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Solution to Home Assignment 5
Solution to Question 1. LetY be a subspace of a Hilbert spaceH and let
f be a bounded linear functional on it. As we saw in class, we can always
extend f to Y in a unique way that preserves its operator norm. Thus,
we can assume without loss of generality that Y is closed. Since H is a
Hilbert space and Y is a closed subspace in H, Y by itself is a Hilbert
space with respect to the induced inner product. Since f ∈Y∗ we know,
according to the Riesz representation theorem, that here exists y f ∈Y

such that f :Y→ F must be of the form

f (x) = 〈
x, y f

〉
, x ∈Y.

Moreover,
∥∥ f

∥∥= ∥∥y f
∥∥. An extension toH is now readily available - define

f̃ :H→ F by
f̃ (x) = 〈

x, y f
〉

.

This is a bounded linear functional which extends f and, just like in the
proof of Riesz’ representation theorem, we have that

∥∥ f̃
∥∥= ∥∥y f

∥∥= ∥∥ f
∥∥.

Solution to Question 2. We shall prove the statement by contradiction.
Assume that there is a countable Hamel basis, B = {xn}n∈N, to a given
infinite dimensional Banach space X. Define

Mn = span{x1, . . . , xn} .

Mn is a finite dimensional subspace of X and as such a closed set. More-
over, since B is a Hamel basis we find that

X =∪n∈NMn .

Thus, according to Baire’s category theorem, there must exists n0 ∈ N,
x0 ∈X and r > 0 such that

x0 +Br (0) = Br (x0) ⊂Mn0 .

This, however, implies that x0 ∈Mn0 and consequently, as Mn0 is a sub-
space, that

Br (0) =−x0 +Br (x0) ⊂−x0 +Mn0 =Mn0 .

We conclude from the above that any x ∈X such that ‖x‖ < r must be-
long to Mn0 . Since Mn0 is closed to scalar multiplication we have if x 6= 0
then

x = 2

r

r

2

x

‖x‖︸ ︷︷ ︸
∈Br (0)⊂Mn0

∈Mn0 ,

and since 0 also must be in Mn0 we conclude that Mn0 =X which con-
tradicts the fact that X is infinite dimensional.
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Solution to Question 3. We have seen in class, when we showed that B
(
X,Y

)
is a Banach space wheneverY is, that if {Tn x}n∈N converges pointwise for
any x ∈X then the operator T :X→Y defined by

T x = lim
n→∞Tn x

is a linear operator. Moreover, we saw that if supn∈N ‖Tn‖ <∞ then T is
bounded with

‖T ‖ ≤ sup
n∈N

‖Tn‖ .

Since limn→∞ Tn x exists for any x we find that

sup
n∈N

‖Tn x‖ <∞ ∀x ∈X

and according to the Banach-Steinhaus theorem, this implies that

sup
n∈N

‖Tn‖ <∞.

This concludes the proof.

Solution to Question 4. Let a ∈ `c (N). Then, there exists n0 ∈N such that
for any n > n0 we have that an = 0. Thus for any n > n0

Tn a = 0

and consequently for any fixed a ∈ `c (N)

sup
n∈N

‖Tn a‖ = sup
n≤n0

‖Tn a‖ = max
n≤n0

sup
k∈N

|(Tn a)k | = max
n≤n0

n |an | <∞.

However, denoting the “standard basis” in `∞ (N) by {en}n∈N we find that
en ∈ `c (N) for all n ∈N and Tnen = nen . As ‖en‖∞ = 1 we conclude that

‖Tn‖ ≥ ‖Tnen‖∞ = n

showing that supn∈N ‖Tn‖ =∞. This doesn’t violate the Banach-Steinhaus
theorem since `c (N) is not a Banach space (you can check that it is not
complete).

Solution to Question 5. (i) We start by noticing that from the definition
ofY the operator T is well defined. Clearly

T
(
α+β)= ∑

n∈N

(
αn +βn

)
en = ∑

n∈N
αnen + ∑

n∈N
βnen = Tα+Tβ

and
T (cα) =

∑
n∈N

(cαn)en = c
∑

n∈N
αnen = cTα

which shows that T is linear. To show that T is bounded we notice
that

‖Tα‖ =
∥∥∥∥∥ ∑

n∈N
αnen

∥∥∥∥∥=
∥∥∥∥∥ lim

N→∞

N∑
n=1

αnen

∥∥∥∥∥
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= lim
N→∞

∥∥∥∥∥ N∑
n=1

αnen

∥∥∥∥∥≤ sup
N∈N

∥∥∥∥∥ N∑
n=1

αnen

∥∥∥∥∥= ‖α‖Y .

Next we show that T is a bijection. Since B is a Schauder basis we
know that for any x ∈X there existsα(x) such that x =∑

n∈Nαn(x)en .
Consequently, α(x) ∈Y and T (α(x)) = x, showing that T is surjec-
tive.
To show that T is injective we notice that Tα= 0 if and only if∑

n∈N
αnen = 0.

Due to the uniqueness of the expansion with respect to B we must
have that αn = 0 for all n ∈ N, or equivalently that α = 0. Thus T is
injective.

(ii) Using the open mapping for injective linear operators (note thatR (T ) =
X is a Banach space) we conclude that T −1 :X→Y is bounded and
as such for any x ∈X

sup
N∈N

∥∥∥∥∥ N∑
n=1

αn(x)en

∥∥∥∥∥= ‖α(x)‖Y = ∥∥T −1x
∥∥
Y ≤ ∥∥T −1

∥∥‖x‖ .

We achieved the desired inequality with C = ∥∥T −1
∥∥ .

(iii) Much like we’ve seen in class, the uniqueness of the coefficients in
the expansion of x with respect to B implies that fn are all linear
funcitonals. To show that they are bounded we notice that for any
n ≥ 2

∣∣ fn(x)
∣∣= |αn(x)| = ‖αn(x)en‖

‖en‖
=

∥∥∥∑n
j=1α j (x)e j −∑n−1

j=1 α j (x)e j

∥∥∥
‖en‖

≤

∥∥∥∑n
j=1α j (x)e j

∥∥∥+∥∥∥∑n−1
j=1 α j (x)e j

∥∥∥
‖en‖

≤ 2C

‖en‖
‖x‖ .

For n = 1 we have that∣∣ f1(x)
∣∣= ‖α1(x)e1‖

‖e1‖
≤ C

‖e1‖
‖x‖ ≤ 2C

‖e1‖
‖x‖ .

This gives the the required proof to the Biorthogonal sequence the-
orem.

Solution to Question 6. The linearity of D is known from Analysis I. We
will focus on its closedness by showing that if we have a sequence

{
fn

}
n∈N ⊂

C 1[0,1] such that

fn
‖·‖∞−→

n→∞ f , f ′
n = D fn

‖·‖∞−→
n→∞ g
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then f ∈C 1[0,1] and g = D f . Since
{

f ′
n

}
n∈N are continuous functions that

converge uniformly to a function g we know that g ∈ C [0,1] and for any
x ∈ [0,1] ∫ x

0
f ′

n(y)d y −→
n→∞

∫ x

0
g (y)d y.

Denoting by G(x) = ∫ x
0 g (y)d y we find, due to Fundamental Theorem of

Calculus, that G ∈C 1[0,1] with DG = g . Moreover since
{

fn
}

n∈N are con-
tinuous functions that converge uniformly to a function f we know that
f ∈C [0,1] and for any x ∈ [0,1]

f (x) = lim
n→∞ fn(x) = lim

n→∞

(
fn(0)+

∫ x

0
f ′

n(y)d y

)
= f (0)+G(x).

Since G ∈ C 1[0,1] we have that f ∈ C 1[0,1] =D (D) and as the difference
between them is a constant we have that

D f = Dg = g .

We conclude that D is indeed a closed operator.


