclude that for any $x \in \overline{\mathscr{D}(T)}$ that is not zero

$$
\frac{\|\widetilde{T} x\|}{\|x\|} \leq\left(\sup _{x \in \mathscr{D}(T),} \frac{\| T \neq 0}{} \frac{\|T x\|}{\|x\|}\right),
$$

and taking the supremum in the above over $\overline{\mathscr{D}(T)} \backslash\{0\}$ gives the desired second inequality. We thus conclude (2).
Lastly, The uniqueness of the extension follows from the fact that it is continuous on $\overline{\mathscr{D}(T)}$ and equals to T on $\mathscr{D}(T)$. Indeed, assume that S is a continuous extension of T and let $x \in \overline{\mathscr{D}(T)}$. There exists $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset \mathscr{D}(T)$ that converges to x and we must have that

$$
S x=\lim _{n \rightarrow \infty} S x_{n}=\lim _{S \mid \mathscr{D}(T)}=T x_{n \rightarrow \infty}=\widetilde{T} x .
$$

As x was arbitrary we have that $S=\widetilde{T}$.

[^0]: ${ }^{1}$ Given $\varepsilon>0$ we find $n_{1}, n_{2} \in \mathbb{N}$ such that if $n \geq n_{1}$ we have that $\left\|x_{n}-x\right\|<\varepsilon$ and if $n \geq n_{2}$ we have that $\left\|z_{n}-z\right\|<\varepsilon$. Then for any $n \geq \max \left\{n_{1}, n_{2}\right\}$ we have that

 $$
 \left\|\xi_{n}-x\right\| \leq \max \left\{\left\|x_{n}-x\right\|,\left\|z_{n}-x\right\|\right\}<\varepsilon
 $$

