Functional Analysis and Applications Michaelmas 2023 Department of Mathematical Sciences, Durham University

Home Assignment 4

Exercise 1. Show that the multiplication operator $M : (C[a, b], \|\cdot\|_{\infty}) \to (C[a, b], \|\cdot\|_{\infty})$ defined by

$$Mf(x) = m(x)f(x)$$

where $m \in C[a, b]$, satisfies

$$\|M\| = \|m\|_{\infty}.$$

Exercise 2. Prove the following statement: The integration operator *T* : $(C[a, b], \|\cdot\|_{\infty}) \rightarrow (C[a, b], \|\cdot\|_{\infty})$ defined by

$$Tf(x) = \int_{a}^{x} f(t)dt.$$

satisfies

||T|| = b - a.

Exercise 3. Prove the following statement: Let \mathcal{X} , \mathcal{Y} and \mathcal{Z} be normed spaces and let $T \in B(\mathcal{X}, \mathcal{Y})$ and $S \in B(\mathcal{Y}, \mathcal{Z})$. Then $S \circ T \in B(\mathcal{X}, \mathcal{Z})$ and

 $\|S \circ T\| \le \|S\| \, \|T\|.$

Consequently for any $T \in B(\mathcal{X}, \mathcal{X})$ the operator

$$T^n = \underbrace{T \circ T \circ \cdots \circ T}_{n \text{ times}}$$

is well defined, belongs to $B(\mathcal{X}, \mathcal{X})$, and satisfies

$$\left\| T^{n} \right\| \leq \left\| T \right\|^{n}.$$

Exercise 4. Let \mathscr{X} be a normed space. Show that the function $f : \mathscr{X} \to \mathbb{R}$ defined by f(x) = ||x|| is not a linear functional (though it is continuous).

Exercise 5. Prove the following statement: Consider the Banach space $(C[a, b], \|\cdot\|_{\infty})$. For any $x_0 \in [a, b]$ define the functional $\delta_{x_0} : C[a, b] \to \mathbb{F}$ by

$$\delta_{x_0}(f) = f(x_0).$$

Show that δ_{x_0} is in the dual space of C[a, b]. δ_{x_0} is known as *the delta functional at* x_0 . It appears in other contexts as well.

Exercise 6. Show that the map $f_{\lambda} : \ell_2(\mathbb{N}) \to \mathbb{C}$ defined by

$$f_{\lambda}(\boldsymbol{a}) = \sum_{n \in \mathbb{N}} n a_n \lambda^{n-1}$$

belongs to $\ell_2(\mathbb{N})^*$ for any $\lambda \in \mathbb{C}$ such that $|\lambda| < 1$ and find $\mathbf{b}_{\lambda} \in \ell_2(\mathbb{N})$ such that

$$f_{\lambda}(\boldsymbol{a}) = \langle \boldsymbol{a}, \boldsymbol{b}_{\lambda} \rangle.$$

What is the norm of f_{λ} ? Can we extend the above to the case where $|\lambda| = 1$?

Remark: You will need to start by showing that the sum which defines f_{λ} is finite.

Exercise 7. Prove the following statement: Let \mathcal{H} be a Hilbert space. Define the map $\mathcal{I} : \mathcal{H} \to \mathcal{H}^*$ by

$$\mathcal{I} y = f_y$$

where $f_y(x) = \langle x, y \rangle$. Then \mathscr{F} is a *conjugate linear* isometry between \mathscr{H} and \mathscr{H}^* , i.e. \mathscr{F} is a bijection such that for any $y_1, y_2 \in \mathscr{H}$ and a scalar α we have that

$$\mathscr{I}(y_1+y_2) = \mathscr{I}y_1 + \mathscr{I}y_2, \qquad \mathscr{I}(\alpha y) = \overline{\alpha}\mathscr{I}y$$

and

(1)
$$\left\| \mathscr{F} y \right\|_{\mathscr{H}} = \left\| y \right\|_{\mathscr{H}}.$$

Consequently, we can define an inner product on \mathcal{H}^* which induces the norm on the space by

(2)
$$\langle f,g \rangle = \overline{\langle \mathcal{J}^{-1}f, \mathcal{J}^{-1}g \rangle_{\mathcal{H}}},$$

making \mathcal{H}^* into a Hilbert space.

Exercise 8. We know from class for any $f \in \ell_1(\mathbb{N})^*$ there exists $\boldsymbol{b} \in \ell_\infty(\mathbb{N})$ such that $f = f_{\boldsymbol{b}}$ with $||f_{\boldsymbol{b}}|| = ||\boldsymbol{b}||_{\infty}$. Show that this implies that $\ell_1(\mathbb{N})^*$ is not separable.

Exercise 9. Prove the following statement: There exists a functional in $\ell_{\infty}(\mathbb{N})^*$ that is not of the form $f_{\boldsymbol{b}}$ with $\boldsymbol{b} \in \ell_1(\mathbb{N})$. *Hint: Show that*

$$f_{\sum_{n=1}^{N}\alpha_{n}\boldsymbol{e}_{n}}=\sum_{n=1}^{N}\overline{\alpha_{n}}f_{\boldsymbol{e}_{n}}$$

and conclude that if every $\ell_{\infty}(\mathbb{N})^*$ is of the form $f_{\mathbf{b}}$ for some $\mathbf{b} \in \ell_1(\mathbb{N})$ then $\ell_{\infty}(\mathbb{N})^*$ must be separable.

Exercise 10. Recall that we say that a sequence $\{x_n\}_{n \in \mathbb{N}}$ in a Banach space converges weakly to *x*, and write $x_n \xrightarrow[n \to \infty]{w} x$, if for any $f \in \mathcal{X}^*$ we have that

$$f(x_n) \underset{n \to \infty}{\longrightarrow} f(x).$$

Let \mathcal{H} be a Hilbert space

2

(i) Show that $x_n \xrightarrow[n \to \infty]{w} x$ if and only if for any $y \in \mathcal{H}$

$$\langle x_n, y \rangle \underset{n \to \infty}{\longrightarrow} \langle x, y \rangle.$$

- (ii) Let $\mathscr{B} = \{e_n\}_{n \in \mathbb{N}}$ be an orthonormal set in \mathscr{H} . Show that $e_n \xrightarrow{w}_{n \to \infty} 0$.
- (iii) Does the statement in (ii) remains true if \mathscr{B} is only orthogonal, i.e. if for any $x, y \in \mathscr{B}$ such that $x \neq y$ we have that $x \perp y$?

Exercise 11. In this exercise we'll investigate the uniqueness of weak limits.

- (i) Let \mathcal{H} be a Hilbert space. Show that the weak limit of any weak converging sequence is unique.
- (ii) Using the fact (which we will prove in class) that for any x in a Banach space \mathcal{X} there exists $f_x \in \mathcal{X}^*$ such that $f_x(x) = ||x||$ to show that (i) remains true in general Banach spaces.

Exercise 12. Let \mathcal{H} be a Hilbert space with an orthonormal basis $\mathcal{B} = \{e_n\}_{n \in \mathbb{N}}$. Let $\{x_n\}_{n \in \mathbb{N}}$ be a given sequence in \mathcal{H} .

(i) Show that if $\{x_n\}_{n \in \mathbb{N}}$ converges weakly to *x* then

$$\sup_{n\in\mathbb{N}}\|x_n\|<\infty,$$

and

(4)
$$\langle x_n, e_j \rangle \xrightarrow[n \to \infty]{} \langle x, e_j \rangle \quad \forall j \in \mathbb{N}.$$

In the remainder of this exercise we will aim to show that the converse to (i) holds.

(ii) Show that if $\{x_n\}_{n \in \mathbb{N}}$ is a bounded sequence in \mathcal{H} then for any $y \in \mathcal{H}$ we have that

$$\sum_{j=N+1}^{\infty} |\langle y, e_j \rangle| |\langle x_n, e_j \rangle| \le M \sqrt{\sum_{j=N+1}^{\infty} |\langle y, e_j \rangle|^2}.$$

where $M = \sup_{n \in \mathbb{N}} ||x_n||$.

(iii) Use the above to show that if (3) and (4) hold then $\{x_n\}_{n \in \mathbb{N}}$ converges weakly to *x*.

Hint: Start by showing that $\{x_n\}_{n\in\mathbb{N}}$ converges weakly to x if and only if $\{x_n - x\}_{n\in\mathbb{N}}$ converges weakly to 0, and continue by using Parseval's identity for inner products of Hilbert spaces with countable orthonormal basis $\{e_n\}_{n\in\mathbb{N}}$:

$$\langle x, y \rangle = \sum_{n \in \mathbb{N}} \langle x, e_n \rangle \overline{\langle y, e_n \rangle}.$$