Problem Class 1 Solution

Solution to Question 1. We start by noticing that the zero function, 0, belongs to $C^{1}[0,1]$ and $C_{0}^{1}[0,1]$.
Next we use the fact that pointwise addition and pointwise multiplication of continuously differentiable functions is continuously differentiable to conclude that $C^{1}[a, b]$ is closed under the addition and scalar multiplication operations. This shows that $C^{1}[0,1]$ is indeed a subspace of $C[0,1]$. Moreover, if $f, g \in C_{0}^{1}[0,1]$ then
$(f+g)(0)=f(0)+g(0)=0+0=0, \quad(f+g)(1)=f(1)+g(1)=0+0=0$
which shows that $f+g \in C_{0}^{1}[0,1]$, and similarly for any $f \in C^{1}[0,1]$ and a scalar α

$$
(\alpha f)(0)=\alpha f(0)=0, \quad(\alpha f)(1)=\alpha f(1)=0
$$

which shows that $\alpha f \in C_{0}^{1}[0,1]$. We conclude that $C_{0}^{1}[0,1]$ is also a subspace.
(iii) We notice that

$$
\|f\|_{C^{1}}=0 \Leftrightarrow\left\|f^{\prime}\right\|_{\infty}=0 \Leftrightarrow f^{\prime}=0 \forall x \in(0,1) \Leftrightarrow f \equiv \text { Const.. }
$$

As any constant is in $C^{1}[0,1]$, we see that $\|f\|_{C^{1}}=0$ doesn't imply that $f=\mathbf{0}$ in $C^{1}[0,1]$. For instance, consider $f \equiv 1$. This shows that $\|\cdot\|_{C^{1}}$ is not a norm on $C^{1}[0,1]$. If, however, $f \in C_{0}^{1}[0,1]$ then since $f(0)=0$ we conclude that if f is constant, then $f=\mathbf{0}$. We'll continue to check the scalar property and triangle inequality on $C_{0}^{1}[0,1]$.
For any $f \in C_{0}^{1}[0,1]$ and any scalar α we know from basic rules of differentiation and the fact that $\|\cdot\|_{\infty}$ is a norm that

$$
\|\alpha f\|_{C^{1}}=\left\|(\alpha f)^{\prime}\right\|_{\infty}=\left\|\alpha f^{\prime}\right\|_{\infty}=|\alpha|\left\|f^{\prime}\right\|_{\infty}=|\alpha|\|f\|_{C^{1}}
$$

Similarly, for any $f, g \in C_{0}^{1}[0,1]$
$\|f+g\|_{C^{1}}=\left\|(f+g)^{\prime}\right\|_{\infty}=\left\|f^{\prime}+g^{\prime}\right\|_{\infty} \leq\left\|f^{\prime}\right\|_{\infty}+\left\|g^{\prime}\right\|_{\infty}=\|f\|_{C^{1}}+\|g\|_{C^{1}}$,
which shows the triangle inequality. We conclude that $\|\cdot\|_{C^{1}}$ is indeed a norm on $C_{0}^{1}[0,1]$.
(iv) We start by noticing that $\left\{f_{n}\right\}_{n \in \mathbb{N}} \in C_{0}^{1}[0,1]$ is Cauchy in $\left(C_{0}^{1}[0,1],\|\cdot\|_{C^{1}}\right)$ implies (by definition) that $\left\{f_{n}^{\prime}\right\}_{n \in \mathbb{N}} \in C[0,1]$ is Cauchy. We know from class that $C[0,1]$ is complete, which implies that there exists $g \in C[0,1]$ such that $\lim _{n \rightarrow \infty}\left\|f_{n}^{\prime}-g\right\|_{\infty}=0 . g$ is our candidate for
the derivative of our limit function f. We thus define

$$
f(x)=\int_{0}^{x} g(y) d y
$$

By the fundamental theorem of Calculus we have that $f \in C^{1}[0,1]$ with $f^{\prime}=g$ and $f(0)=0$. Moreover, if $f(1)=0$ we'll conclude that $f \in C^{1}[0,1]$ and

$$
\left\|f_{n}-f\right\|_{C^{1}}=\left\|f_{n}^{\prime}-g\right\|_{\infty} \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

which will show the completeness of $\left(C_{0}^{1}[0,1],\|\cdot\|_{C^{1}}\right)$. Indeed, since $\left\{f_{n}^{\prime}\right\}_{n \in \mathbb{N}} \in C_{0}^{1}[0,1]$ converges uniformly to g we have that

$$
\begin{gathered}
f(1)=\int_{0}^{1} g(y) d y=\int_{0}^{1}\left(\lim _{n \rightarrow \infty} f_{n}^{\prime}(y)\right) d y=\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}^{\prime}(y) d y \\
=\lim _{n \rightarrow \infty}\left(f_{n}(1)-f_{n}(0)\right)=\lim _{n \rightarrow \infty}(0)=0 .
\end{gathered}
$$

The proof is thus complete.
Solution to Question 2. (i) The claim is actually true in general metric spaces. In that case it reads as: if $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence in X then one can extract a subsequence of it, $\left\{x_{n_{k}}\right\}_{k \in \mathbb{N}}$ such that

$$
d\left(x_{n_{k}}, x_{n_{k+1}}\right)<\frac{1}{2^{k}} .
$$

We will prove this more general statement as the proof of it and (??) is identical.
Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a Cauchy sequence. For $\varepsilon_{1}=\frac{1}{2}$ we can find $n_{1} \in \mathbb{N}$ such that for all $n, m \geq n_{1}$ we have that

$$
d\left(x_{n}, x_{m}\right)<\frac{1}{2} .
$$

For $\varepsilon_{2}=\frac{1}{4}$ we can find $\widetilde{n}_{2} \in \mathbb{N}$ such that for all $n, m \geq \widetilde{n}_{2}$ we have that

$$
d\left(x_{n}, x_{m}\right)<\frac{1}{4} .
$$

Defining $n_{2}=\max \left(n_{1}+1, \tilde{n}_{2}\right)$ we find that $n_{2}>n_{1}$ and for any $n, m \geq$ n_{2} we have that

$$
d\left(x_{n}, x_{m}\right)<\frac{1}{4} .
$$

We continue by induction. Assume that for a fixed $k \in \mathbb{N}$ we have found $n_{k}>n_{k-1}$ such that for all $n, m>n_{k}$ we have that

$$
d\left(x_{n}, x_{m}\right)<\frac{1}{2^{k}} .
$$

For $\varepsilon_{k+1}=\frac{1}{2^{k+1}}$ we can find $\widetilde{n}_{k+1} \in \mathbb{N}$ such that for all $n, m \geq \widetilde{n}_{k+1}$ we have that

$$
d\left(x_{n}, x_{m}\right)<\frac{1}{2^{k+1}} .
$$

Defining $n_{k+1}=\max \left(n_{k}+1, \widetilde{n}_{k+1}\right)$ we find that $n_{k+1}>n_{k}$ and for any $n, m \geq n_{k+1}$ we have that

$$
d\left(x_{n}, x_{m}\right)<\frac{1}{2^{k+1}} .
$$

The set $\left\{x_{n_{k}}\right\}_{k \in \mathbb{N}}$ is a subsequence of $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ (since $n_{k+1}>n_{k}$ for any $k \in \mathbb{N}$) and for any $k \in \mathbb{N}$ we have that $n_{k}, n_{k+1} \geq n_{k}$ and as such

$$
d\left(x_{n_{k}}, x_{n_{k+1}}\right)<\frac{1}{2^{k}} .
$$

The result is thus shown.
(ii) Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a sequence in \mathscr{X} such that $\sum_{n \in \mathbb{N}} x_{n}$ converges absolutely and consider the partial sums sequence $\left\{S_{N}\right\}_{N \in \mathbb{N}}$. Since \mathscr{X} is complete it is enough for us to show that $\left\{S_{N}\right\}_{N \in \mathbb{N}}$ is Cauchy to know that it converges. Indeed

$$
\left\|S_{N}-S_{M}\right\|=\left\|\sum_{\min \{N, M\}+1}^{\max \{N, M\}} x_{n}\right\| \leq \sum_{\min \{N, M\}+1}^{\max \{N, M\}}\left\|x_{n}\right\|=\left|s_{N}-s_{M}\right|
$$

where $s_{N}=\sum_{n=1}^{N}\left\|x_{n}\right\|$. Since the series converges absolutely we know that $\left\{s_{N}\right\}_{N \in \mathbb{N}}$ converges and as such Cauchy. Thus, for any $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that if $N, M \geq n_{0}$ we have that $\left|s_{N}-s_{M}\right|<\varepsilon$. Consequently, if $N, M \geq n_{0}$

$$
\left\|S_{N}-S_{M}\right\|<\varepsilon
$$

which shows the desired Cauchy criterion. The proof is concluded.
(iii) We assume that \mathscr{X} is a normed space where every absolutely convergent series also converges and we'll show that any Cauchy sequence in \mathscr{X} has a limit. This follows from the following:

- Given a Cauchy sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ we can use the first part of the exercise to find a subsequence of it, $\left\{x_{n_{k}}\right\}_{k \in \mathbb{N}}$ such that

$$
\left\|x_{n_{k}}-x_{n_{k+1}}\right\|<\frac{1}{2^{k}}
$$

- Since $\sum_{k \in \mathbb{N}}\left\|x_{n_{k}}-x_{n_{k+1}}\right\|<1$ we conclude, from our assumption, that

$$
S_{N}=\sum_{k=1}^{N}\left(x_{n_{k+1}}-x_{n_{k}}\right)
$$

converges to some vector $S \in \mathscr{X}$.

- As

$$
S_{N}=x_{n_{N+1}}-\underbrace{x_{n_{1}}}_{\substack{\text { fixed } \\ \text { vector }}}
$$

we conclude that $\left\{x_{n_{N+1}}\right\}_{N \in \mathbb{N}}$ converges to $S-x_{n_{1}}$.

- As we have found a subsequence to $\left\{x_{n}\right\}_{n \in \mathbb{N}}$, which is a Cauchy sequence, that converges we can conclude that $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ must also converge.
Since $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ was arbitrary we have shown that any Cauchy sequence converges. Thus \mathscr{X} is a Banach space.

Solution to Question 3. Assuming that $n>m$ without loss of generality we see that

$$
\left\|f_{n}-f_{m}\right\|_{1}=\int_{\frac{1}{2}}^{\frac{1}{2}+\frac{1}{m}}\left|f_{n}(x)-f_{m}(x)\right| d x \leq \int_{\frac{1}{2}}^{\frac{1}{2}+\frac{1}{m}} 2 d x=\frac{2}{m},
$$

where we have used the fact that $0 \leq f_{n}(x) \leq 1$ for any $x \in[0,1]$ and any $n \in \mathbb{N}$. We conclude that

$$
\left\|f_{n}-f_{m}\right\|_{1}<\varepsilon
$$

when $n, m>\frac{2}{\varepsilon}$, which shows that $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence in $\|\cdot\|_{1}$. We now need to show that f_{n} doesn't converge to any function in $C[0,1]$. We can immediately see that f_{n} converges pointwise to a function \tilde{f} such that

$$
\tilde{f}(x)=0, x \in\left[0, \frac{1}{2}\right] \quad \text { and } \quad \tilde{f}(x)=1 x \in\left(\frac{1}{2}, 1\right] .
$$

Looking at the left and right limits at $x=\frac{1}{2}$ we conclude that \widetilde{f} is not continuous. Intuitively speaking, we expect that if f_{n} converges to anything in $\|\cdot\|_{1}$, then it should be the above function ${ }^{11}$. We will proceed by assuming that $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ converges to a function $f \in C[0,1]$ and prove that f can't be continuous, showing the desired contradiction.
Assume that $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ converges to $f \in C[0,1]$. Then, since

$$
\int_{0}^{\frac{1}{2}}|f(x)| d x=\int_{0}^{\frac{1}{2}}\left|f(x)-f_{n}(x)\right| d x \leq \int_{0}^{1}\left|f(x)-f_{n}(x)\right| d x=\left\|f-f_{n}\right\|_{1}
$$

for all $n \in \mathbb{N}$, we see that by taking n to infinity we find that

$$
0 \leq \int_{0}^{\frac{1}{2}}|f(x)| d x \leq \lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{1}=0 .
$$

[^0]This implies that $\int_{0}^{\frac{1}{2}}|f(x)| d x=0$ and since f is continuous we conclude that $f(x)=0$ on $\left[0, \frac{1}{2}\right]$. Similarly, for any $\delta>0$ we have that if $n>\frac{1}{\delta}$ then ${ }^{2}$

$$
\int_{\frac{1}{2}+\delta}^{1}|f(x)-1| d x=\int_{\frac{1}{2}+\delta}^{1}\left|f(x)-f_{n}(x)\right| d x \leq\left\|f-f_{n}\right\|_{1},
$$

from which we conclude that $f(x)=1$ on $\left[\frac{1}{2}+\delta, 1\right]$ for any $\delta>0$. Thus, as δ was arbitrary, $f(x)=1$ on $\left(\frac{1}{2}, 1\right]$. Noticing that

$$
\lim _{x \rightarrow \frac{1}{2}^{-}} f(x)=0 \neq 1=\lim _{x \rightarrow \frac{1}{2}^{+}} f(x)
$$

we conclude that f can't be continuous - contradicting the convergence in $C[0,1]$. We conclude that $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ has no limit and as such $\left(C[0,1],\|\cdot\|_{1}\right)$ is not complete.
In almost the exact same way we could have shown that $\left(C[0,1],\|\cdot\|_{p}\right)$, where $\|\cdot\|_{p}$ is the norm defined on $L^{p}[0,1]$, is not complete for any $1<$ $p<\infty$.

[^1]
[^0]: ${ }^{1}$ This, in fact, is true in any of the L^{p} norms. A known theorem in Measure Theory states that if $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ converges to f in $\|\cdot\|_{p}$ then it has a subsequence, $\left\{f_{n_{k}}\right\}_{k \in \mathbb{N}}$, that converges pointwise almost everywhere to f.

[^1]: ${ }^{2}$ As $n>\frac{1}{\delta}$ we have that $\frac{1}{2}+\frac{1}{n}<\frac{1}{2}+\delta$.

