Home Assignment 5

Exercise 1. Prove the Hahn-Banach theorem in the case where the underlying space is a Hilbert space.

Exercise 2. Use Baire's category theorem to show that any Hamel basis for an infinite dimensional Banach space must be uncountable.

Hint: Assume by contradiction that $\mathscr{B} = \{x_n\}_{n \in \mathbb{N}}$ *is a Hamel basis and consider the subspaces* $M_n = \text{span}\{x_1, \dots, x_n\}$.

Exercise 3. Prove the following statement: Let \mathscr{X} be a Banach space and let \mathscr{Y} be a normed space. If $\{T_n\}_{n \in \mathbb{N}} \in B(\mathscr{X}, \mathscr{Y})$ satisfies that

$$\lim_{n \to \infty} T_n x \qquad \text{exists for all } x \in \mathcal{X}$$

then the map $T: \mathcal{X} \to \mathcal{Y}$ defined by

$$Tx = \lim_{n \in \mathbb{N}} T_n x$$

is a bounded linear map.

Exercise 4. Consider the vector subspace $\ell_c(\mathbb{N}) \subset \ell_{\infty}(\mathbb{N})$ defined by

 $\ell_c(\mathbb{N}) = \{\{a_n\}_{n \in \mathbb{N}} \in \mathbb{C} \mid \exists n_0 \in \mathbb{N} \text{ such that } a_n = 0 \ \forall n \ge n_0\}$

and define the operators $T_n: \ell_c(\mathbb{N}) \to \ell_c(\mathbb{N})$ by

$$(T_n \boldsymbol{a})_k = \begin{cases} na_n & k = n \\ 0 & k \neq n \end{cases}$$

Show that for any $\boldsymbol{a} \in \ell_c(\mathbb{N})$ we have that $\sup_{n \in \mathbb{N}} ||T_n \boldsymbol{a}|| < \infty$ but

$$\sup_{n\in\mathbb{N}}\|T_n\|=\infty$$

Why doesn't this violate the Banach-Steinhaus theorem?

The goal of the next exercise is to prove the following theorem:

Theorem (*Biorthogoanal sequence*). Let \mathscr{X} be a Banach space with Schauder basis $\mathscr{B} = \{e_n\}_{n \in \mathbb{N}}$. Then there exists a unique sequence $\{f^{(n)}\}_{n \in \mathbb{N}} \in \mathscr{X}^*$ such that $f^{(n)}(e_j) = \delta_{n,j}$.

The proof will rely on the next theorem (which you can also do as an exercise, though a solution is not provided):

Theorem (*Sinai's theorem*). Let $(\mathcal{X}, \|\cdot\|)$ be a Banach space and let $\{e_n\}_{n \in \mathbb{N}}$ be a sequence in \mathcal{X} such that $e_n \neq 0$ for every $n \in \mathbb{N}$. Define

$$\mathcal{Y} = \left\{ \boldsymbol{\alpha} = \{\alpha_n\}_{n \in \mathbb{N}} \in \mathbb{F} \mid \sum_{n \in \mathbb{N}} \alpha_n e_n \text{ converges in } \mathcal{X} \right\}$$

and set

$$\|\boldsymbol{\alpha}\|_{\mathcal{Y}} = \sup_{N \in \mathbb{N}} \left\| \sum_{n=1}^{N} \alpha_n e_n \right\|.$$

Then \mathcal{Y} is a Banach space.

Exercise 5. Let \mathscr{X} be a Banach space with Schauder basis $\mathscr{B} = \{e_n\}_{n \in \mathbb{N}}$ and let \mathscr{Y} be the space defined Sinai's theorem.

(i) Show that the map $T: \mathcal{Y} \to \mathcal{X}$ defined by

$$T\boldsymbol{\alpha} = \sum_{n \in \mathbb{N}} \alpha_n e_n$$

is a bounded linear operator that is a bijection between \mathcal{Y} and \mathcal{X} .

(ii) Show that T^{-1} is bounded and conclude that there exists C > 0 such that for any $N \in \mathbb{N}$ and any $x \in \mathcal{X}$

$$\left\|\sum_{n=1}^N \alpha_n(x) e_n\right\| \le C \|x\|$$

where $x = \sum_{n \in \mathbb{N}} \alpha_n(x) e_n$ is the unique expansion of *x* with respect to the basis \mathcal{B} .

(iii) Prove the Biorthogonal sequence theorem by defining

$$f_n(x) = f_n\left(\sum_{j \in \mathbb{N}} \alpha_j(x)e_j\right) = \alpha_n(x)$$

and proving that f_n is linear with $||f_n|| \le \frac{2C}{||e_n||}$.

Exercise 6. Let

$$D: C^{1}[0,1] \subset C[0,1] \to C[0,1]$$

be the derivative operator, where C[0,1] is imbued with the norm $\|\cdot\|_{\infty}$ and $C^1[0,1]$ is the space of all continuously differentiable functions on [0,1]. Show that *D* is a closed linear operator.