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Solution to Home Assignment 5

Solution to Question 1. Let % be a subspace of a Hilbert space # and let
f be abounded linear functional on it. As we saw in class, we can always
extend f to % in a unique way that preserves its operator norm. Thus,
we can assume without loss of generality that % is closed. Since # is a
Hilbert space and % is a closed subspace in #, % by itself is a Hilbert
space with respect to the induced inner product. Since f € % * we know,
according to the Riesz representation theorem, that here exists yr € %
such that f: % — F must be of the form

f)=(xyr), xe¥%.
Moreover, || f|| = || y¢ |- An extension to % is now readily available - define
f:% —Fby N
f)=(x,y5).
This is a bounded linear functional which extends f and, just like in the
proof of Riesz’ representation theorem, we have that || f|| = | y¢| = || f]|-

Solution to Question 2. We shall prove the statement by contradiction.
Assume that there is a countable Hamel basis, % = {x,},en, to a given
infinite dimensional Banach space 2. Define

My =spani{xy,..., x,}.

M, is a finite dimensional subspace of 2" and as such a closed set. More-
over, since % is a Hamel basis we find that

(%' = UneNﬂn.
Thus, according to Baire’s category theorem, there must exists ny € N,
Xp € L and r > 0 such that
X0+ Br(0) = By (x0) © My,.

This, however, implies that xy € .#,, and consequently, as ./, is a sub-
space, that

B (0) = —xo + By (xo) © —xo + Mpy = Mp,.
We conclude from the above that any x € 2 such that | x|| < r must be-
long to ./ . Since / , is closed to scalar multiplication we have if x # 0
then

2 1r x
X=—= ——— €Uy,
ro 2|xl
——
€B; (0)=My,

and since 0 also must be in .#,, we conclude that .#,, = 2 which con-
tradicts the fact that 2" is infinite dimensional.
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Solution to Question 3. We have seen in class, when we showed that B (5[ , ?)
is a Banach space whenever ¥ is, thatif {T}, x},,cny converges pointwise for
any x € 2 then the operator T: & — % defined by

Tx=lim T,x
n—oo

is a linear operator. Moreover, we saw that if sup,,cn | 751l < 0o then T is
bounded with
Tl <sup | Tyll.

neN
Since lim,,_.o, T, x exists for any x we find that

sup || T, x|l < oo VxeX

neN

and according to the Banach-Steinhaus theorem, this implies that

sup || Tl < oo.
neN

This concludes the proof.
Solution to Question 4. Let a € . (N). Then, there exists ng € N such that
for any n > ny we have that a,, = 0. Thus for any n > nyg
T,a=0
and consequently for any fixed a € ¢, (N)

sup||Tyall = sup || Tall = maxsup |(T,a);| = maxn|a,| < co.
neN n<ng N=no peN n=ny

However, denoting the “standard basis” in ¢, (N) by {e,,} ,en We find that
e,cl.(N)forallneNand T,e, = ne,. As |le,ll., =1 we conclude that
1 Thll = 1 Thenlleo =1

showing that sup,,cn | T, |l = oo. This doesn’t violate the Banach-Steinhaus
theorem since ¢ (N) is not a Banach space (you can check that it is not
complete).

Solution to Question 5. (i) We start by noticing that from the definition
of % the operator T is well defined. Clearly

T(a+p)=) (an+Pn)en=) anen+ )Y Pnen=Ta+Tp

neN neN neN
and
T(ca)= ) (cap)en=c)_ aney,=cTa
neN neN
which shows that T is linear. To show that T is bounded we notice
that
N
ITal=|> ane,| =] lim > ane,
neN N—oo ;75




Z anén

Next we show that T is a bijection. Since & is a Schauder basis we
know that for any x € 2" there exists a(x) such that x =} ,cn @n(X) €.
Consequently, @(x) € % and T (a(x)) = x, showing that T is surjec-
tive.

To show that T is injective we notice that Ta = 0 if and only if

Y ane,=0.

neN

= lim
N—oo

Z dnépn

n=

=sup
NeN

= ey .

Due to the uniqueness of the expansion with respect to % we must
have that a, =0 for all n € N, or equivalently that &« = 0. Thus T is
injective.

(ii) Usingthe open mapping for injective linear operators (note that % (T) =
 is a Banach space) we conclude that T~!: 2 — % is bounded and
assuch forany xe &

Z an(x)en

n=

sup

=la@ly = [T x]q < | T7 [ 1x1.
NeN

We achieved the desired inequality with C = | 77

(iii) Much like we've seen in class, the uniqueness of the coefficients in
the expansion of x with respect to & implies that f;, are all linear
funcitonals. To show that they are bounded we notice that for any

n=2
lanenl | B @i - Tzt aj (e
| fn (0] = lan ()] = -
llex lexl
HZ?zlaj(x)ej”+0 1a](x)e]” oC
= < Il
lenll el
For n = 1 we have that
lai(x)e || 2C
|i)] = ——— lxl < = |ix].

lexll || 1|I leall

This gives the the required proof to the Biorthogonal sequence the-
orem.

Solution to Question 6. The linearity of D is known from Analysis I. We
will focus on its closedness by showing that if we have a sequence { f,,}
C'[0,1] such that

neN <

ll-lloo lllloo
n— 1 f;;:Dfnnjo’og

n—oo
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then f € C'[0,1] and g = Df. Since {f}} ., are continuous functions that
converge uniformly to a function g we know that g € C[0, 1] and for any
x€[0,1]

f findy — f g(y)dy.
0 n—oo Jo

Denoting by G(x) = [, g(y)dy we find, due to Fundamental Theorem of
Calculus, that G € C'[0,1] with DG = g. Moreover since {fn} . are con-
tinuous functions that converge uniformly to a function f we know that
f €CJ[0,1] and for any x € [0, 1]

f = fim f00= lim [ £,0)+ [ iy ) = f0 + G0

Since G € C'[0,1] we have that f € C'[0,1] = @ (D) and as the difference
between them is a constant we have that

Df=Dg=g.
We conclude that D is indeed a closed operator.



