Problem Class 1

Exercise 1. Consider the space ($C[0,1],\|\cdot\|_{\infty}$) and the sets

$$
C^{1}[0,1]=\{f:[0,1] \rightarrow \mathbb{R} \mid f \text { is continuously differentiable on }[0,1]\},
$$

$C_{0}^{1}[0,1]=\{f:[0,1] \rightarrow \mathbb{R} \mid f$ is continuously differentiable on $[0,1], f(0)=f(1)=0\}$.
(i) Show that $C^{1}[0,1]$ and $C_{0}^{1}[0,1]$ are subspaces of $C[0,1]$.
(ii) Show that $C_{0}^{1}[0,1]$ is a subspace of $C^{1}[0,1]$.

Define a function $\|\cdot\|_{C^{1}}: C^{1}[0,1] \rightarrow \mathbb{R}_{+}$by

$$
\|f\|_{C^{1}}=\left\|f^{\prime}\right\|_{\infty}
$$

(iii) Show that $\|\cdot\|_{C^{1}}$ is not a norm on $C^{1}[0,1]$ but is a norm on $C_{0}^{1}[0,1]$.
(iv) Show that $\left(C_{0}^{1}[0,1],\|\cdot\|_{C^{1}}\right)$ is a Banach space.

Exercise 2. Let $(X,\|\cdot\|)$ be a normed space.
(i) Show that if $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence in \mathscr{X} then one can extract a subsequence of it, $\left\{x_{n_{k}}\right\}_{k \in \mathbb{N}}$ such that

$$
\left\|x_{n_{k}}-x_{n_{k+1}}\right\|<\frac{1}{2^{k}} .
$$

We say that a series $\sum_{n \in \mathbb{N}} x_{n}$ converges in \mathscr{X} is the sequence of partial sums, $\left\{S_{N}\right\}_{N \in \mathbb{N}}$, defined as

$$
S_{N}=\sum_{n=1}^{N} x_{n}
$$

converges in \mathscr{X}. We say that a series $\sum_{n \in \mathbb{N}} x_{n}$ converges absolutely in \mathscr{X} if $\sum_{n \in \mathbb{N}}\left\|x_{n}\right\|<\infty$.
(ii) Show that if $(\mathscr{X},\|\cdot\|)$ is a Banach space then every absolutely converging series converges.
(iii) Show that if $(\mathcal{X},\|\cdot\|)$ is a normed space where every absolutely converging series converges, then $(\mathscr{X},\|\cdot\|)$ is a Banach space.
Hint: You may use the fact that any Cauchy sequence of a converging subsequence converges to the same limit as the original sequence.

Exercise 3 (If time permits). Consider the vector space $C[0,1]$ and define the function $\|\cdot\|_{1}: C[0,1] \rightarrow \mathbb{R}_{+}$by

$$
\|f\|_{1}=\int_{0}^{1}|f(x)| d x
$$

You may assume without proof that $\left(C[0,1],\|\cdot\|_{1}\right)$ is a normed space. Show that it is not a Banach space.

Hint: Consider the sequence

$$
f_{n}(x)= \begin{cases}0 & 0 \leq x<\frac{1}{2} \\ n\left(x-\frac{1}{2}\right) & \frac{1}{2} \leq x<\frac{1}{2}+\frac{1}{n} \\ 1 & \frac{1}{2}+\frac{1}{n} \leq x \leq 1\end{cases}
$$

and use the fact that for any $0 \leq a \leq b \leq 1$ we have that for any $g \in C[0,1]$

$$
\int_{a}^{b}|g(x)| d x \leq \int_{0}^{1}|g(x)| d x .
$$

