#Functional

Exercise 1. Consider the space (C[0,1], [:|loo) and the sets
C'10,11 = {f:[0,1] — R |f is continuously differentiable on [0,1]},

Cy10,1] = {f:10,11-R |f is continuously differentiable on [0,1], f(0) = f(1) =0}.

(i) Show that C'[0,1] and Cé [0,1] are subspaces of C [0, 1].
(i) Show that C; [0,1] is a subspace of C'[0,1].

Define a function ||| -1 : cl0,1] - R, by
| £l =17l

(iii) Show that ||| -1 is not a norm on C'[0,1] butis a norm on Cé [0,1].
(iv) Show that (C; [0,1], lIllc1) is a Banach space.
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Exercise 2. Let (2, ||-||) be a normed space.

(i) Show that if {x,},cn is @ Cauchy sequence in 2 then one can extract
a subsequence of it, {x,, }, ., such that

1
[~ ] < o5

keN

We say that a series ),y X, converges in 2 is the sequence of partial
sums, {Sn}nen, defined as

N
SN = Z Xn
n=1

converges in 2. We say that a series )_,,cn X, converges absolutely in X if
> nen lxnll < oo.

(ii) Show that if (2, ||-|) is a Banach space then every absolutely con-
verging series converges.

(iii) Show that if (Z,|-|) is a normed space where every absolutely con-
verging series converges, then (, ||-||) is a Banach space.
Hint: You may use the fact that any Cauchy sequence of a converging
subsequence converges to the same limit as the original sequence.
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Exercise 3 (If time permits). Consider the vector space C [0, 1] and define
the function ||-|[; : C[0,1] — R, by

1
71, = [ I7eol s

You may assume without proof that (C [0, 1], [|-]|;) isanormed space. Show
that it is not a Banach space.

Hint: Consider the sequence
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and use the fact that for any0 < a < b < 1 we have that forany g € C[0,1]

b 1
f|g(x)|dxsfo |g(x)|dx.
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