Solution to Home Assignment 3

Solution to Question 1. Much like in class, it is immediate to notice that (1) implies (i) - (iii). Since ||x|| = 1 implies $||x|| \ge 1$ it is also clear that (ii) implies (iii). In order to conclude the desired result we will show that (i) implies (ii) and that (iii) implies (1).

Assume that (*i*) holds and let $x \in \mathcal{X}$ be such that $||x||_2 \ge 1$. For any $0 < \varepsilon < 1$ define $x_{\varepsilon} = \frac{x}{1-\varepsilon}$. We find that

$$||x_{\varepsilon}||_{2} = \frac{||x||_{2}}{1-\varepsilon} > 1,$$

and as (i) holds we find that

$$\frac{\|x\|_1}{1-\varepsilon} = \|x_\varepsilon\|_1 > \frac{1}{c}.$$

As the above holds for all $0 < \varepsilon < 1$, taking ε to zero yields the inequality $||x||_1 \ge \frac{1}{c}$.

Next we assume that (iii) hold and consider $x \in \mathcal{X}$. If x = 0 then (1) holds trivially for any c > 0. We can assume, therefore, that $x \neq 0$ and define $y_x = \frac{x}{\|x\|_2}$. We have that $\|y_x\|_2 = 1$ and as (iii) holds we conclude that

$$\frac{\|x\|_1}{\|x\|_2} = \|y_x\|_1 \ge \frac{1}{c}$$

which can be re-arranged to be $||x||_2 \le c ||x||_1$. Together with the case x = 0 we conclude the proof.

Solution to Question 2. (i) Let us start by assuming that there exists c > 0 such that for any $x \in \mathcal{X}$ we have that

$$\|x\|_2 \le c \, \|x\|_1$$

and let $\{x_n\}_{n \in \mathbb{N}} \subset \mathcal{X}$ be a sequences that converges to $x \in \mathcal{X}$ in $\|\cdot\|_1$. Then by the pinching lemma we have that

$$0 \le \|x - x_n\|_2 \le c \|x - x_n\|_1$$

which shows that $\{x_n\}_{n \in \mathbb{N}} \subset \mathcal{X}$ converges to $x \in \mathcal{X}$ in $\|\cdot\|_2$. A symmetric argument shows that if there exists c > 0 such that

$$\|x\|_2 \ge \frac{1}{c} \|x\|_1$$

then if $\{x_n\}_{n \in \mathbb{N}} \subset \mathcal{X}$ converges to $x \in \mathcal{X}$ in $\|\cdot\|_2$ then it must also converge in $\|\cdot\|_1$. Combing the above with the fact that the topologies of normed spaces are equal if and only if there exists $c_1, c_2 > 0$ such that

$$\frac{\|x\|_1}{c} \le \|x\|_2 \le c \, \|x\|_1$$

shows the first statement.

(ii) As we see from the above solution, due to the symmetry of the condition, it is enough for us to show that the condition

$$\|x\|_2 \le c \|x\|_1$$

implies that if $\{x_n\}_{n \in \mathbb{N}} \subset \mathcal{X}$ is Cauchy in $\|\cdot\|_1$ then it must be Cauchy in $\|\cdot\|_2$ as well. Indeed, given $\varepsilon > 0$ we can find $n_0 \in \mathbb{N}$ such that for any $n, m \ge n_0$ we have that

$$\|x_n - x_m\|_1 < \frac{\varepsilon}{c}.$$

Consequently, for any $n, m \ge n_0$

$$||x_n - x_m||_2 \le c ||x_n - x_m||_1 < \varepsilon$$

- (iii) Assume that $(\mathcal{X}, \|\cdot\|_1)$ is Banach and let $\{x_n\}_{n\in\mathbb{N}}$ be a Cauchy sequence in $\|\cdot\|_2$. According to the previous sub-question we know that as the topologies are equivalent $\{x_n\}_{n\in\mathbb{N}}$ is Cauchy in $\|\cdot\|_1$. Since $(\mathcal{X}, \|\cdot\|_1)$ is Banach, there exists $x \in \mathcal{X}$ such that $\{x_n\}_{n\in\mathbb{N}} \subset \mathcal{X}$ converges to $x \in \mathcal{X}$ in $\|\cdot\|_1$. As was seen in the first sub-question this implies that $\{x_n\}_{n\in\mathbb{N}} \subset \mathcal{X}$ converges to $x \in \mathcal{X}$ in $\|\cdot\|_2$, which shows that $(\mathcal{X}, \|\cdot\|_2)$ is a Banach space. Replacing $\|\cdot\|_1$ with $\|\cdot\|_2$ proves the equivalence.
- (iv) Again, it is enough to show only on direction. Let $f : (\mathcal{X}, \|\cdot\|_1) \rightarrow \mathcal{Y}$ be continuous and assume that $\{x_n\}_{n \in \mathbb{N}}$ converges to x in $\|\cdot\|_2$. According to the first sub-question we know that $\{x_n\}_{n \in \mathbb{N}}$ converges to x in $\|\cdot\|_1$. As f is continuous under that topology we know that $\lim_{n\to\infty} f(x_n) = f(x)$, which shows the continuity under $\|\cdot\|_2$.

Solution to Question 3. We start with the case $1 and <math>q = \infty$. By definition

$$\max_{i=1,\dots,n} |x_i| \le \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^n 1\right)^{\frac{1}{p}} \max_{i=1,\dots,n} |x_i|$$

1

which shows that

(1)
$$||x||_{\infty} \le ||x||_{p} \le n^{\frac{1}{p}} ||x||_{\infty}.$$

The above inequalities are sharp as the standard basis vector $\mathbf{e}_1 = (1, 0, ..., 0)$ (or any other standard basis choice) gives equality on the left hand side and the vector $\mathbf{a} = (1, 1, ..., 1)$ gives equality on the right hand side. Next, we consider the case $1 . Using the discrete Hölder inequality we find that with the choice <math>r = \frac{q}{p}$ and its Hölder conjugate $r' = \frac{q}{q-p}$

$$\sum_{i=1}^{n} |x_i|^p \le \left(\sum_{i=1}^{n} |x_i|^{rp}\right)^{\frac{1}{r}} \left(\sum_{i=1}^{n} 1^{r'}\right)^{\frac{1}{r'}}$$

2

from which we get that

$$||x||_p \le n^{\frac{q-p}{pq}} ||x||_q$$

In addition,

$$\sum_{i=1}^{n} |x_i|^q \le \|x\|_{\infty}^{q-p} \sum_{i=1}^{n} |x_i|^p \le \|x\|_p^{q-p} \left(\sum_{i=1}^{n} |x_i|^p\right) = \|x\|_p^q.$$

Adding these two observations we conclude that in this case

(2)
$$\|x\|_{q} \le \|x\|_{p} \le n^{\frac{q-p}{pq}} \|x\|_{q}$$

These inequalities are, again, sharp by choosing e_1 and a again.

Solution to Question 4. We start by noticing that if $a \in \ell_p(\mathbb{N})$ for some $1 \le p < \infty$ then $\lim_{n \to \infty} a_n = 0$, and as such the sequence $\{a_n\}_{n \in \mathbb{N}}$ is bounded, i.e. belongs to $\ell_{\infty}(\mathbb{N})$. Since the addition and scalar multiplication that is defined in all of $\ell_p(\mathbb{N})$ –s, $1 \le p \le \infty$, is identical we conclude that $\ell_p(\mathbb{N})$ is a subspace of $\ell_{\infty}(\mathbb{N})$ and as such we can consider the induced/restricted norm $\|\cdot\|_{\infty}$ on it.

Next, we notice that for any $n \in \mathbb{N}$

$$|a_n| \leq \left(\sum_{k \in \mathbb{N}} |a_k|^p\right)^{\frac{1}{p}} = ||\boldsymbol{a}||_p.$$

Taking the supremum over $n \in \mathbb{N}$ gives us

 $\|\boldsymbol{a}\|_{\infty} \leq \|\boldsymbol{a}\|_{p}.$

The converse, however, doesn't hold. Indeed, consider the vectors

$$\boldsymbol{a}_n = \sum_{i=1}^n \boldsymbol{e}_i = \left(1, 1, \dots, \underbrace{1}_{n-\text{th position}}, 0, \dots\right).$$

we see that

$$\|\boldsymbol{a}_n\|_{\infty} = 1$$
$$\|\boldsymbol{a}_n\|_p = n^{\frac{1}{p}},$$

which shows that there can't be a constant c > 0 such that

$$\|\boldsymbol{a}\| \leq c \|\boldsymbol{a}\|_{\infty}$$

for all $a \in \ell_p(\mathbb{N})$ since that would have implied that

$$n^{\frac{1}{p}} = \|\boldsymbol{a}_n\|_p \le c \|\boldsymbol{a}_n\|_{\infty} = c$$

for all $n \in \mathbb{N}$. Consequently the norm $\|\cdot\|_p$ and $\|\cdot\|_{\infty}$ are not equivalent on $\ell_p(\mathbb{N})$.

Solution to Question 5. We assume that $\|\cdot\|_1$ is equivalent to $\|\cdot\|_2$ and $\|\cdot\|_2$ is equivalent to $\|\cdot\|_3$. This implies that we can find constants c > 0 and d > 0 such that

$$\frac{\|x\|_1}{c} \le \|x\|_2 \le c \, \|x\|_1,$$

and

$$\frac{\|x\|_2}{d} \le \|x\|_3 \le d \, \|x\|_2.$$

Combining the above we see that

$$\frac{\|x\|_1}{cd} \le \|x\|_3 \le cd \, \|x\|_1,$$

which shows that $\|\cdot\|_1$ is equivalent to $\|\cdot\|_3$.

Solution to Question 6. Let $x \in \mathcal{X}$ and $\beta \in \mathbb{F}$ be given and assume that $\{\alpha_i(x)\}_{i=1,\dots,n}$ are the *unique* scalars such that

$$x = \sum_{i=1}^{n} \alpha_i(x) e_i$$

Then, by definition,

$$\beta x = \sum_{i=1}^{n} \alpha_i \left(\beta x \right) e_i.$$

On the other hand,

$$\beta x = \beta \left(\sum_{i=1}^n \alpha_i(x) e_i \right) = \sum_{i=1}^n \left(\beta \alpha_i(x) \right) e_i.$$

From the uniqueness of the coefficients we must have that $\alpha_i(\beta x) = \beta \alpha_i(x)$ for all i = 1, ..., n.

Similarly, for any $x, y \in \mathcal{X}$ we have that

$$x + y = \sum_{i=1}^{n} \alpha_i (x + y) e_i$$

and

$$x + y = \sum_{i=1}^{n} \alpha_i(x) e_i + \sum_{i=1}^{n} \alpha_i(y) e_i = \sum_{i=1}^{n} (\alpha_i(x) + \alpha_i(y)) e_i,$$

which implies, due to the uniqueness of the coefficients again, that

$$\alpha_i(x+y) = \alpha_i(x) + \alpha_i(y)$$

for all i = 1, ..., n.

Solution to Question 7. Let \mathscr{X} be a finite dimensional normed space. From a previous question we know that if if two norms, $\|\cdot\|_1$ and $\|\cdot\|_2$, are equivalent then $(\mathscr{X}, \|\cdot\|_1)$ is a Banach space if and only if $(\mathscr{X}, \|\cdot\|_2)$ is, and since we know from class that all the norms are equivalent on a finite dimensional normed space, we conclude that it is enough for us to find *a* norm on \mathscr{X} under which it is a Banach space. We will consider the Euclidean-like norm, defined in class:

$$\|x\|_{\text{Euclid}} = \sqrt{\sum_{i=1}^{d} |\alpha_i(x)|^2}$$

where $x = \sum_{i=1}^{d} \alpha_i(x) e_i$ is the unique representation of x with respect to a basis $\{e_1, \ldots, e_d\}$ of \mathcal{X} . We know that it is a norm on \mathcal{X} . Consider a Cauchy sequence $\{x_n\}_{n \in \mathbb{N}}$. Since for any $j \in \{1, \ldots, d\}$

$$|\alpha_{j}(x_{n}) - \alpha_{j}(x_{m})| = |\alpha_{j}(x_{n} - x_{m})| \le \sqrt{\sum_{i=1}^{d} |\alpha_{j}(x_{n} - x_{m})|^{2}}$$
$$= \sqrt{\sum_{i=1}^{d} |\alpha_{j}(x_{n}) - \alpha_{i}(x_{m})|^{2}} = ||x_{n} - x_{m}||_{\text{Euclid}}$$

we see that $\{\alpha_i(x_n)\}_{n \in \mathbb{N}}$ is Cauchy in \mathbb{F} for any i = 1, ..., d and consequently it must converge to a scalar α_i . We define

$$x = \sum_{i=1}^{d} \alpha_i e_i \in \mathcal{X}$$

and notice that

$$\|x_n - x\|_{\text{Euclid}} = \sqrt{\sum_{i=1}^{d} |\alpha_i(x_n) - \alpha_i|^2} \underset{n \to \infty}{\longrightarrow} 0$$

This implies that $(\mathcal{X}, \|\cdot\|_{\text{Euclid}})$ is a Banach space, which is what we wanted to show.

Solution to Question 8. Let \mathcal{M} be a closed subspace of \mathcal{H} that is not \mathcal{H} and let $v \in \mathcal{H} \setminus \mathcal{M}$. Since \mathcal{M} is a closed subspace of \mathcal{H} , $P_{\mathcal{M}}v$ is a well defined vector in \mathcal{M} , and since $v \notin \mathcal{M}$ we have that $v \neq P_{\mathcal{M}}v$. Moreover, $v - P_{\mathcal{M}}v \perp \mathcal{M}$. Define

$$x = \frac{v - P_{\mathcal{M}} v}{\|v - P_{\mathcal{M}} v\|}.$$

We find that ||x|| = 1 and since $x \perp \mathcal{M}$

$$||x - y|| = \sqrt{1 + ||y||^2} \ge 1,$$

for any $y \in \mathcal{M}$. We have that

$$\inf_{y\in\mathcal{M}}\left\|x-y\right\|\geq1.$$

Since, in addition,

$$\inf_{y\in\mathcal{M}}\left\|x-y\right\|\leq\|x-0\|=1$$

we conclude that

$$\inf_{y\in\mathcal{M}}\left\|x-y\right\|=1$$

Solution to Question 9. Since *T* is a bijection from \mathscr{X} to \mathscr{Y} we know that the map $T^{-1}: \mathscr{Y} \to \mathscr{X}$ exists and satisfies

$$TT^{-1} = Id_{\mathscr{Y}}, \qquad T^{-1}T = Id_{\mathscr{X}}.$$

Let $y_1, y_2 \in \mathcal{Y}$. We have that

$$y_1 + y_2 = T(T^{-1}(y_1 + y_2)).$$

On the other hand

$$y_1 + y_2 = T(T^{-1}y_1) + T(T^{-1}y_2) =_{T \in L(\mathcal{X}, \mathcal{Y})} T(T^{-1}y_1 + T^{-1}y_2).$$

We conclude that

$$T(T^{-1}(y_1+y_2)) = T(T^{-1}y_1+T^{-1}y_2),$$

which implies, due to the injectivity of T, that

$$T^{-1}(y_1 + y_2) = T^{-1}y_1 + T^{-1}y_2.$$

Similarly, for any $x \in \mathcal{X}$ and a scalar β we have that

$$T^{-1}(\beta T x) \underset{T \in L(\mathcal{X}, \mathcal{Y})}{=} T^{-1}(T(\beta x)) = \beta x = \beta T^{-1} T x.$$

For a given $y \in \mathcal{Y}$ we can find $x_y \in \mathcal{X}$ such that $Tx_y = y$. Using the above we conclude that

$$T^{-1}(\beta y) = \beta x_y = \beta T^{-1} y$$

which concludes the linearity of T^{-1} .

Solution to Question 10. The linearity follows from the fact that for any functions *f* and *g*

$$m(x)\left(f(x) + g(x)\right) = m(x)f(x) + m(x)g(x),$$

and for any function f and scalar α

$$m(x)(\alpha f(x)) = \alpha m(x) f(x).$$

The boundedness follows from the fact that for any $f \in C[a, b]$

$$|m(x)f(x)| = |m(x)| |f(x)| \le \left(\max_{z \in [a,b]} |m(z)|\right) |f(x)| = ||m||_{\infty} |f(x)|,$$

which implies that for any $f \in C[a, b]$

$$\|Mf\|_{\infty} = \max_{x \in [a,b]} |Mf(x)| \le \|m\|_{\infty} \max_{x \in [a,b]} |f(x)| = \|m\|_{\infty} \|f\|_{\infty}$$

Solution to Question 11. We start by noticing that since $k \in C([a, b] \times [a, b])$ and $f \in C[a, b]$ we have that $k(x, y) f(x) \in C([a, b] \times [a, b])$ and as such integrable. Known results from Analysis show that $Kf \in C[a, b]$. Let us prove it:

$$|Kf(x) - Kf(y)| = \left| \int_{a}^{b} \left(k(x, z) - k(y, z) \right) f(z) dz \right|$$

$$\leq \int_{a}^{b} \left| k(x, z) - k(y, z) \right| \left| f(z) \right| dz \leq \sup_{z \in [a, b]} \left| k(x, z) - k(y, z) \right| \int_{a}^{b} \left| f(z) \right| dz.$$

Since $k \in C([a, b] \times [a, b])$ and $[a, b] \times [a, b]$ is compact, k is *uniformly continuous on it*, meaning that for any $\varepsilon > 0$ there exists $\delta > 0$ such that if $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} < \delta$ then

$$|k(x_1, y_1) - k(x_2, y_2)| < \varepsilon.$$

Thus, if $|x-y| < \delta$ we find that $\sqrt{(x-y)^2 + (z-z)^2} < \delta$ and

$$|Kf(x) - Kf(y)| \le \varepsilon \underbrace{\int_{a}^{b} |f(z)| dz}_{\text{fixed constant}},$$

which shows the continuity.

Next we show the linearity: Given $f_1, f_2 \in C[a, b]$ and a scalar α we see from the properties of integration that

$$K(f_1 + f_2)(x) = \int_a^b k(x, y) (f_1(y) + f_2(y)) dy = \int_a^b k(x, y) f_1(y) dy + \int_a^b k(x, y) f_2(y) dy = K f_1(x) + K f_2(x)$$

and

$$K(\alpha f)(x) = \int_{a}^{b} k(x, y)(\alpha f)(y) dy = \alpha \int_{a}^{b} k(x, y) f(y) dy = \alpha K f(x),$$

which shows the desired properties. Lastly we notice that for any $x \in [a, b]$

$$|Kf(x)| = \left| \int_a^b k(x, y) f(y) dy \right| \le \int_a^b |k(x, y)| |f(y)| dy$$
$$\le ||f||_{\infty} \int_a^b |k(x, y)| dy.$$

Thus

8

$$\|Kf\|_{\infty} \leq \sup_{x \in [a,b]} \left(\int_{a}^{b} |k(x,y)| \, dy \right) \|f\|_{\infty} = \left(\max_{x \in [a,b]} \int_{a}^{b} |k(x,y)| \, dy \right) \|f\|_{\infty},$$

from which we conclude the boundedness of *K*. Note that the last equality holds due to the fact that $\int_a^b |k(x, y)| dy$ is a continuous function of *x*.

Solution to Question 12. Since $\mathcal{D}(T)$ is finite dimensional we can find a basis for it, $\{e_1, \ldots, e_n\}$. Any $x \in \mathcal{X}$ can be written uniquely as $x = \sum_{i=1}^n \alpha_i(x)e_i$. Consequently, any linear operator $T : \mathcal{D}(T) \to \mathcal{Y}$ satisfies

$$\|Tx\| = \left\|\sum_{i=1}^{n} \alpha_{i}(x) Te_{i}\right\| \leq \sum_{i=1}^{n} |\alpha_{i}(x)| \|Te_{i}\| \leq \sqrt{\sum_{i=1}^{n} |\alpha_{i}(x)|^{2}} \sqrt{\sum_{i=1}^{n} \|Te_{i}\|^{2}}.$$

We know that as $\mathcal{D}(T)$ is finite dimensional all the norms on it are equivalent. Much like in the lectures we know that

$$\|x\|_{2} = \left\|\sum_{i=1}^{n} \alpha_{i}(x)e_{i}\right\|_{2} = \sqrt{\sum_{i=1}^{n} |\alpha_{i}(x)|^{2}}$$

is a norm on \mathcal{X} and as such there there exists c > 0 such that

$$||x||_2 \le c ||x||$$
.

Consequently

$$||Tx|| \le ||x||_2 \sqrt{\sum_{i=1}^n ||Te_i||^2} \le c \sqrt{\sum_{i=1}^n ||Te_i||^2} ||x||,$$

which shows that *T* is bounded.

Solution to Question 13. We start by assuming that *T* is bounded. Let *B* be a bounded set. Then, there exists M > 0 such that $||x|| \le M$ for any $x \in B$. Since *T* is bounded there exists C > 0 such that for any $x \in \mathcal{X}$

$$||Tx|| \le C ||x|$$

and consequently

$$\sup_{x \in B} \|Tx\| \le \sup_{x \in B} C \|x\| \le CM$$

which shows one direction.

Let us now assume that *T* takes bounded sets to bounded sets. This implies that $\sup_{x \in \mathcal{X}, \|x\|=1} \|Tx\| < \infty$ and consequently, as we saw in class, *T* is bounded.

We enclose the proof: Consider the set $B = \{x \in \mathcal{X} \mid ||x|| = 1\}$. As *B* is bounded we know that there exists C > 0 such that $\sup_{x \in B} ||Tx|| = C < \infty$. We claim that for any $x \in \mathcal{X}$ we have that

$$\|Tx\| \le C \|x\|$$

which will show the boundedness. As the above holds trivially for x = 0 we can assume without loss of generality that $x \neq 0$. Defining $y_x = \frac{x}{\|x\|}$ we find that $\|y_x\| = 1$ and thus

$$\frac{\|Tx\|}{\|x\|} = \left\|T\left(\frac{x}{\|x\|}\right)\right\| = \|Ty\| \le C$$

which gives us the desired inequality.

Solution to Question 14. Let $x \in \overline{\mathcal{D}(T)} \setminus \mathcal{D}(T)$ be given and let $\{x_n\}_{n \in \mathbb{N}} \subset \mathcal{D}(T)$ be a sequence that converges to x. Since every converging sequence is Cauchy and since T is bounded we see that for any $n, m \in \mathbb{N}$

$$||Tx_n - Tx_m|| = ||T(x_n - x_m)|| \le C ||x_n - x_m||.$$

We conclude that $\{Tx_n\}_{n \in \mathbb{N}}$ is also Cauchy (we saw this argument in a previous question) and since \mathcal{Y} is a Banach space there exists $y \in \mathcal{Y}$ such that $\lim_{n\to\infty} Tx_n = y$. We would like to define $\tilde{T}x = y$, but in order to do that we *must show* that the limit we found doesn't depend on the choice of the sequence $\{x_n\}_{n \in \mathbb{N}}$.

Indeed, assume that $\{x_n\}_{n \in \mathbb{N}}$, $\{z_n\}_{n \in \mathbb{N}} \subset \mathcal{D}(T)$ both converge to x. According to what we've just shown, there exist y_x and y_z in \mathcal{Y} such that

$$Tx_n \xrightarrow[n \to \infty]{} y_x$$
, and $Tx_n \xrightarrow[n \to \infty]{} y_z$.

Defining the sequence

$$\xi_n = \begin{cases} x_{2k} & n = 2k \\ z_{2k+1} & n = 2k+1 \end{cases}$$

which is also in $\mathcal{D}(T)$ and converges to x^1 and as such there exists y_{ξ} such that

$$T\xi_n \xrightarrow[n \to \infty]{} y_{\xi}.$$

However

$$T\xi_{2n} = Tx_{2n} \xrightarrow[n \to \infty]{} y_x$$
$$T\xi_{2n+1} = Tz_{2n+1} \xrightarrow[n \to \infty]{} y_z$$

which shows that, due to the uniqueness of the limit and the fact that subsequences of a converging sequence must converge to the same limit, $y_x = y_z = y_{\xi}$. In other words, defining

$$\widetilde{T}x = \lim_{n \to \infty} Tx_n$$

$$\|\xi_n - x\| \le \max\{\|x_n - x\|, \|z_n - x\|\} < \varepsilon.$$

¹Given $\varepsilon > 0$ we find $n_1, n_2 \in \mathbb{N}$ such that if $n \ge n_1$ we have that $||x_n - x|| < \varepsilon$ and if $n \ge n_2$ we have that $||z_n - z|| < \varepsilon$. Then for any $n \ge \max\{n_1, n_2\}$ we have that

where $\{x_n\}_{n \in \mathbb{N}} \subset \mathcal{D}(T)$ converges to $x \in \overline{\mathcal{D}(T)} \setminus \mathcal{D}(T)$ doesn't depend on the choice of the sequence. We define

$$\widetilde{T}x = \begin{cases} Tx, & x \in \mathcal{D}(T), \\ \lim_{n \to \infty} Tx_n, & x \in \overline{\mathcal{D}(T)} \setminus \mathcal{D}(T), \{x_n\}_{n \in \mathbb{N}} \subset \mathcal{D}(T) \text{ converges to } x. \end{cases}$$

and show that it is continuous and linear. We start by noticing that due to the continuity of *T* on $\mathcal{D}(T)$, if $\{x_n\}_{n \in \mathbb{N}} \subset \mathcal{D}(T)$ converges to $x \in \mathcal{D}(T)$ then

$$\widetilde{T}x = Tx = \lim_{n \to \infty} Tx_n.$$

This implies that we can define \widetilde{T} on $\overline{\mathscr{D}(T)}$ as

$$\widetilde{T}x = \lim_{n \to \infty} Tx_n, \quad x \in \overline{\mathscr{D}(T)} \setminus \mathscr{D}(T), \{x_n\}_{n \in \mathbb{N}} \subset \mathscr{D}(T) \text{ converges to } x.$$

Consequently, for any $x, y \in \overline{\mathcal{D}(T)}$ we can find sequences $\{x_n\}_{n \in \mathbb{N}}, \{y_n\}_{n \in \mathbb{N}} \subset \mathcal{D}(T)$ such that $x_n \xrightarrow[n \to \infty]{} x$ and $y_n \xrightarrow[n \to \infty]{} y$, and since $x_n + y_n \xrightarrow[n \to \infty]{} x + y$ we have that

$$\widetilde{T}(x+y) = \lim_{n \to \infty} T(x_n + y_n) = \lim_{n \to \infty} (Tx_n + Ty_n) = \widetilde{T}x + \widetilde{T}y_n$$

Similarly, for any given scalar α we have that and $\alpha x_n \xrightarrow[n \to \infty]{} \alpha x$ and as such

$$\widetilde{T}(\alpha x) = \lim_{n \to \infty} T(\alpha x_n) = \lim_{n \to \infty} (\alpha T x_n) = \alpha \widetilde{T} x,$$

which proves the linearity of the extension.

Next we focus on showing identity (2), which will imply boundedness of \tilde{T} , as we saw in class. We starting by finding that

$$\sup_{x\in\overline{\mathscr{D}(T)},\ x\neq 0}\frac{\|Tx\|}{\|x\|} \geq \sup_{x\in\mathscr{D}(T),\ x\neq 0}\frac{\|Tx\|}{\|x\|} = \sup_{\widetilde{T}\mid_{\mathscr{D}(T)=T}}\sup_{x\in\mathscr{D}(T),\ x\neq 0}\frac{\|Tx\|}{\|x\|}.$$

To show the reverse inequality we start by noticing that for any $x \in \mathcal{D}(T)$ (including x = 0)

$$||Tx|| \leq \left(\sup_{x \in \mathscr{D}(T), \ x \neq 0} \frac{||Tx||}{||x||}\right) ||x||.$$

Let $x \in \overline{\mathcal{D}(T)}$ and let $\{x_n\}_{n \in \mathbb{N}} \subset \mathcal{D}(T)$ converge to *x*. Then due to the continuity of the norm we see that

$$\|\widetilde{T}x\| = \lim_{n \to \infty} \|Tx_n\| \le \liminf_{n \to \infty} \left(\sup_{x \in \mathscr{D}(T), \ x \neq 0} \frac{\|Tx\|}{\|x\|} \right) \|x_n\| = \left(\sup_{x \in \mathscr{D}(T), \ x \neq 0} \frac{\|Tx\|}{\|x\|} \right) \|x\|,$$

from which we conclude that for any $x \in \overline{\mathcal{D}(T)}$ that is not zero

$$\frac{\|\widetilde{T}x\|}{\|x\|} \leq \left(\sup_{x \in \mathscr{D}(T), \ x \neq 0} \frac{\|Tx\|}{\|x\|}\right),$$

10

and taking the supremum in the above over $\overline{\mathcal{D}(T)} \setminus \{0\}$ gives the desired second inequality. We thus conclude (2).

Lastly, The uniqueness of the extension follows from the fact that it is continuous on $\overline{\mathcal{D}(T)}$ and equals to T on $\mathcal{D}(T)$. Indeed, assume that S is a continuous extension of T and let $x \in \overline{\mathcal{D}(T)}$. There exists $\{x_n\}_{n \in \mathbb{N}} \subset \mathcal{D}(T)$ that converges to x and we must have that

$$Sx = \lim_{n \to \infty} Sx_n = \lim_{S|_{\mathscr{D}(T)} = T} \lim_{n \to \infty} Tx_n = \widetilde{T}x.$$

As *x* was arbitrary we have that $S = \tilde{T}$.