Problem Class 1

Exercise 1. Consider the space $(C[0,1], \|\cdot\|_{\infty})$ and the sets

 $C^{1}[0,1] = \{f: [0,1] \rightarrow \mathbb{R} \mid f \text{ is continuously differentiable on } [0,1] \},\$

 $C_0^1[0,1] = \left\{ f: [0,1] \to \mathbb{R} \mid f \text{ is continuously differentiable on } [0,1], f(0) = f(1) = 0 \right\}.$

(i) Show that $C^1[0,1]$ and $C^1_0[0,1]$ are subspaces of C[0,1].

(ii) Show that $C_0^1[0,1]$ is a subspace of $C^1[0,1]$.

Define a function $\|\cdot\|_{C^1} : C^1[0,1] \to \mathbb{R}_+$ by

$$\|f\|_{C^1} = \|f'\|_{\infty}$$

(iii) Show that $\|\cdot\|_{C^1}$ is not a norm on $C^1[0,1]$ but is a norm on $C_0^1[0,1]$.

(iv) Show that $(C_0^1[0,1], \|\cdot\|_{C^1})$ is a Banach space.

Exercise 2. Let $(\mathcal{X}, \|\cdot\|)$ be a normed space.

(i) Show that if $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in \mathcal{X} then one can extract a subsequence of it, $\{x_{n_k}\}_{k \in \mathbb{N}}$ such that

$$||x_{n_k} - x_{n_{k+1}}|| < \frac{1}{2^k}.$$

We say that a series $\sum_{n \in \mathbb{N}} x_n$ converges in \mathcal{X} is the sequence of partial sums, $\{S_N\}_{N \in \mathbb{N}}$, defined as

$$S_N = \sum_{n=1}^N x_n$$

converges in \mathscr{X} . We say that a series $\sum_{n \in \mathbb{N}} x_n$ *converges absolutely* in \mathscr{X} if $\sum_{n \in \mathbb{N}} ||x_n|| < \infty$.

- (ii) Show that if $(\mathcal{X}, \|\cdot\|)$ is a Banach space then every absolutely converging series converges.
- (iii) Show that if (𝔅, ||·||) is a normed space where every absolutely converging series converges, then (𝔅, ||·||) is a Banach space. *Hint: You may use the fact that any Cauchy sequence of a converging subsequence converges to the same limit as the original sequence.*

Exercise 3 (*If time permits*). Consider the vector space C[0,1] and define the function $\|\cdot\|_1 : C[0,1] \to \mathbb{R}_+$ by

$$||f||_1 = \int_0^1 |f(x)| dx.$$

You may assume without proof that $(C[0,1], \|\cdot\|_1)$ is a normed space. Show that it is not a Banach space.

Hint: Consider the sequence

$$f_n(x) = \begin{cases} 0 & 0 \le x < \frac{1}{2} \\ n\left(x - \frac{1}{2}\right) & \frac{1}{2} \le x < \frac{1}{2} + \frac{1}{n} \\ 1 & \frac{1}{2} + \frac{1}{n} \le x \le 1 \end{cases}$$

and use the fact that for any $0 \le a \le b \le 1$ we have that for any $g \in C[0,1]$ $\int_{a}^{b} |g(x)| dx \le \int_{0}^{1} |g(x)| dx.$

2