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These notes contain definitions and theorem which you should have seen
in modules which are prerequisite for Functional Analysis and Applications IV.
You are required to know (and sometimes use) the content of these notes, you
will not be asked to prove them in our module.

1. Zorn’s lemma

DEFINITION. A partially ordered set is a set M on which there exists a binary
operation, denoted by ≤, which satisfies:

po 1 a ≤ a for all a ∈M (Reflexivity)
po 2 if a ≤ b and b ≤ a then a = b (Antisymmetry).
po 3 if a ≤ b and b ≤ c then a ≤ c (Transitivity)

Note that there may be cases where not every two elements in M are relatable
via ≤, i.e. a ≤ b or b ≤ a, which is why we call the set “partially ordered”. We
say that a is comparable to b if a ≤ b or b ≤ a, and incomparable if they are not
comparable.

DEFINITION. A totally ordered set or a chain is a non-empty partially ordered
set where every two elements of the set are comparable.

DEFINITION. An upper bound of a subset U of a partially ordered set M is an
element u ∈ M such that

x ≤ u, ∀x ∈U

(such a bound may or may not exists). A maximal element of U is an element
m ∈U such that

m ≤ x and x ∈U ⇒ x = m

(as before, U may not have a maximal element). In particular, a maximal ele-
ment of M is an element m ∈ M such that

m ≤ x ⇒ x = m.

A partially ordered set that is not a chain/totally ordered set. Nodes that are
connected by an edge are comparable with the higher node being “larger”.
Two chains, one in red and one in light blue, are emphasised. Both have a
maximal element - m and n respectively.

THEOREM (Zorn’s Lemma). Let M 6= ∅ be a partially ordered set. If every
chain C in M has an upper bound then M has a maximal element.
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2. Distances

2.1. Metrics.

DEFINITION. Let X be a non-empty set. A function d : X × X → R+ is called
a metric if it satisfies the following conditions:

m 1 d(x, y) = 0 if and only if x = y (Positivity).
m 2 d(x, y) = d(y, x) for all x, y ∈ X (Symmetry).
m 3 d(x, y) ≤ d(x, z)+d(z, y) for all x, y, z ∈ X (Triangle inequality).

The couple (X ,d) is called a metric space.

REMARK. Given a metric space (X ,d) and a subset M ⊂ X we induce a metric
on M from X by restricting the function d : X ×X →R+ to M . (M ,d) is automat-
ically a metric space.

2.2. Norms.

DEFINITION. A set X is called a vector space over a field F if there exist two
algebraic operations

+ :X×X→X, · : F×X→X

such that

• x + y = y +x for all x, y ∈X.
• x + (

y + z
)= (

x + y
)+ z for all x, y, z ∈X.

• α · (β · x
)= (

αβ
) · x for all α,β ∈ F, x ∈X.

• 1 · x = x for all x ∈X.
• α · (x + y

)=α · x +α · y for all α ∈ F, x, y ∈X.
• (

α+β)
x =α · x +β · x for all α,β ∈ F and x ∈X.

Moreover, there exists an element 0 ∈X such that for any x ∈X
x +0 = x

and for all x ∈X there exists an element (−x) ∈X such that

x + (−x) = 0

When the difference between the elements of the field F, known as scalars, and
vectors is clear we usually write αx instead of α · x. We will also write 0 instead
of 0 for the zero vector whenever no confusion between it and the additive zero
of the underlying field arises.

DEFINITION. Given a vector field X over a field F and a subset M ⊂X we
say that M is a linear subspace, or subspace in short, if M is a vector field over F.

REMARK. To check if a subset M of a vector field X is a subspace one only
needs to check that

• 0 ∈M.
• M is closed under addition, i.e. if x, y ∈M then x + y ∈M.
• M is closed under scalar multiplication, i.e. if x ∈M then αx ∈M for

any α ∈ F.
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DEFINITION. Let X be a vector space over F, be it R or C. A function ‖·‖ :
X→R+ is called a norm if it satisfies the following conditions:

n 1 ‖x‖ ≥ 0 for all x ∈X and ‖x‖ = 0 if and only if x = 0 (Positivity).
n 2 ‖αx‖ = |α|‖x‖ for all α ∈ F and all x ∈X (Norms are homogeneous on

R+).
n 3

∥∥x + y
∥∥≤ ‖x‖+∥∥y

∥∥ for all x, y ∈X (Triangle inequality).

The couple (X,‖·‖) is called a normed space.

REMARK. Given a normed space (X,‖·‖) and a subspace M ⊂X we induce
a norm on M from X by restricting the function ‖·‖ : X→ R+ to M. (M,‖·‖) is
automatically normed space.

THEOREM. Let (X,‖·‖) be a normed space. Define the function d :X×X→
R+ by

d(x, y) = ∥∥x − y
∥∥ .

Then d is a metric on X. We call it the metric induced by the norm ‖·‖.
Unless stated otherwise, the metric structure in a normed space will always be
the one induced from the norm.

You might not have seen the following theorem, but we add it here for com-
pletion (we won’t really use it in our module):

THEOREM. Let (X,d) be a metric space where X is a vector space over R or
C. Then the metric d is induced by a norm if and only if

(i) d(x, y) = d
(
x + z, y + z

)
for any x, y, z ∈X.

(ii) d
(
αx,αy

)= |α|d(x, y) for any x, y ∈X and scalar α.

In that case the norm which induces the metric is given by

‖x‖ = d(x,0).

2.3. Inner products.

DEFINITION. Let X be a vector space over R or C. A function 〈·, ·〉 : X ×
X → R or C (respectively) is called an inner product if it satisfies the following
conditions:

p 1 〈x, x〉 ≥ 0 for all x ∈X and 〈x, x〉 = 0 if and only if x = 0 (Positivity).
p 2

〈
x + y, z

〉= 〈x, z〉+〈
y, z

〉
for any x, y, z ∈X (Addition of the first compo-

nent).
p 3

〈
αx, y

〉 = α
〈

x, y
〉

for any x, y ∈X and any scalar α (Scalar multiplica-
tion of the first component).

p 4
〈

x, y
〉= 〈

y, x
〉

(Symmetry/Hermitian property).

The couple (X,〈·, ·〉) is called an inner product space and sometimes a pre-Hilbert
space.

REMARK. Given an inner product space (X,〈·, ·〉) and a subspace M ⊂X we
induce an inner product on M from X by restricting the function 〈·, ·〉 :X×X→
R+ to M. (M,〈·, ·〉) is automatically an inner product space.
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THEOREM. Let (X,〈·, ·〉) be an inner product space. Define the function ‖·‖ :
X→R+ by

‖x‖ =
√
〈x, x〉.

Then ‖·‖ is a norm on X. We call it the norm induced by the inner product 〈·, ·〉.
Unless stated otherwise, the metric structure in a normed space will always be
the one induced from the norm which is induced from the inner product, i.e.

d
(
x, y

)= ∥∥x − y
∥∥=

√〈
x − y, x − y

〉
.

THEOREM. Let (X,‖·‖) be a normed space over R or C. Then the norm ‖·‖ is
induced by an inner product if and only if

(2.1)
∥∥x + y

∥∥2 +∥∥x − y
∥∥2 = 2‖x‖2 +2

∥∥y
∥∥2 .

In that case the inner product which induces the norm is given by

(2.2)
〈

x, y
〉= ∥∥x + y

∥∥2 −∥∥x − y
∥∥2

4
when X is over R and

(2.3)
〈

x, y
〉= ∥∥x + y

∥∥2 −∥∥x − y
∥∥2

4
+ i

(∥∥x + i y
∥∥2 −∥∥x − i y

∥∥2

4

)
when X is over C. Equation (2.1) is known as the parallelogram identity while
equations (2.2) and (2.3) are known as the polarisation identities.

3. Metric spaces

3.1. Open and Closed sets.

DEFINITION. Let (X ,d) be a metric space. Then:

• For any x ∈ X and any r > 0 we define the open ball of radius r centred
at x to be the set

Br (x) = {
y ∈ X

∣∣ d
(
x, y

)< r
}

,

and the closed ball of radius r centred at x to be the set

B r (x) = {
y ∈ X

∣∣ d
(
x, y

)≤ r
}

.

• A set U ⊂ X is called an open set if for any x ∈U there exists ε> 0 (which
can and usually does depend on x) such that

Bε(x) ⊂U .

• A set C ⊂ X is called a closed set if C c = X \C is an open set.

THEOREM. Let (X ,d) be a metric space. Then:

(i) For any x ∈ X and r > 0 the open ball Br (x) is an open set.
(ii) A union, countable of uncountable, of open sets is an open set.

(iii) Finite intersections of open sets is an open set (this is not always true when
we pass to countable or uncountable intersections).

REMARK. As a closed set C is a set such that C c is open we have that
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• An intersection, countable of uncountable, of closed sets is a closed set.
• Finite unions of closed sets is a closed set (this is not always true when

we pass to countable or uncountable unions).

In Complex Analysis II you have defined the interior, closure and boundary
of a set. It is sometimes very convenient to associate these notions to points.
This is expressed in the next definition (parts of which you have seen), with the
additional notion of accumulation points and the derived set:

DEFINITION. Let (X ,d) be a metric space and let U ⊂ X be a given set. Then

(i) We say that x is an interior point of U if there exists ε> 0 such that Bε(x) ⊂
U .

(ii) We say that x is an accumulation point of U if every open ball centred at x
contains a point y ∈U that is not x. In other words

(Bε(x) \ {x})∩U 6=∅ for all ε> 0.

(iii) We say that x is a boundary point of U if every open ball that contains x
contains a point from U and a point from U c . In other words

Bε(x)∩U 6=∅ and Bε(x)∩U c 6=∅ for all ε> 0.

(iv) Given a set U we define:
• The interior of U , U o or int(U ), is the set of all interior points of U .
• The derived set of U , U ′, is the set of all accumulation points of U .
• The boundary of U , ∂U , is the set of all the boundary points of U .
• The closure of U , U is the set U ∪∂U .

REMARK. We notice that

• Interior points are points in U that have a whole open ball around them
that is also in U .

• Accumulation points are points that can be in or out of U but any punc-
tured open ball around them must contain some point from U .

• Boundary points are points that “see” both U and U c . Any open ball
around such point contains a point from U , which can be x itself, and
a point from U c , which, again, can be x itself. An extreme case to con-
sider is that of an isolated point: an isolated point x is such that there
exists ε0 > 0 with

Bε0 (x)∩U = {x}

meaning that there is an open ball around x whose intersection with U
is the point x.

We see that

- Any interior point is an accumulation point but not a boundary point.
- Any accumulation point that is not an interior point is a boundary point.
- Any isolated point is a boundary point, but is not an interior or accu-

mulation point.
- A boundary point can never be an interior point.
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Classification of points: x is an interior point, x, y and z are accumulation
points, y , z and w are boundary points (w is isolated).

THEOREM. Let (X ,d) be a metric space and let U ⊂ X be given. Then

(i) U o is an open set. Moreover, U is open if and only if U =U o, or equivalently
if every point in U is interior.

(ii) U o is the largest open set contained in U , i.e. if O ⊂U and O is open then
O ⊂U o.

(iii) U is a closed set. Moreover, U is closed if and only if U =U .
(iv) U =U ∪U ′. As such, U is closed if and only if U ′ ⊂U .
(v) U is the smallest closed set containing U , i.e. if U ⊂C and C is closed then

U ⊂C .

3.2. Continuity of functions.

DEFINITION. Let (X ,d) and
(
Y ,ρ

)
be two metric spaces. We say that a func-

tion T : X → Y is continuous at the point x0 ∈ X if for any ε> 0 there exists δ> 0
such that if d (x, x0) < δ then

ρ (T (x),T (x0)) < ε.

We say that T is continuous on X if it is continuous in every point of X .

We have an alternative definition for continuity at a point:

THEOREM. Let (X ,d) and
(
Y ,ρ

)
be two metric spaces. A function T : X → Y

is continuous at a point x0 ∈ X if and only for every ε> 0 there exists δ> 0 such
that Bδ (x0) ⊂ T −1 (Bε (T (x0))).

The image of the purple ball Bδ (x0) on the left is the purple set on right, which
is contained in the ball Bε (T (x0)).

More generally, one can show that:
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THEOREM. Let (X ,d) and
(
Y ,ρ

)
be two metric spaces.

(i) A function T : X → Y is continuous at a point x0 if and only if for any open
set U ⊂ Y that contains T (x0) we have that T −1 (U ) contains a open set
around x0.

(ii) A function T : X → Y is continuous if and only if for any open set U ⊂ Y we
have that T −1 (U ) is open in X .

Continuity can also be defined on a subset of a metric space, usually the
domain of the function:

DEFINITION. Let (X ,d) and
(
Y ,ρ

)
be two metric spaces. We say that a func-

tion T : D (T ) ⊂ X → Y is continuous at the point x0 ∈D (T ) if for any ε> 0 there
exists δ > 0 such that if x ∈ D (T ) and d (x, x0) < δ then ρ (T (x) ,T (x0)) < ε, or
equivalently

Bδ (x0)∩D (T ) ⊂ T −1 (Bε (T (x0))) .

A criteria with open sets can also be given:

THEOREM. Let (X ,d) and
(
Y ,ρ

)
be two metric spaces and let T : M ⊂D (T ) ⊂

X → Y be given.

(i) T is continuous at a point x0 ∈ M if and only if for any open set U ⊂ Y that
contains T (x0) we have that T −1 (U ) contains a set of the form M∩V where
V ⊂ X is a open set that contains x0.

(ii) T is continuous on M if and only if for any open set U ⊂ Y we have that
T −1 (U ) is of the form M ∩V for some open set V ⊂ X .

3.3. Converging sequences.

DEFINITION. Let (X ,d) be a metric space. We say that a sequence of ele-
ments in X , {xn}n∈N, converges to the element x ∈ X if the real sequence {d (xn , x)}n∈N
converges to zero as n goes to infinity, i.e. if for any ε> 0 there exists n0 ∈N such
that for any n ≥ n0 we have that d (xn , x) < ε.

REMARK. In normed spaces we have that: {xn}n∈N ⊂X converges to x ∈X if
for every ε> 0 there exists n0 ∈N such that for every n ≥ n0

‖xn −x‖ < ε.

We have an alternative definition for convergence:

THEOREM. Let (X ,d) be a metric space and let {xn}n∈N be a sequence of
elements in X . Then {xn}n∈N converges to x ∈ X if and only if for any open set
U ⊂ X we have that there exists n0 ∈ N such that for any n ≥ n0 we have that
xn ∈U .

Convergence can give an alternative definition to closedness of sets and
continuity of functions:

THEOREM. Let (X ,d) be a metric space and let U ⊂ X be a given set. Then

(i) x ∈U if and only if there exists a sequence of points {xn}n∈N ⊂U that con-
verges to x.
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(ii) U is closed if and only if every converging sequence of points from U con-
verges to a point in U .

THEOREM. Let (X ,d) and
(
Y ,ρ

)
be two metric spaces and let T : X → Y be

given. Then the following are equivalent:

(i) T is continuous at x0.
(ii) For any sequence {xn}n∈N ⊂ X that converges to x0 we have that

lim
n→∞T (xn) = T (x0)

The above can be extended to the case where the function is defined on a
subset of the space:

THEOREM. Let (X ,d) and
(
Y ,ρ

)
be two metric spaces and let T : M ⊂D (T ) ⊂

X → Y be given. Then the following are equivalent:

(i) T is continuous at x0 ∈ M (on M).
(ii) For any sequence {xn}n∈N ⊂ M that converges to x0 ∈ M we have that limn→∞ T (xn) =

T (x0).

THEOREM. Let (X ,d) be a metric space and let {xn}n∈N be a given sequence.
If {xn}n∈N converges to x then:

(i) {xn}n∈N is bounded, i.e. there exists x0 ∈ X and M(x0) > 0 such that

sup
n∈N

d(xn , x0) ≤ M(x0).

In fact, the above is true for any x0 ∈ X (though M(x0) will depend on x0).
(ii) The limit is unique, i.e. if {xn}n∈N also converges to y ∈ X then x = y .

(iii) Any subsequence of {xn}n∈N,
{

xnk

}
k∈N, also converges to x.

REMARK. In normed spaces the boundedness of converging sequences can
be expressed in the following way: We will say that a sequence {xn}n∈N ⊂X is
bounded if there exists M > 0 such that

sup
n∈N

‖xn‖ ≤ M .

3.4. Compactness.

DEFINITION. Let (X ,d) be a metric space. A set K ⊂ X is called sequentially
compact if for any sequence of elements in K , {xn}n∈N, there exists a subse-
quence,

{
xnk

}
k∈N, that converges to an element x in K .

DEFINITION. Let (X ,d) be a metric space. A set K ⊂ X is called compact if for
any collection of open sets {Ui }i∈I, with I being an index set of any cardinality,
such that K ⊂∪i∈IUi we can find a finite collection of open sets Ui1 , . . . ,Uin such
that

K ⊂∪n
i=1Ui .

REMARK. The notion of compactness means that we are always able to re-
move redundancies from a large “open cover” of our set.
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An “infinite” open cover of a set K on the left, and the finite open sub-cover of
it on the right.

THEOREM. Let (X ,d) be a metric space and let K ⊂ X . Then the following
are equivalent:

(i) K is sequentially compact.
(ii) K is compact.

If any of the above holds we will use the notation “K is compact”.

THEOREM. Let (X ,d) be a metric space and let K ⊂ X be compact. Then:

(i) K is a closed set.
(ii) K is a bounded set, i.e.

sup
x,y∈K

d
(
x, y

)<∞.

(iii) Any closed subset of a compact set is compact.
(iv) If

(
Y ,ρ

)
is another metric space and T : X → Y is a continuous function,

then T (K ) is compact. Consequently, if T : X → R then T (K ) is bounded,
and T attains a maximum and minimum over K at some points in K .

REMARK. The converse of most of the statements above doesn’t hold.

THEOREM (Heine-Borel). A set K in Rn is compact (with respect to the stan-
dard norm) if and only if it is closed and bounded.

REMARK. In any metric space (X ,d) any compact set must be closed and
bounded. The converse, however, is not true in general.

3.5. Cauchy sequences and completeness.

DEFINITION. Let (X ,d) be a metric space and let {xn}n∈N be given sequence
in X . We say that {xn}n∈N is a Cauchy sequence (or Cauchy in short) if for every
ε> 0 there exists n0 ∈N such that for any n,m ≥ n0 we have that

d (xn , xm) < ε.

LEMMA. Let (X ,d) be a metric space. Then any converging sequence, {xn}n∈N,
is Cauchy.

We will mention in class the following useful theorem:

THEOREM. Let (X ,d) be a metric space and let {xn}n∈N ⊂ X be Cauchy. Then
{xn}n∈N is bounded.
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DEFINITION. We say that a metric space (X ,d) is complete if every Cauchy
sequence in X converges (to an element of X ).

THEOREM. Let (X ,d) be a complete metric space and let M be a subset of
X . Then (M ,d) is complete if and only if M is closed.

4. Density and Separability

The notions of density and separability were introduced in Analysis III for
normed spaces. They are, in fact, metric notions and we will define them as
such here.

DEFINITION. Let (X ,d) be a metric space. We say that a set A is dense in X
if for any x ∈ X and any ε> 0, there exists ax,ε ∈ A such that

d
(
ax,ε, x

)< ε.

REMARK. In normed spaces the above translates to: A set A is dense in a
normed space (X,‖·‖), if for any x ∈X and any ε > 0, there exists ax,ε ∈ A such
that ∥∥x −ax,ε

∥∥< ε.

THEOREM. Let (X ,d) be a metric space and let A ⊂ B ⊂ X be given. If A is
dense in B and B is dense in X then A is dense in X .

We will mention in class the following useful theorem:

THEOREM. Let (X ,d) be a metric space. Then A is dense in X if and only if
A = X .

DEFINITION. Let (X ,d) be a metric space. We say that X is separable if there
exists a countable set A ⊂ X that is dense in X .

5. Banach spaces

DEFINITION. Let (X,‖·‖) be a normed space. We say that X is a Banach
space if it is complete under the metric induced by ‖·‖.

6. Linear functionals

DEFINITION. LetX be a vector space over a field F. A map f :X→ F is called
a linear functional if

f
(
αx +βy

)=α f (x)+β f (y)

for all x, y ∈X and α,β ∈ F.

DEFINITION. Let (X,‖·‖) be a normed space over a field F, be it R or C, and
let f : X→ F be a linear functional. We say that f is a bounded linear functional
if thee exists M > 0 such that ∣∣ f (x)

∣∣≤ M ‖x‖
for any x ∈X. For any bounded linear functional f we define∥∥ f

∥∥= inf
{

M > 0 | ∣∣ f (x)
∣∣≤ M ‖x‖ , ∀x ∈X}

.
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In Analysis III you have defined the above over R only, but the same defini-
tion holds over C. We will expand on this in our class.

7. Hilbert spaces

7.1. Basic properties.

DEFINITION. Let (H,〈·, ·〉) be an inner product space. We say that H is a
Hilbert space if it is complete under the metric induced by 〈·, ·〉.

THEOREM (Cauchy-Schwartz inequality). Let (H,〈·, ·〉) be an inner product
space over R or C. Then for any x, y ∈H we have that∣∣〈x, y

〉∣∣≤ ‖x‖∥∥y
∥∥ .

THEOREM. Let (H,〈·, ·〉) be an inner product space. Then 〈·, ·〉 : H×H → F

is a continuous function, i.e. if {xn}n∈N and
{

yn
}

n∈N are sequences in H that
converge to x ∈H and y ∈H respectively then〈

xn , yn
〉 −→

n→∞
〈

x, y
〉

.

7.2. Orthogonality.

DEFINITION. Let (H,〈·, ·〉) be an inner product space.

(i) We say that x is orthogonal to y , and write x ⊥ y if〈
x, y

〉= 0.

(ii) We say that a set M is orthogonal if every two elements of it are orthogonal.
(iii) We say that two sets, A and B , are orthogonal if for any x ∈ A and y ∈ B we

have that x ⊥ y .
(iv) Given a subset M of H we define the orthogonal complement of M , M⊥ to

be the set
M⊥ = {

x ∈H ∣∣ x ⊥ y, ∀y ∈ M
}

THEOREM (Pythagoras’ theorem). Let (H,〈·, ·〉) be an inner product space.
If x1, . . . , xn ∈H and xi ⊥ x j for i 6= j then∥∥∥∥∥ n∑

i=1
xi

∥∥∥∥∥
2

=
n∑

i=1
‖xi‖2 .

THEOREM. Let H be an inner product space and let M be a subset of H.
Then M⊥ is a closed subspace of H.

THEOREM. LetH be an inner product space and let {en}n∈N be an orthonor-
mal sequence in H (i.e. it is an orthonormal set). Then∑

n∈N
|〈x,en〉|2 ≤ ‖x‖2 .

This inequality is knows as Bessel’s inequality.

THEOREM. Let H be a Hilbert space and let M be a closed subspace of H.
Then:
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(i) For any x ∈H there exists a unique vector x∥ in M such that∥∥x −x∥
∥∥= inf

v∈M
‖x − v‖ = min

v∈M
‖x − v‖ .

We denote this vector by PM(x) and call it the orthogonal projection of x
on M.

(ii) For any x ∈H we have that x −PM(x) ∈M⊥.
(iii) H =M⊕M⊥.

REMARK. We say that a vector space V is the direct sum of the subspaces U
and W , and write

V =U ⊕W,

if

◦ V =U +W = {u +w | u ∈U , w ∈W }.
◦ U ∩W = {0}.

7.3. Orthonormal basis.

DEFINITION. Let H be a Hilbert space. We say that a set B = {eα}α∈I is an
orthonormal basis for H if B is orthonormal and every x ∈H satisfies

x = ∑
α∈I

〈x,eα〉eα.

We will discuss the above in more details (in particular, what does it mean
that x is

∑
α∈I 〈x,eα〉eα) in more details in our module. We will show that there

is a relatively straight forward definition if I=N and when it is uncountable we
will use the following theorem, which was shown in Analysis III:

THEOREM. Let H be an inner product space and let B = {eα}α∈I be or-
thonormal. If I is uncountable, then for any x ∈ H we have that 〈x,eα〉 6= 0
for at most a countable subset of B,

{
eαn

}
n∈N.

THEOREM. LetH be a Hilbert space and let B= {eα}α∈I be an orthonormal
set in H. Then the following are equivalent:

(i) B is an orthonormal basis, i.e. for any x ∈H we have that

x = ∑
α∈I

〈x,eα〉eα.

(ii) For any x ∈H we have that

‖x‖2 = ∑
α∈I

|〈x,eα〉|2 .

The above is known as Parseval’s identity.
(iii) B⊥ = {0}.

THEOREM. Every non-trivial Hilbert space has an orthonormal basis. More-
over, if B′ is an orthonormal set in H then there exists an orthonormal basis B
for H such that B′ ⊂B.
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7.4. Riesz’s representation theorem.

THEOREM (Riesz’s representation theorem for Hilbert spaces). Let H be a
Hilbert space and let f be a bounded linear functional on H. Then there exists
a unique y ∈H such that

f (x) = 〈
x, y

〉
.

Moreover,
∥∥ f

∥∥= ∥∥y
∥∥.

8. Lebesgue theory

8.1. Lebesgue measurable sets and the Lebesgue measure. You have only
considered Lebesgue measurable sets on R, but one can easily extend it to Rn .

DEFINITION. An n−dimensional rectangle R ⊂Rn is a set of the form

R = [a1,b1]× [a2,b2]×·· ·× [an ,bn]

with {ai }i=1,...,n , {ab}i=1,...,n ⊂ R and where −∞ < ai ≤ bi <∞ for all i = 1, . . . ,n.
The volume of R is defined as

vol(R) = (b1 −a1) (b2 −a2) . . . (b1 −a1) .

We denote the set of n−dimensional rectangles by R (Rn).

DEFINITION. Given a set E ⊂Rn , the Lebesgue outer measure of E is defined
as

|E |∗ = inf

{∑
i∈N

vol(Ri ) | E ⊂∪i∈NRi , Ri ∈R
(
Rn)

for all i ∈N
}

DEFINITION. A set E ⊂ Rn is Lebesgue measurable if for any set A ⊂ Rn we
have that

|E |∗ = |E ∩ A|∗+ ∣∣E ∩ Ac
∣∣∗ .

In that case we define the Lebesgue measure of E as |E | = |E |∗ . We denote the
set of measurable sets on Rn as L (Rn).

THEOREM. L (Rn) is a σ−algebra, i.e.

• Rn ∈L (Rn).
• If E ∈L (Rn) then E c ∈L (Rn).
• If {Ei }i∈N ⊂L (Rn) then ∪i∈NEi ∈L (Rn).

The Lebesgue measure is a non-negative measure on L (Rn), i.e.

• |E | ≥ 0 for any E ∈L (Rn).
• |∅| = 0.
• If {Ei }i∈N ⊂L (Rn) are pairwise disjoint (i.e. E j ∩Ei = 0 when i 6= j ) then

|∪i∈NEi | =
∑
i∈N

|Ei | .

The Lebesgue measure enjoys additional regularity properties which we will
not mention here.
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8.2. Lebesgue measurable functions.

DEFINITION. A function f : E ⊂ Rn → R is called Lebesgue measurable on a
measurable set E if for any α ∈R the set f −1 (−∞,α)∩E is Lebesgue measurable.

REMARK. There are many equivalent definition which includes various other
sets.

THEOREM. We have the following:

• If f and g are measurable than so areα f +βg is measurable for any
α,β ∈R, and f g .

• If f1, . . . , fn are measurable then so are max
{

f1, . . . , fn
}

and min
{

f1, . . . , fn
}
.

• If f is measurable then so is
∣∣ f

∣∣.
• If

{
fn

}
n∈N is a sequence of measurable functions then so are supn∈N

{
fn

}
and infn∈N

{
fn

}
.

• If
{

fn
}

n∈N is a sequence of measurable functions then so are limsupn→∞ fn

and liminfn→∞ fn . Consequently, if
{

fn
}

n∈N converges poitnwise to f
then f is measurable.

8.3. The Lebesgue integral.

DEFINITION. A function ψ : Rn → R is called simple if there exists n ∈ N,
α1, . . . ,αn ∈R and E1, . . . ,En ∈L (Rn) such that

ψ=
n∑

i=1
αiχEi

where χA is the characteristic function of the set A, i.e.

χA(x) =
{

1 x ∈ A

0 x 6∈ A
.

The Lebesgue integral of a simple function ψ over a measurable set E is defined
as ∫

E
ψ(x)d x =

∫
E

n∑
i=1

αiχEi (x)d x =
n∑

i=1
αi |E ∩Ei | .

DEFINITION. Given a non-negative measurable function f and a measur-
able set E we define∫

E
f (x)d x = sup

{∫
E
ψ(x)d x |ψ(x) is a simple function andψ≤ f on E

}
.

For a general measurable function f we define

f+ = max
{

f ,0
}

, − = max
{− f ,0

}
and find that f = f+− f−. When∫

E
f+(x)d x,

∫
E

f−(x)d x <∞
we define the Lebesgue integral of f as∫

E
f (x)d x =

∫
E

f+(x)d x −
∫

E
f−(x)d x.
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THEOREM. We have the following properties of the Lebesgue integral:

• For any measurable functions f , g and any α,β ∈ R we have that∫
E

(
α f (x)+βg (x)

)
d x =α

∫
E

f (x)d x +β
∫

E
g (x)d x.

• if f ≤ g and f and g are measurable then
∫

E f (x)d x ≤ ∫
E g (x)d x.

• If f is measurable then
∣∣∫

E f (x)d x
∣∣≤ ∫

E

∣∣ f (x)
∣∣d x.

• If E and F are disjoint measurable sets and f is measurable then∫
E∪F

f (x)d x =
∫

E
f (x)d x +

∫
F

f (x)d x.

Everything above can be extended to functions f : E →C by considering the
decomposition f = Re f + i Im f .

THEOREM (Fatou’s Lemma). Let
{

fn
}

n∈N be a sequence of non-negative mea-
surable functions over a measurable set E . Then∫

E
liminf

n→∞ fn(x)d x ≤ liminf
n→∞

∫
E

fn(x)d x.

In particular, if
{

fn
}

n∈N converges pointwise to f then∫
E

f (x)d x ≤ liminf
n→∞

∫
E

fn(x)d x.

THEOREM (Monotone convergence theorem). Let
{

fn
}

n∈N be a non-decreasing
sequence of non-negative measurable functions over a measurable set E . Then,
if

{
fn

}
n∈N converges pointwise to f then

lim
n→∞

∫
E

fn(x)d x =
∫

E
f (x)d x.

THEOREM (Dominated convergence theorem). Let
{

fn
}

n∈N be a sequence
of measurable functions over a measurable set E . Assume that there exists a
non-negative measurable function over E , g , such that

∣∣ fn
∣∣ ≤ g for all n ∈ N. If∫

E g (x)d x <∞ and if
{

fn
}

n∈N converges pointwise to f then

lim
n→∞

∫
E

fn(x)d x =
∫

E
f (x)d x.

9. Lp spaces

Basic properties.

DEFINITION. Given a measurable set E ⊂ Rn we define the space Lp (E),
where 1 ≤ p <∞ as

Lp (E) =
{

f : E →C | f is measurable and
∫

E

∣∣ f (x)
∣∣p d x <∞

}
/ ' .

where ' is the equivalence relation f ' g if there exists a set of measure zero N
such that f |N c = g |N c . We say that f and g are equal almost everywhere.
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We define the function ‖·‖p : Lp (E) →R+ by

∥∥ f
∥∥

Lp (E) =
(∫

E

∣∣ f (x)
∣∣p d x

) 1
p

.

DEFINITION. Given a measurable set E ⊂Rn we say that a measurable func-
tion f is essentially bounded if there exists M > 0 and a measurable set N such
that ∣∣ f (x)

∣∣≤ M , for all x ∈ E ∩N c .

We define

L∞ (E) = {
f : E →C | f is essentially bounded

}
/ ',

where ' is the equivalence relation of equality almost everywhere.
We define the function ‖·‖∞ : L∞ (E) →R+ by∥∥ f

∥∥
L∞(E) = esssup

x∈E

∣∣ f (x)
∣∣= inf

{
M > 0 | ∣∣{x ∈ E | ∣∣ f (x)

∣∣> M
}∣∣= 0

}
.

DEFINITION. We say that p, q ∈ [1,∞] are Hölder conjugates if

1

p
+ 1

q
= 1

where 1
∞ is to be understood as 0.

THEOREM (Young’s inequality). Let p, q ∈ (1,∞) be Hölder conjugate. Then
for any x, y ∈C ∣∣x y

∣∣≤ |x|p
p

+
∣∣y

∣∣q

q
.

THEOREM (Hölder inequality). Let p, q ∈ [1,∞] be Hölder conjugate. Then
for any f ∈ Lp (E)and g ∈ Lq (E) we have that∫

E

∣∣ f (x)g (x)
∣∣d x ≤ ∥∥ f

∥∥
Lp (E)

∥∥g
∥∥

Lq (E) .

THEOREM (Minkowski’s inequality). Given a measurable set E ⊂Rn and p ∈
[1,∞] we have that for any f , g ∈ Lp (E)∥∥ f + g

∥∥
Lp (E) ≤

∥∥ f
∥∥

Lp (E) +
∥∥g

∥∥
Lp (E) .

THEOREM. Given a measurable set E ⊂Rn and p ∈ [1,∞] we have that Lp (E)
is a Banach space. For p = 2 it is in fact a Hilbert space with〈

f , g
〉

L2(E) =
∫

E
f (x)g (x)d x.

THEOREM. Let E ⊂Rn be a measurable set. Then Lp (E) is separable for any
p ∈ [1,∞).
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Approximation by continuous functions.

THEOREM. Let E ⊂ Rn be a measurable set and let p ∈ [1,∞). For any f ∈
Lp (E) and any ε> 0 we can find a continuous function on E , g f ,ε, such that∥∥ f − g f ,ε

∥∥
Lp (E) < ε.

In other words, the space of C (E)∩Lp (E), where C (E) stands for the continuous
functions on E , is dense in Lp (E).

REMARK. In general, L∞ (E) is not separable.

9.1. Reisz’s representation theorem for Lp .

THEOREM (Riesz’s representation theorem for Lp ). Let E ⊂ Rn be a mea-
surable set and let p ∈ [1,∞) be given. For any bounded linear functional I :
Lp (E) → C there exists g ∈ Lq (E), where q is the Hölder conjugate of p, such
that

I
(

f
)= ∫

E
f (x)g (x)d x.

Moreover, ‖I‖ = ∥∥g
∥∥

Lq (E) .
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