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Solution to Home Assignment 4
Solution to Question 1. For any f ∈C [a,b] we have that∥∥M f

∥∥= ∥∥m f
∥∥∞ = max

x∈[a,b]

∣∣m(x) f (x)
∣∣≤ ∥m∥∞

∥∥ f
∥∥∞ ,

which implies that ∥M∥ ≤ ∥m∥∞.
Choosing f ≡ 1 we find that

∥∥ f
∥∥∞ = 1 and

∥M1∥ = ∥m∥∞ .

Consequently

∥M∥ = sup
∥ f ∥=1

∥∥M f
∥∥∞ ≥ ∥M1∥ = ∥m∥∞ .

Combining these two inequalities gives us the desired result.

Solution to Question 2. For any f ∈C [a,b] we have that∣∣T f (x)
∣∣≤ ∫ x

a

∣∣ f (t )
∣∣d t ≤

∫ x

a

∥∥ f
∥∥∞ d t = (x −a)

∥∥ f
∥∥∞ .

Consequently,∥∥T f
∥∥∞ ≤ max

x∈[a,b]

(
(x −a)

∥∥ f
∥∥∞

)= (b −a)
∥∥ f

∥∥∞ ,

which implies that ∥T ∥ ≤ b − a. As in the previous question, choosing
f ≡= 1 we find that

∥∥ f
∥∥∞ = 1 and

T f (x) = x −a

which implies that ∥T ∥ ≥ ∥∥T f
∥∥= b−a. Combining these two inequalities

gives us the desired result.

Solution to Question 3. The linearity of this operator is a known result
from Linear Algebra I and as such we won’t show it and focus only on the
boundedness. For any x ∈X we have that

∥S ◦T x∥ = ∥S (T x)∥ ≤ ∥S∥∥T x∥ ≤ ∥S∥ (∥T ∥∥x∥) = (∥S∥∥T ∥)∥x∥ .

This shows the boundedness of S ◦T as well as the fact that

∥S ◦T ∥ ≤ ∥S∥∥T ∥ .

The second statement follows by induction. Indeed, it is a tautology for
n = 1. Assume it holds for n and consider T n+1. We have that∥∥T n+1

∥∥= ∥∥T ◦T n
∥∥≤ ∥T ∥∥∥T n

∥∥≤ ∥T ∥∥T ∥n = ∥T ∥n+1 ,

where we have used the first part of the question and the induction as-
sumption.
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Solution to Question 4. For any α< 0 and any x ̸= 0 we have that

∥αx∥ = |α|∥x∥ =−α∥x∥ ̸=α∥x∥ .

This implies that the norm can’t be a linear functional.

Solution to Question 5. For any f , g ∈C [a,b]

δx0

(
f + g

)= (
f + g

)
(x0) = f (x0)+ g (x0) = δx0 ( f )+δx0 (g ).

Similarly, for any f ∈C [a,b] and a scalar α

δx0

(
α f

)= (
α f

)
(x0) =α f (x0) =αδx0 ( f ),

which shows the linearity of δx0 . To show the boundedness of the func-
tional we notice that ∣∣δx0

(
f
)∣∣= ∣∣ f (x0)

∣∣≤ ∥∥ f
∥∥∞

which implies that
∥∥δx0

∥∥ ≤ 1. Moreover, choosing f ≡ 1 we find that∥∥ f
∥∥∞ = 1 and ∥∥δx0

∥∥≥ ∣∣δx0

(
f
)∣∣= 1,

from which we can conclude that
∥∥δx0

∥∥= 1.

Solution to Question 6. We start by noticing that for any x ∈ (−1.1) the
function

g (x) = ∑
n∈N

xn−1 = 1

1−x

is analytic and consequently
∑

n∈Nnm xk(n−1) converges for any k and m
inNwhen |x| < 1. We conclude that for any |λ| < 1∑

n∈N
n2 |λ|2(n−1) <∞

which implies that the sequence bλ, defined by

bλ,n = nλ
n−1

belongs to ℓ2 (N). We notice that, by definition,

fλ (a) = 〈a,bλ〉
and using Riesz’ representation theorem we conclude that fλ ∈ ℓ2 (N)∗.
The same theorem also tells us that∥∥ fλ

∥∥= ∥bλ∥2 =
√ ∑

n∈N
n2 |λ|2(n−1) =

√
1+|λ|2(

1−|λ|2) 3
2

.

None of the above can be extended to when |λ| = 1. For example

f1 (a) =
∑

n∈N
nan
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which doesn’t converge for all a ∈ ℓ2 (N) (as the sequence an = 1
n , which

is in ℓ2 (N), illustrates).

Solution to Question 7. We start by showing that I is conjugate linear.
Indeed, since for any y1, y2 ∈H and any x ∈H
fy1+y2 (x) = 〈

x, y1 + y2
〉= 〈

x, y1
〉+〈

x, y2
〉= fy1 (x)+ fy2 (x) = (

fy1 + fy2

)
(x)

which implies that

I
(
y1 + y2

)= fy1+y2 = fy1 + fy2 =Iy1 +Iy2 .

Moreover, for any y ∈H and a scalar α, and any x ∈H
fαy (x) = 〈

x,αy
〉=α〈

x, y
〉=α fy (x)

which implies that

I
(
αy

)= fαy =α fy =αIy.

Next we focus on the norm identity. Due to Riesz’ representation theorem∥∥Iy
∥∥
H∗ = sup

x∈H, ∥x∥=1

∣∣(Iy
)

(x)
∣∣= sup

x∈H, ∥x∥=1

∣∣ fy (x)
∣∣= ∥∥y

∥∥
H .

Riesz’ representation theorem also assures us that I is surjective and the
injectivity of it follows from the above. Indeed, if Iy1 =Iy2 then

0 = ∥∥Iy1 −Iy2
∥∥
H∗ =

∥∥I (
y1 − y2

)∥∥
H∗ =

∥∥y1 − y2
∥∥
H

which implies that y1 = y2. The first part of the question is now con-
cluded.
We now consider the function defined by (1) and show that it is an in-
ner produce that induces ∥·∥H∗ . Before we begin we mention that when
a map I is conjugate-linear and bijective then its inverse, I−1 is also
conjugate-linear and bijective (similar to an exercise in the previous as-
signment).

• For any f ∈H∗ we have that〈
f , f

〉= 〈
I−1 f ,I−1 f

〉
H = ∥∥I−1 f

∥∥2
H

which shows the non-negativity. Moreover,
〈

f , f
〉 = 0 if and only

if I−1 f = 0 which implies that1

f =I
(
I−1 f

)=I0 = 0.

• For any f , g ,h ∈H∗ we have that〈
f + g ,h

〉= 〈
I−1

(
f + g

)
,I−1h

〉
H = 〈

I−1 f +I−1g ,I−1h
〉
H

= 〈
I−1 f ,I−1h

〉
H +〈

I−1g ,I−1h
〉
H = 〈

f ,h
〉+〈

g ,h
〉

.
1this can be shown from the conjugate-linearity.
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• For any f , g ∈H and a scalar α we have that〈
α f , g

〉= 〈
I−1

(
α f

)
,I−1g

〉
H = 〈

αI−1 f ,I−1g
〉
H

=α〈
I−1 f ,I−1g

〉
H =α〈

I−1 f ,I−1g
〉
H =α〈

f , g
〉

.

• For any f , g ∈H〈
f , g

〉= 〈
I−1 f ,I−1g

〉
H = 〈

I−1g ,I−1 f
〉
H

= 〈
I−1g ,I−1 f

〉
H = 〈

g , f
〉

.

As all the required properties are satisfied, we find that 〈·, ·〉 is indeed an
inner product in H∗. To show that it induced the norm we need to show
that

∥∥ f
∥∥2
H∗ =

〈
f , f

〉
for every f ∈H∗. Since, as we saw,〈

f , f
〉= ∥∥I−1 f

∥∥2
H

it is enough to show that
∥∥ f

∥∥
H∗ = ∥∥I−1 f

∥∥
H for every f ∈ H∗ which

follows directly from (1). Indeed for any f ∈H∗∥∥ f
∥∥
H∗ =

∥∥I (
I−1 f

)∥∥
H∗ =

∥∥I−1 f
∥∥
H .

Solution to Question 8. In a previous assignment we have shown that
ℓ∞ (N) is not separable by finding an uncountable set {xα}α∈I ⊂ ℓ∞ (N)
such that ∥∥xα−xβ

∥∥
∞ ≥ 1, ∀α ̸=β.

Consequently, the set
{

fxα

}
α∈I is an uncountable set in ℓ1 (N)∗ and∥∥∥ fxα − fxβ

∥∥∥= ∥∥xα−xβ
∥∥
∞ ≥ 1, ∀α ̸=β.

Thus, ℓ1 (N)∗ is not separable.

Solution to Question 9. We have seen in class that if f ∈ ℓ∞ (N)∗ is of the
form f = fb for some b ∈ ℓ1 (N) then

(∗)
∥∥ fb

∥∥≤ ∥b∥1 .

Let B = {en}n∈N be the standard Scahuder basis of ℓ1 (N) and denote by
M = {

fen

}
n∈N. We claim that

f∑N
n=1αn en

=
N∑

n=1
αn fen

for any scalars α1, . . . ,αN . Indeed, given any a ∈ ℓ∞ (N) we see that

f∑N
n=1αn en

(a) =
∑
j∈N

a j

(
N∑

n=1
αnen

)
j

= ∑
j∈N

a j

N∑
n=1

αnδn, j
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=
N∑

j=1
a jα j =

N∑
n=1

α j fen (a) .

Since a ∈ ℓ∞ (N) was arbitrary we conclude the desired identity.
This, together with (∗) shows that for any b ∈ ℓ1 (N) we have that∥∥∥∥∥ fb −

N∑
n=1

bn fen

∥∥∥∥∥=
∥∥∥ fb − f∑N

n=1 bn en

∥∥∥≤
∥∥∥∥∥b −

N∑
n=1

bnen

∥∥∥∥∥
1

−→
n→∞ 0.

Consequently, if
{

fb
}

b∈ℓ1(N) = ℓ∞ (N)∗ we find that spanM is dense in
ℓ∞ (N)∗. Since M is countable we conclude that ℓ∞ (N)∗ is separable.
From class we know that X∗ is separable implies that X is also separable
and as we know that ℓ∞ (N) is not separable we have reached a contra-
diction.

Solution to Question 10. (i) According to Reisz’ representation theorem
any f ∈H∗ can be written as fy for some y ∈H where

fy (x) = 〈
x, y

〉
and for every y ∈H, fy ∈H∗. Thus, xn

w−→
n→∞ x if and only if for every

y ∈H 〈
xn , y

〉 −→
n→∞

〈
x, y

〉
.

(ii) Since B= {en}n∈N is an orthonormal set we have that for any y ∈H∑
n∈N

∣∣〈y,en
〉∣∣2 <∞.

Thus, for any y ∈H we must have that〈
en , y

〉= 〈
y,en

〉 −→
n→∞ 0 = 〈

0, y
〉

.

Using the previous sub-question we conclude the desired result.
(iii) The statement doesn’t remain true. Consider the orthogonal sequence

xn = nen where {en}n∈N is an orthonormal sequence. Let

y = ∑
n∈N

1

n
en .

Then y is well defined since
{ 1

n

}
n∈N ∈ ℓ2 (N) and〈

xn , y
〉= 1 ̸−→

n→∞
0

Solution to Question 11. (i) Let us assume that a given sequence {xn}n∈N ⊂
H converges weakly to x and y . Then, according to the previous ex-
ercise, for any z ∈H

〈xn , z〉 −→
n→∞ 〈x, z〉
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and

〈xn , z〉 −→
n→∞

〈
y, z

〉
.

Consequently 〈x, z〉 = 〈
y, z

〉
, or

〈
x − y, z

〉 = 0, for any z ∈H. Choos-
ing z = x − y we see that∥∥x − y

∥∥2 = 〈
x − y, x − y

〉= 0

which shows that x = y , i.e. the weak limit is unique.
(ii) We use the given fact and follow up as in the previous sub-question:

Assuming that {xn}n∈N ⊂ X converges weakly to x and y we have
that for any f ∈X∗

f
(
x − y

)= f (x)− f (y) = lim
n→∞ f (xn)− lim

n→∞ f (xn) = 0.

Choosing fx−y ∈ X∗ such that fx−y
(
x − y

) = ∥∥x − y
∥∥ in the above

shows that
∥∥x − y

∥∥= 0 which implies that x = y .

Solution to Question 12. (i) (3) follows from a theorem form class and
(4) follows from the previous question.

(ii) We have that

∞∑
j=N+1

∣∣y,e j
∣∣ ∣∣〈xn ,e j

〉∣∣≤
√√√√ ∞∑

j=N+1

∣∣y,e j
∣∣2

√√√√ ∞∑
j=N+1

∣∣〈xn ,e j
〉∣∣2 ≤

√√√√ ∞∑
j=N+1

∣∣y,e j
∣∣2 ∥xn∥ .

where we have used the Cauchy-Schwarz and Bessel’s inequalities.
Since {xn}n∈N is bounded and

M = sup
n∈N

∥xn∥

we conclude that

∞∑
j=N+1

∣∣〈y,e j
〉∣∣ ∣∣〈xn ,e j

〉∣∣≤ M

√√√√ ∞∑
j=N+1

∣∣〈y,e j
〉∣∣2.

(iii) We start by showing the statement in the hint: {xn}n∈N converges
weakly to x if and only if for any y ∈H〈

xn , y
〉 −→

n→∞
〈

x, y
〉

which is equivalent to〈
xn , y

〉−〈
x, y

〉 −→
n→∞ 0.

Due to the linearity of the inner product the above is equivalent to〈
xn −x, y

〉 −→
n→∞ 0 = 〈

0, y
〉
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for every y ∈H, which holds if and only if {xn −x}n∈N converges to
0. We thus focus our attention on using (3) and (4) to show that for
any y ∈H we have that〈

xn −x, y
〉 −→

n→∞ 0.

Given y ∈H we have that〈
xn −x, y

〉= ∑
j∈N

〈
xn −x,e j

〉〈
y,e j

〉
.

For any given N ∈Nwe find that∣∣〈xn −x, y
〉∣∣≤ N∑

j=1

∣∣〈xn −x,e j
〉∣∣ ∣∣〈y,e j

〉∣∣+ ∞∑
j=N+1

∣∣〈xn −x,e j
〉∣∣ ∣∣〈y,e j

〉∣∣ .

For a given ε > 0, since
{〈

y,e j
〉}

j∈N ∈ ℓ2 (N) we can find N (ε) ∈ N
such that for any N ≥ N (ε)

∞∑
j=N+1

∣∣〈y,e j
〉∣∣2 ≤ ε2

M 2

where M = supn∈N ∥xn −x∥ which is finite according to (3)2. Using
the reult of our previous sub-question we conclude that for any n ∈
N, as long as N ≥ N (ε) we have that

∞∑
j=N+1

∣∣〈xn −x,e j
〉∣∣ ∣∣〈y,e j

〉∣∣≤ M

√√√√ ∞∑
j=N+1

∣∣〈y,e j
〉∣∣2 < ε.

Since (3) is satisfied, for any given ε > 0 we can find N (ε) ∈ N such
that for any N ≥ N (ε)

∞∑
j=N+1

∣∣〈xn −x,e j
〉∣∣ ∣∣〈y,e j

〉∣∣< ε.

Consequently, when N ≥ N (ε) we have that∣∣〈xn −x, y
〉∣∣≤ N∑

j=1

∣∣〈xn −x,e j
〉∣∣ ∣∣〈y,e j

〉∣∣+ε.

Using (4) we conclude that for any such N

limsup
n→∞

∣∣〈xn −x, y
〉∣∣≤ ε.

2

sup
n∈N

∥xn −x∥ ≤ sup
n∈N

(∥xn∥+∥x∥) = sup
n∈N

∥xn∥+∥x∥ .
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As ε was arbitrary and
{∣∣〈xn −x, y

〉∣∣}
n∈N is non-negative conclude

that
lim

n→∞
∣∣〈xn −x, y

〉∣∣= 0,

which shows the desired result.


