Solution to Home Assignment 5

Solution to Question 1. Let \mathscr{Y} be a subspace of a Hilbert space \mathscr{H} and let f be a bounded linear functional on it. As we saw in class, we can always extend f to $\overline{\mathscr{Y}}$ in a unique way that preserves its operator norm. Thus, we can assume without loss of generality that \mathscr{Y} is closed. Since \mathscr{H} is a Hilbert space and \mathscr{Y} is a closed subspace in \mathscr{H} , \mathscr{Y} by itself is a Hilbert space with respect to the induced inner product. Since $f \in \mathscr{Y}^*$ we know, according to the Riesz representation theorem, that here exists $y_f \in \mathscr{Y}$ such that $f: \mathscr{Y} \to \mathbb{F}$ must be of the form

$$f(x) = \langle x, y_f \rangle, \qquad x \in \mathcal{Y}.$$

Moreover, $||f|| = ||y_f||$. An extension to \mathcal{H} is now readily available - define $\tilde{f}: \mathcal{H} \to \mathbb{F}$ by

$$\widetilde{f}(x) = \langle x, y_f \rangle$$

This is a bounded linear functional which extends *f* and, just like in the proof of Riesz' representation theorem, we have that $\|\tilde{f}\| = \|y_f\| = \|f\|$.

Solution to Question 2. We shall prove the statement by contradiction. Assume that there is a countable Hamel basis, $\mathscr{B} = \{x_n\}_{n \in \mathbb{N}}$, to a given infinite dimensional Banach space \mathscr{X} . Define

$$\mathcal{M}_n = \operatorname{span} \{x_1, \ldots, x_n\}.$$

 \mathcal{M}_n is a finite dimensional subspace of \mathcal{X} and as such a closed set. Moreover, since \mathcal{B} is a Hamel basis we find that

$$\mathscr{X} = \cup_{n \in \mathbb{N}} \mathscr{M}_n$$

Thus, according to Baire's category theorem, there must exists $n_0 \in \mathbb{N}$, $x_0 \in \mathcal{X}$ and r > 0 such that

$$x_0 + B_r(0) = B_r(x_0) \subset \mathcal{M}_{n_0}$$

This, however, implies that $x_0 \in \mathcal{M}_{n_0}$ and consequently, as \mathcal{M}_{n_0} is a subspace, that

$$B_r(0) = -x_0 + B_r(x_0) \subset -x_0 + \mathcal{M}_{n_0} = \mathcal{M}_{n_0}.$$

We conclude from the above that any $x \in \mathcal{X}$ such that ||x|| < r must belong to \mathcal{M}_{n_0} . Since \mathcal{M}_{n_0} is closed to scalar multiplication we have if $x \neq 0$ then

$$x = \frac{2}{r} \underbrace{\frac{r}{2} \frac{x}{\|x\|}}_{\in B_r(0) \subset M_{n_0}} \in \mathcal{M}_{n_0},$$

and since 0 also must be in \mathcal{M}_{n_0} we conclude that $\mathcal{M}_{n_0} = \mathcal{X}$ which contradicts the fact that \mathcal{X} is infinite dimensional.

Solution to Question 3. We have seen in class, when we showed that $B(\mathcal{X}, \mathcal{Y})$ is a Banach space whenever \mathcal{Y} is, that if $\{T_n x\}_{n \in \mathbb{N}}$ converges pointwise for any $x \in \mathcal{X}$ then the operator $T : \mathcal{X} \to \mathcal{Y}$ defined by

$$Tx = \lim_{n \to \infty} T_n x$$

is a linear operator. Moreover, we saw that if $\sup_{n \in \mathbb{N}} \|T_n\| < \infty$ then *T* is bounded with

$$\|T\| \le \sup_{n \in \mathbb{N}} \|T_n\|.$$

Since $\lim_{n\to\infty} T_n x$ exists for any *x* we find that

$$\sup_{n \in \mathbb{N}} \|T_n x\| < \infty \qquad \forall x \in \mathcal{X}$$

and according to the Banach-Steinhaus theorem, this implies that

$$\sup_{n\in\mathbb{N}}\|T_n\|<\infty$$

This concludes the proof.

Solution to Question 4. Let $a \in \ell_c(\mathbb{N})$. Then, there exists $n_0 \in \mathbb{N}$ such that for any $n > n_0$ we have that $a_n = 0$. Thus for any $n > n_0$

$$T_n \boldsymbol{a} = \boldsymbol{0}$$

and consequently for any fixed $a \in \ell_c(\mathbb{N})$

$$\sup_{n\in\mathbb{N}} \|T_n\boldsymbol{a}\| = \sup_{n\leq n_0} \|T_n\boldsymbol{a}\| = \max_{n\leq n_0} \sup_{k\in\mathbb{N}} |(T_n\boldsymbol{a})_k| = \max_{n\leq n_0} n|a_n| < \infty.$$

However, denoting the "standard basis" in $\ell_{\infty}(\mathbb{N})$ by $\{\boldsymbol{e}_n\}_{n \in \mathbb{N}}$ we find that $\boldsymbol{e}_n \in \ell_c(\mathbb{N})$ for all $n \in \mathbb{N}$ and $T_n \boldsymbol{e}_n = n \boldsymbol{e}_n$. As $\|\boldsymbol{e}_n\|_{\infty} = 1$ we conclude that

$$\|T_n\| \ge \|T_n \boldsymbol{e}_n\|_{\infty} = n$$

showing that $\sup_{n \in \mathbb{N}} ||T_n|| = \infty$. This doesn't violate the Banach-Steinhaus theorem since $\ell_c(\mathbb{N})$ is not a Banach space (you can check that it is not complete).

Solution to Question 5. (i) We start by noticing that from the definition of \mathscr{Y} the operator *T* is well defined. Clearly

$$T(\boldsymbol{\alpha} + \boldsymbol{\beta}) = \sum_{n \in \mathbb{N}} (\alpha_n + \beta_n) e_n = \sum_{n \in \mathbb{N}} \alpha_n e_n + \sum_{n \in \mathbb{N}} \beta_n e_n = T\boldsymbol{\alpha} + T\boldsymbol{\beta}$$

and

$$T(c\boldsymbol{\alpha}) = \sum_{n \in \mathbb{N}} (c\alpha_n) e_n = c \sum_{n \in \mathbb{N}} \alpha_n e_n = c T \boldsymbol{\alpha}$$

which shows that T is linear. To show that T is bounded we notice that

$$\|T\boldsymbol{\alpha}\| = \left\|\sum_{n \in \mathbb{N}} \alpha_n e_n\right\| = \left\|\lim_{N \to \infty} \sum_{n=1}^N \alpha_n e_n\right\|$$

$$= \lim_{N \to \infty} \left\| \sum_{n=1}^{N} \alpha_n e_n \right\| \leq \sup_{N \in \mathbb{N}} \left\| \sum_{n=1}^{N} \alpha_n e_n \right\| = \|\boldsymbol{\alpha}\|_{\mathcal{Y}}.$$

Next we show that *T* is a bijection. Since \mathscr{B} is a Schauder basis we know that for any $x \in \mathscr{X}$ there exists $\boldsymbol{\alpha}(x)$ such that $x = \sum_{n \in \mathbb{N}} \alpha_n(x)e_n$. Consequently, $\boldsymbol{\alpha}(x) \in \mathscr{Y}$ and $T(\boldsymbol{\alpha}(x)) = x$, showing that *T* is surjective.

To show that *T* is injective we notice that $T \alpha = 0$ if and only if

$$\sum_{n\in\mathbb{N}}\alpha_n e_n=0.$$

Due to the uniqueness of the expansion with respect to \mathscr{B} we must have that $\alpha_n = 0$ for all $n \in \mathbb{N}$, or equivalently that $\alpha = 0$. Thus *T* is injective.

(ii) Using the open mapping for injective linear operators (note that $\mathscr{R}(T) = \mathscr{X}$ is a Banach space) we conclude that $T^{-1} : \mathscr{X} \to \mathscr{Y}$ is bounded and as such for any $x \in \mathscr{X}$

$$\sup_{N\in\mathbb{N}}\left\|\sum_{n=1}^{N}\alpha_{n}(x)e_{n}\right\| = \|\boldsymbol{\alpha}(x)\|_{\mathcal{Y}} = \|T^{-1}x\|_{\mathcal{Y}} \le \|T^{-1}\|\|x\|.$$

We achieved the desired inequality with $C = ||T^{-1}||$.

(iii) Much like we've seen in class, the uniqueness of the coefficients in the expansion of *x* with respect to \mathscr{B} implies that f_n are all linear funcitonals. To show that they are bounded we notice that for any $n \ge 2$

$$\begin{split} \left| f_n(x) \right| &= |\alpha_n(x)| = \frac{\|\alpha_n(x)e_n\|}{\|e_n\|} = \frac{\left\| \sum_{j=1}^n \alpha_j(x)e_j - \sum_{j=1}^{n-1} \alpha_j(x)e_j \right\|}{\|e_n\|} \\ &\leq \frac{\left\| \sum_{j=1}^n \alpha_j(x)e_j \right\| + \left\| \sum_{j=1}^{n-1} \alpha_j(x)e_j \right\|}{\|e_n\|} \leq \frac{2C}{\|e_n\|} \|x\|. \end{split}$$

For n = 1 we have that

$$|f_1(x)| = \frac{\|\alpha_1(x)e_1\|}{\|e_1\|} \le \frac{C}{\|e_1\|} \|x\| \le \frac{2C}{\|e_1\|} \|x\|.$$

This gives the the required proof to the Biorthogonal sequence theorem.

Solution to Question 6. The linearity of *D* is known from Analysis I. We will focus on its closedness by showing that if we have a sequence $\{f_n\}_{n \in \mathbb{N}} \subset C^1[0, 1]$ such that

$$f_n \xrightarrow[n \to \infty]{\|\cdot\|_{\infty}} f, \qquad f'_n = D f_n \xrightarrow[n \to \infty]{\|\cdot\|_{\infty}} g$$

then $f \in C^1[0, 1]$ and g = Df. Since $\{f'_n\}_{n \in \mathbb{N}}$ are continuous functions that converge uniformly to a function g we know that $g \in C[0, 1]$ and for any $x \in [0, 1]$

$$\int_0^x f'_n(y) dy \underset{n \to \infty}{\longrightarrow} \int_0^x g(y) dy$$

Denoting by $G(x) = \int_0^x g(y) dy$ we find, due to Fundamental Theorem of Calculus, that $G \in C^1[0, 1]$ with DG = g. Moreover since $\{f_n\}_{n \in \mathbb{N}}$ are continuous functions that converge uniformly to a function f we know that $f \in C[0, 1]$ and for any $x \in [0, 1]$

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \left(f_n(0) + \int_0^x f'_n(y) \, dy \right) = f(0) + G(x).$$

Since $G \in C^1[0,1]$ we have that $f \in C^1[0,1] = \mathcal{D}(D)$ and as the difference between them is a constant we have that

$$Df = Dg = g.$$

We conclude that *D* is indeed a closed operator.