Solution to Home Assignment 4

Solution to Question 1. For any $f \in C[a, b]$ we have that

$$
\|M f\|=\|m f\|_{\infty}=\max _{x \in[a, b]}|m(x) f(x)| \leq\|m\|_{\infty}\|f\|_{\infty}
$$

which implies that $\|M\| \leq\|m\|_{\infty}$.
Choosing $f \equiv 1$ we find that $\|f\|_{\infty}=1$ and

$$
\|M 1\|=\|m\|_{\infty} .
$$

Consequently

$$
\|M\|=\sup _{\|f\|=1}\|M f\|_{\infty} \geq\|M 1\|=\|m\|_{\infty}
$$

Combining these two inequalities gives us the desired result.
Solution to Question 2. For any $f \in C[a, b]$ we have that

$$
|T f(x)| \leq \int_{a}^{x}|f(t)| d t \leq \int_{a}^{x}\|f\|_{\infty} d t=(x-a)\|f\|_{\infty}
$$

Consequently,

$$
\|T f\|_{\infty} \leq \max _{x \in[a, b]}\left((x-a)\|f\|_{\infty}\right)=(b-a)\|f\|_{\infty}
$$

which implies that $\|T\| \leq b-a$. As in the previous question, choosing $f \equiv=1$ we find that $\|f\|_{\infty}=1$ and

$$
T f(x)=x-a
$$

which implies that $\|T\| \geq\|T f\|=b-a$. Combining these two inequalities gives us the desired result.

Solution to Question 3. The linearity of this operator is a known result from Linear Algebra I and as such we won't show it and focus only on the boundedness. For any $x \in \mathscr{X}$ we have that

$$
\|S \circ T x\|=\|S(T x)\| \leq\|S\|\|T x\| \leq\|S\|(\|T\|\|x\|)=(\|S\|\|T\|)\|x\| .
$$

This shows the boundedness of $S \circ T$ as well as the fact that

$$
\|S \circ T\| \leq\|S\|\|T\| .
$$

The second statement follows by induction. Indeed, it is a tautology for $n=1$. Assume it holds for n and consider T^{n+1}. We have that

$$
\left\|T^{n+1}\right\|=\left\|T \circ T^{n}\right\| \leq\|T\|\left\|T^{n}\right\| \leq\|T\|\|T\|^{n}=\|T\|^{n+1}
$$

where we have used the first part of the question and the induction assumption.

Solution to Question 4. For any $\alpha<0$ and any $x \neq 0$ we have that

$$
\|\alpha x\|=|\alpha|\|x\|=-\alpha\|x\| \neq \alpha\|x\| .
$$

This implies that the norm can't be a linear functional.
Solution to Question 5. For any $f, g \in C[a, b]$

$$
\delta_{x_{0}}(f+g)=(f+g)\left(x_{0}\right)=f\left(x_{0}\right)+g\left(x_{0}\right)=\delta_{x_{0}}(f)+\delta_{x_{0}}(g) .
$$

Similarly, for any $f \in C[a, b]$ and a scalar α

$$
\delta_{x_{0}}(\alpha f)=(\alpha f)\left(x_{0}\right)=\alpha f\left(x_{0}\right)=\alpha \delta_{x_{0}}(f),
$$

which shows the linearity of $\delta_{x_{0}}$. To show the boundedness of the functional we notice that

$$
\left|\delta_{x_{0}}(f)\right|=\left|f\left(x_{0}\right)\right| \leq\|f\|_{\infty}
$$

which implies that $\left\|\delta_{x_{0}}\right\| \leq 1$. Moreover, choosing $f \equiv 1$ we find that $\|f\|_{\infty}=1$ and

$$
\left\|\delta_{x_{0}}\right\| \geq\left|\delta_{x_{0}}(f)\right|=1
$$

from which we can conclude that $\left\|\delta_{x_{0}}\right\|=1$.
Solution to Question 6. We start by noticing that for any $x \in(-1.1)$ the function

$$
g(x)=\sum_{n \in \mathbb{N}} x^{n-1}=\frac{1}{1-x}
$$

is analytic and consequently $\sum_{n \in \mathbb{N}} n^{m} x^{k(n-1)}$ converges for any k and m in \mathbb{N} when $|x|<1$. We conclude that for any $|\lambda|<1$

$$
\sum_{n \in \mathbb{N}} n^{2}|\lambda|^{2(n-1)}<\infty
$$

which implies that the sequence \boldsymbol{b}_{λ}, defined by

$$
b_{\lambda, n}=n \bar{\lambda}^{n-1}
$$

belongs to $\ell_{2}(\mathbb{N})$. We notice that, by definition,

$$
f_{\lambda}(\boldsymbol{a})=\left\langle\boldsymbol{a}, \boldsymbol{b}_{\lambda}\right\rangle
$$

and using Riesz' representation theorem we conclude that $f_{\lambda} \in \ell_{2}(\mathbb{N})^{*}$. The same theorem also tells us that

$$
\left\|f_{\lambda}\right\|=\left\|\boldsymbol{b}_{\lambda}\right\|_{2}=\sqrt{\sum_{n \in \mathbb{N}} n^{2}|\lambda|^{2(n-1)}}=\frac{\sqrt{1+|\lambda|^{2}}}{\left(1-|\lambda|^{2}\right)^{\frac{3}{2}}} .
$$

None of the above can be extended to when $|\lambda|=1$. For example

$$
f_{1}(\boldsymbol{a})=\sum_{n \in \mathbb{N}} n a_{n}
$$

which doesn't converge for all $\boldsymbol{a} \in \ell_{2}(\mathbb{N})$ (as the sequence $a_{n}=\frac{1}{n}$, which is in $\ell_{2}(\mathbb{N})$, illustrates).
Solution to Question 7. We start by showing that \mathscr{F} is conjugate linear. Indeed, since for any $y_{1}, y_{2} \in \mathscr{H}$ and any $x \in \mathscr{H}$

$$
f_{y_{1}+y_{2}}(x)=\left\langle x, y_{1}+y_{2}\right\rangle=\left\langle x, y_{1}\right\rangle+\left\langle x, y_{2}\right\rangle=f_{y_{1}}(x)+f_{y_{2}}(x)=\left(f_{y_{1}}+f_{y_{2}}\right)(x)
$$

which implies that

$$
\mathscr{I}\left(y_{1}+y_{2}\right)=f_{y_{1}+y_{2}}=f_{y_{1}}+f_{y_{2}}=\mathscr{I} y_{1}+\mathscr{F}_{y_{2}} .
$$

Moreover, for any $y \in \mathscr{H}$ and a scalar α, and any $x \in \mathscr{H}$

$$
f_{\alpha y}(x)=\langle x, \alpha y\rangle=\bar{\alpha}\langle x, y\rangle=\bar{\alpha} f_{y}(x)
$$

which implies that

$$
\mathscr{F}(\alpha y)=f_{\alpha y}=\bar{\alpha} f_{y}=\bar{\alpha} \mathscr{J} y .
$$

Next we focus on the norm identity. Due to Riesz' representation theorem

$$
\|\mathscr{F} y\|_{\mathscr{H}^{*}}=\sup _{x \in \mathscr{H},\|x\|=1}|(\mathscr{F} y)(x)|=\sup _{x \in \mathscr{H},\|x\|=1}\left|f_{y}(x)\right|=\|y\|_{\mathscr{H}} .
$$

Riesz' representation theorem also assures us that \mathscr{F} is surjective and the injectivity of it follows from the above. Indeed, if $\mathscr{F} y_{1}=\mathscr{J} y_{2}$ then

$$
0=\left\|\mathscr{I} y_{1}-\mathscr{F} y_{2}\right\|_{\mathscr{H}^{*}}=\left\|\mathscr{J}\left(y_{1}-y_{2}\right)\right\|_{\mathscr{H}^{*}}=\left\|y_{1}-y_{2}\right\|_{\mathscr{H}}
$$

which implies that $y_{1}=y_{2}$. The first part of the question is now concluded.
We now consider the function defined by (1) and show that it is an inner produce that induces $\|\cdot\|_{\mathscr{H}^{*}}$. Before we begin we mention that when a map \mathscr{F} is conjugate-linear and bijective then its inverse, \mathscr{F}^{-1} is also conjugate-linear and bijective (similar to an exercise in the previous assignment).

- For any $f \in \mathscr{H}^{*}$ we have that

$$
\langle f, f\rangle=\overline{\left\langle\mathscr{I}^{-1} f, \mathscr{I}^{-1} f\right\rangle_{\mathscr{C}}}=\left\|\mathscr{J}^{-1} f\right\|_{\mathscr{C}}^{2}
$$

which shows the non-negativity. Moreover, $\langle f, f\rangle=0$ if and only if $\mathscr{J}^{-1} f=0$ which implies that

$$
f=\mathscr{F}\left(\mathscr{J}^{-1} f\right)=\mathscr{F} 0=0
$$

- For any $f, g, h \in \mathscr{H}^{*}$ we have that

$$
\begin{gathered}
\langle f+g, h\rangle=\overline{\left\langle\mathscr{J}^{-1}(f+g), \mathscr{J}^{-1} h\right\rangle_{\mathscr{H}}}=\overline{\left\langle\mathscr{J}^{-1} f+\mathscr{J}^{-1} g, \mathscr{J}^{-1} h\right\rangle_{\mathscr{H}}} \\
=\overline{\left\langle\mathscr{J}^{-1} f, \mathscr{J}^{-1} h\right\rangle_{\mathscr{H}}}+\overline{\left\langle\mathscr{J}^{-1} g, \mathscr{J}^{-1} h\right\rangle_{\mathscr{H}}}=\langle f, h\rangle+\langle g, h\rangle .
\end{gathered}
$$

[^0]- For any $f, g \in \mathscr{H}$ and a scalar α we have that

$$
\begin{aligned}
& \langle\alpha f, g\rangle=\overline{\left\langle\mathscr{J}^{-1}(\alpha f), \mathcal{F}^{-1} g\right\rangle_{\mathscr{H}}}=\overline{\left\langle\bar{\alpha} \mathscr{J}^{-1} f, \mathcal{J}^{-1} g\right\rangle_{\mathscr{H}}} \\
& =\overline{\bar{\alpha}\left\langle\mathscr{J}^{-1} f, \mathscr{I}^{-1} g\right\rangle_{\mathscr{H}}}=\alpha \overline{\left\langle\mathscr{I}^{-1} f, \mathscr{J}^{-1} g\right\rangle_{\mathscr{H}}}=\alpha\langle f, g\rangle .
\end{aligned}
$$

- For any $f, g \in \mathscr{H}$

$$
\begin{aligned}
\langle f, g\rangle= & \overline{\left\langle\mathcal{I}^{-1} f, \mathscr{I}^{-1} g\right\rangle_{\mathscr{H}}}=\overline{\overline{\left\langle\mathcal{I}^{-1} g, \mathscr{I}^{-1} f\right\rangle_{\mathscr{H}}}} \\
& =\left\langle\mathscr{J}^{-1} g, \mathscr{J}^{-1} f\right\rangle_{\mathscr{H}}=\overline{\langle g, f\rangle} .
\end{aligned}
$$

As all the required properties are satisfied, we find that $\langle\cdot, \cdot\rangle$ is indeed an inner product in \mathscr{H}^{*}. To show that it induced the norm we need to show that $\|f\|_{\mathscr{H}^{*}}^{2}=\langle f, f\rangle$ for every $f \in \mathscr{H}^{*}$. Since, as we saw,

$$
\langle f, f\rangle=\left\|\mathscr{J}^{-1} f\right\|_{\mathscr{H}}^{2}
$$

it is enough to show that $\|f\|_{\mathscr{H}^{*}}=\left\|\mathscr{J}^{-1} f\right\|_{\mathscr{H}}$ for every $f \in \mathscr{H}^{*}$ which follows directly from (1). Indeed for any $f \in \mathscr{H}^{*}$

$$
\|f\|_{\mathscr{H}^{*}}=\left\|\mathscr{I}\left(\mathscr{J}^{-1} f\right)\right\|_{\mathscr{H}^{*}}=\left\|\mathscr{J}^{-1} f\right\|_{\mathscr{H}} .
$$

Solution to Question 8. In a previous assignment we have shown that $\ell_{\infty}(\mathbb{N})$ is not separable by finding an uncountable set $\left\{x_{\alpha}\right\}_{\alpha \in \mathscr{I}} \subset \ell_{\infty}(\mathbb{N})$ such that

$$
\left\|x_{\alpha}-x_{\beta}\right\|_{\infty} \geq 1, \quad \forall \alpha \neq \beta .
$$

Consequently, the set $\left\{f_{x_{\alpha}}\right\}_{\alpha \in \mathscr{g}}$ is an uncountable set in $\ell_{1}(\mathbb{N})^{*}$ and

$$
\left\|f_{x_{\alpha}}-f_{x_{\beta}}\right\|=\left\|x_{\alpha}-x_{\beta}\right\|_{\infty} \geq 1, \quad \forall \alpha \neq \beta .
$$

Thus, $\ell_{1}(\mathbb{N})^{*}$ is not separable.
Solution to Question 9. We have seen in class that if $f \in \ell_{\infty}(\mathbb{N})^{*}$ is of the form $f=f_{\boldsymbol{b}}$ for some $\boldsymbol{b} \in \ell_{1}(\mathbb{N})$ then

$$
\begin{equation*}
\left\|f_{\boldsymbol{b}}\right\| \leq\|\boldsymbol{b}\|_{1} \tag{*}
\end{equation*}
$$

Let $\mathscr{B}=\left\{\boldsymbol{e}_{n}\right\}_{n \in \mathbb{N}}$ be the standard Scahuder basis of $\ell_{1}(\mathbb{N})$ and denote by $M=\left\{f_{\boldsymbol{e}_{n}}\right\}_{n \in \mathbb{N}}$. We claim that

$$
f_{\sum_{n=1}^{N} \alpha_{n} \boldsymbol{e}_{n}}=\sum_{n=1}^{N} \overline{\alpha_{n}} f_{\boldsymbol{e}_{n}}
$$

for any scalars $\alpha_{1}, \ldots, \alpha_{N}$. Indeed, given any $\boldsymbol{a} \in \ell_{\infty}(\mathbb{N})$ we see that

$$
f_{\sum_{n=1}^{N} \alpha_{n} \boldsymbol{e}_{n}}(\boldsymbol{a})=\sum_{j \in \mathbb{N}} a_{j} \overline{\left(\sum_{n=1}^{N} \alpha_{n} \boldsymbol{e}_{n}\right)_{j}}=\sum_{j \in \mathbb{N}} a_{j} \overline{\sum_{n=1}^{N} \alpha_{n} \delta_{n, j}}
$$

$$
=\sum_{j=1}^{N} a_{j} \overline{\alpha_{j}}=\sum_{n=1}^{N} \overline{\alpha_{j}} f_{e_{n}}(\boldsymbol{a}) .
$$

Since $\boldsymbol{a} \in \ell_{\infty}(\mathbb{N})$ was arbitrary we conclude the desired identity.
This, together with $\left.\mathbb{*}^{*}\right)$ shows that for any $\boldsymbol{b} \in \ell_{1}(\mathbb{N})$ we have that

$$
\left\|f_{\boldsymbol{b}}-\sum_{n=1}^{N} \overline{b_{n}} f_{\boldsymbol{e}_{n}}\right\|=\left\|f_{\boldsymbol{b}}-f_{\sum_{n=1}^{N} b_{n} \boldsymbol{e}_{n}}\right\| \leq\left\|\boldsymbol{b}-\sum_{n=1}^{N} b_{n} \boldsymbol{e}_{n}\right\|_{1} \underset{n \rightarrow \infty}{\longrightarrow} 0 .
$$

Consequently, if $\left\{f_{\boldsymbol{b}}\right\}_{\boldsymbol{b} \in \ell_{1}(\mathbb{N})}=\ell_{\infty}(\mathbb{N})^{*}$ we find that span M is dense in $\ell_{\infty}(\mathbb{N})^{*}$. Since M is countable we conclude that $\ell_{\infty}(\mathbb{N})^{*}$ is separable. From class we know that \mathscr{X}^{*} is separable implies that \mathscr{X} is also separable and as we know that $\ell_{\infty}(\mathbb{N})$ is not separable we have reached a contradiction.

Solution to Question 10. (i) According to Reisz' representation theorem any $f \in \mathscr{H}^{*}$ can be written as f_{y} for some $y \in \mathscr{H}$ where

$$
f_{y}(x)=\langle x, y\rangle
$$

and for every $y \in \mathscr{H}, f_{y} \in \mathscr{H}^{*}$. Thus, $x_{n} \xrightarrow[n \rightarrow \infty]{w} x$ if and only if for every $y \in \mathscr{H}$

$$
\left\langle x_{n}, y\right\rangle \underset{n \rightarrow \infty}{\longrightarrow}\langle x, y\rangle .
$$

(ii) Since $\mathscr{B}=\left\{e_{n}\right\}_{n \in \mathbb{N}}$ is an orthonormal set we have that for any $y \in \mathscr{H}$

$$
\sum_{n \in \mathbb{N}}\left|\left\langle y, e_{n}\right\rangle\right|^{2}<\infty .
$$

Thus, for any $y \in \mathscr{H}$ we must have that

$$
\left\langle e_{n}, y\right\rangle=\overline{\left\langle y, e_{n}\right\rangle} \underset{n \rightarrow \infty}{\longrightarrow} 0=\langle 0, y\rangle .
$$

Using the previous sub-question we conclude the desired result.
(iii) The statement doesn't remain true. Consider the orthogonal sequence $x_{n}=n e_{n}$ where $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ is an orthonormal sequence. Let

$$
y=\sum_{n \in \mathbb{N}} \frac{1}{n} e_{n} .
$$

Then y is well defined since $\left\{\frac{1}{n}\right\}_{n \in \mathbb{N}} \in \ell_{2}(\mathbb{N})$ and

$$
\left\langle x_{n}, y\right\rangle=1 \underset{n \rightarrow \infty}{\nrightarrow} 0
$$

Solution to Question 11. (i) Let us assume that a given sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset$ \mathscr{H} converges weakly to x and y. Then, according to the previous exercise, for any $z \in \mathscr{H}$

$$
\left\langle x_{n}, z\right\rangle \underset{n \rightarrow \infty}{\longrightarrow}\langle x, z\rangle
$$

and

$$
\left\langle x_{n}, z\right\rangle \underset{n \rightarrow \infty}{\longrightarrow}\langle y, z\rangle .
$$

Consequently $\langle x, z\rangle=\langle y, z\rangle$, or $\langle x-y, z\rangle=0$, for any $z \in \mathscr{H}$. Choosing $z=x-y$ we see that

$$
\|x-y\|^{2}=\langle x-y, x-y\rangle=0
$$

which shows that $x=y$, i.e. the weak limit is unique.
(ii) We use the given fact and follow up as in the previous sub-question: Assuming that $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset \mathscr{X}$ converges weakly to x and y we have that for any $f \in \mathscr{X}^{*}$

$$
f(x-y)=f(x)-f(y)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)-\lim _{n \rightarrow \infty} f\left(x_{n}\right)=0 .
$$

Choosing $f_{x-y} \in \mathscr{X}^{*}$ such that $f_{x-y}(x-y)=\|x-y\|$ in the above shows that $\|x-y\|=0$ which implies that $x=y$.

Solution to Question 12. (i) (3) follows from a theorem form class and
(4) follows from the previous question.
(ii) We have that

$$
\sum_{j=N+1}^{\infty}\left|y, e_{j}\right|\left|\left\langle x_{n}, e_{j}\right\rangle\right| \leq \sqrt{\sum_{j=N+1}^{\infty}\left|y, e_{j}\right|^{2}} \sqrt{\sum_{j=N+1}^{\infty}\left|\left\langle x_{n}, e_{j}\right\rangle\right|^{2}} \leq \sqrt{\sum_{j=N+1}^{\infty}\left|y, e_{j}\right|^{2}}\left\|x_{n}\right\|
$$

where we have used the Cauchy-Schwarz and Bessel's inequalities. Since $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is bounded and

$$
M=\sup _{n \in \mathbb{N}}\left\|x_{n}\right\|
$$

we conclude that

$$
\sum_{j=N+1}^{\infty}\left|\left\langle y, e_{j}\right\rangle\right|\left|\left\langle x_{n}, e_{j}\right\rangle\right| \leq M \sqrt{\sum_{j=N+1}^{\infty}\left|\left\langle y, e_{j}\right\rangle\right|^{2}}
$$

(iii) We start by showing the statement in the hint: $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ converges weakly to x if and only if for any $y \in \mathscr{H}$

$$
\left\langle x_{n}, y\right\rangle \underset{n \rightarrow \infty}{\longrightarrow}\langle x, y\rangle
$$

which is equivalent to

$$
\left\langle x_{n}, y\right\rangle-\langle x, y\rangle \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

Due to the linearity of the inner product the above is equivalent to

$$
\left\langle x_{n}-x, y\right\rangle \underset{n \rightarrow \infty}{\longrightarrow} 0=\langle 0, y\rangle
$$

for every $y \in \mathscr{H}$, which holds if and only if $\left\{x_{n}-x\right\}_{n \in \mathbb{N}}$ converges to 0 . We thus focus our attention on using (3) and (4) to show that for any $y \in \mathscr{H}$ we have that

$$
\left\langle x_{n}-x, y\right\rangle \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

Given $y \in \mathscr{H}$ we have that

$$
\left\langle x_{n}-x, y\right\rangle=\sum_{j \in \mathbb{N}}\left\langle x_{n}-x, e_{j}\right\rangle \overline{\left\langle y, e_{j}\right\rangle} .
$$

For any given $N \in \mathbb{N}$ we find that

$$
\left|\left\langle x_{n}-x, y\right\rangle\right| \leq \sum_{j=1}^{N}\left|\left\langle x_{n}-x, e_{j}\right\rangle\right|\left|\left\langle y, e_{j}\right\rangle\right|+\sum_{j=N+1}^{\infty}\left|\left\langle x_{n}-x, e_{j}\right\rangle\right|\left|\left\langle y, e_{j}\right\rangle\right| .
$$

For a given $\varepsilon>0$, since $\left\{\left\langle y, e_{j}\right\rangle\right\}_{j \in \mathbb{N}} \in \ell_{2}(\mathbb{N})$ we can find $N(\varepsilon) \in \mathbb{N}$ such that for any $N \geq N(\varepsilon)$

$$
\sum_{j=N+1}^{\infty}\left|\left\langle y, e_{j}\right\rangle\right|^{2} \leq \frac{\varepsilon^{2}}{M^{2}}
$$

where $M=\sup _{n \in \mathbb{N}}\left\|x_{n}-x\right\|$ which is finite according to (3) ${ }^{2}$. Using the reult of our previous sub-question we conclude that for any $n \in$ \mathbb{N}, as long as $N \geq N(\varepsilon)$ we have that

$$
\sum_{j=N+1}^{\infty}\left|\left\langle x_{n}-x, e_{j}\right\rangle\right|\left|\left\langle y, e_{j}\right\rangle\right| \leq M \sqrt{\sum_{j=N+1}^{\infty}\left|\left\langle y, e_{j}\right\rangle\right|^{2}}<\varepsilon
$$

Since (3) is satisfied, for any given $\varepsilon>0$ we can find $N(\varepsilon) \in \mathbb{N}$ such that for any $N \geq N(\varepsilon)$

$$
\sum_{j=N+1}^{\infty}\left|\left\langle x_{n}-x, e_{j}\right\rangle\right|\left|\left\langle y, e_{j}\right\rangle\right|<\varepsilon
$$

Consequently, when $N \geq N(\varepsilon)$ we have that

$$
\left|\left\langle x_{n}-x, y\right\rangle\right| \leq \sum_{j=1}^{N}\left|\left\langle x_{n}-x, e_{j}\right\rangle\right|\left|\left\langle y, e_{j}\right\rangle\right|+\varepsilon .
$$

Using (4) we conclude that for any such N

$$
\limsup _{n \rightarrow \infty}\left|\left\langle x_{n}-x, y\right\rangle\right| \leq \varepsilon
$$

2

$$
\sup _{n \in \mathbb{N}}\left\|x_{n}-x\right\| \leq \sup _{n \in \mathbb{N}}\left(\left\|x_{n}\right\|+\|x\|\right)=\sup _{n \in \mathbb{N}}\left\|x_{n}\right\|+\|x\| .
$$

As ε was arbitrary and $\left\{\left|\left\langle x_{n}-x, y\right\rangle\right|\right\}_{n \in \mathbb{N}}$ is non-negative conclude that

$$
\lim _{n \rightarrow \infty}\left|\left\langle x_{n}-x, y\right\rangle\right|=0
$$

which shows the desired result.

[^0]: ${ }^{1}$ this can be shown from the conjugate-linearity.

