Problem Class 1 Solution

Solution to Question 1. We start by noticing that the zero function, **0**, belongs to $C^1[0,1]$ and $C_0^1[0,1]$.

Next we use the fact that pointwise addition and pointwise multiplication of continuously differentiable functions is continuously differentiable to conclude that $C^1[a, b]$ is closed under the addition and scalar multiplication operations. This shows that $C^1[0, 1]$ is indeed a subspace of C[0, 1]. Moreover, if $f, g \in C_0^1[0, 1]$ then

$$(f+g)(0) = f(0) + g(0) = 0 + 0 = 0,$$
 $(f+g)(1) = f(1) + g(1) = 0 + 0 = 0$

which shows that $f+g\in C_0^1\left[0,1\right]$, and similarly for any $f\in C^1\left[0,1\right]$ and a scalar α

$$(\alpha f)(0) = \alpha f(0) = 0, \qquad (\alpha f)(1) = \alpha f(1) = 0$$

which shows that $\alpha f \in C_0^1[0,1]$. We conclude that $C_0^1[0,1]$ is also a subspace.

(iii) We notice that

$$||f||_{C^1} = 0 \iff ||f'||_{\infty} = 0 \iff f' = 0 \forall x \in (0,1) \iff f \equiv \text{Const.}$$

As any constant is in $C^1[0,1]$, we see that $||f||_{C^1} = 0$ *doesn't* imply that $f = \mathbf{0}$ in $C^1[0,1]$. For instance, consider $f \equiv 1$. This shows that $||\cdot||_{C^1}$ is not a norm on $C^1[0,1]$. If, however, $f \in C_0^1[0,1]$ then since f(0) = 0 we conclude that if f is constant, then $f = \mathbf{0}$. We'll continue to check the scalar property and triangle inequality on $C_0^1[0,1]$. For any $f \in C_0^1[0,1]$ and any scalar α we know from basic rules of differentiation and the fact that $||\cdot||_{\infty}$ is a norm that

$$\|\alpha f\|_{C^{1}} = \|(\alpha f)'\|_{\infty} = \|\alpha f'\|_{\infty} = |\alpha| \|f'\|_{\infty} = |\alpha| \|f\|_{C^{1}}.$$

Similarly, for any $f, g \in C_0^1[0, 1]$

$$\|f+g\|_{C^{1}} = \|(f+g)'\|_{\infty} = \|f'+g'\|_{\infty} \le \|f'\|_{\infty} + \|g'\|_{\infty} = \|f\|_{C^{1}} + \|g\|_{C^{1}},$$

which shows the triangle inequality. We conclude that $\|\cdot\|_{C^1}$ is indeed a norm on $C_0^1[0,1]$.

(iv) We start by noticing that $\{f_n\}_{n \in \mathbb{N}} \in C_0^1[0,1]$ is Cauchy in $(C_0^1[0,1], \|\cdot\|_{C^1})$ implies (by definition) that $\{f'_n\}_{n \in \mathbb{N}} \in C[0,1]$ is Cauchy. We know from class that C[0,1] is complete, which implies that there exists $g \in C[0,1]$ such that $\lim_{n \to \infty} \|f'_n - g\|_{\infty} = 0$. *g* is our candidate for the derivative of our limit function f. We thus define

$$f(x) = \int_0^x g(y) \, dy.$$

By the fundamental theorem of Calculus we have that $f \in C^1[0,1]$ with f' = g and f(0) = 0. Moreover, if f(1) = 0 we'll conclude that $f \in C^1[0,1]$ and

$$\|f_n-f\|_{C^1}=\|f'_n-g\|_{\infty}\underset{n\to\infty}{\longrightarrow}0,$$

which will show the completeness of $(C_0^1[0,1], \|\cdot\|_{C^1})$. Indeed, since $\{f'_n\}_{n\in\mathbb{N}} \in C_0^1[0,1]$ converges uniformly to *g* we have that

$$f(1) = \int_0^1 g(y) dy = \int_0^1 \left(\lim_{n \to \infty} f'_n(y)\right) dy = \lim_{n \to \infty} \int_0^1 f'_n(y) dy$$
$$= \lim_{n \to \infty} \left(f_n(1) - f_n(0)\right) = \lim_{n \to \infty} (0) = 0.$$

The proof is thus complete.

Solution to Question 2. (i) The claim is actually true in general metric spaces. In that case it reads as: if $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in *X* then one can extract a subsequence of it, $\{x_{n_k}\}_{k \in \mathbb{N}}$ such that

$$d\left(x_{n_k}, x_{n_{k+1}}\right) < \frac{1}{2^k}.$$

We will prove this more general statement as the proof of it and (??) is identical.

Let $\{x_n\}_{n \in \mathbb{N}}$ be a Cauchy sequence. For $\varepsilon_1 = \frac{1}{2}$ we can find $n_1 \in \mathbb{N}$ such that for all $n, m \ge n_1$ we have that

$$d\left(x_n, x_m\right) < \frac{1}{2}$$

For $\varepsilon_2 = \frac{1}{4}$ we can find $\widetilde{n}_2 \in \mathbb{N}$ such that for all $n, m \ge \widetilde{n}_2$ we have that

$$d\left(x_n, x_m\right) < \frac{1}{4}$$

Defining $n_2 = \max(n_1 + 1, \tilde{n}_2)$ we find that $n_2 > n_1$ and for any $n, m \ge n_2$ we have that

$$d\left(x_n, x_m\right) < \frac{1}{4}.$$

We continue by induction. Assume that for a fixed $k \in \mathbb{N}$ we have found $n_k > n_{k-1}$ such that for all $n, m > n_k$ we have that

$$d\left(x_n, x_m\right) < \frac{1}{2^k}.$$

For $\varepsilon_{k+1} = \frac{1}{2^{k+1}}$ we can find $\widetilde{n}_{k+1} \in \mathbb{N}$ such that for all $n, m \ge \widetilde{n}_{k+1}$ we have that

$$d\left(x_n, x_m\right) < \frac{1}{2^{k+1}}.$$

Defining $n_{k+1} = \max(n_k + 1, \tilde{n}_{k+1})$ we find that $n_{k+1} > n_k$ and for any $n, m \ge n_{k+1}$ we have that

$$d\left(x_n, x_m\right) < \frac{1}{2^{k+1}}.$$

The set $\{x_{n_k}\}_{k \in \mathbb{N}}$ is a subsequence of $\{x_n\}_{n \in \mathbb{N}}$ (since $n_{k+1} > n_k$ for any $k \in \mathbb{N}$) and for any $k \in \mathbb{N}$ we have that $n_k, n_{k+1} \ge n_k$ and as such

$$d\left(x_{n_k}, x_{n_{k+1}}\right) < \frac{1}{2^k}.$$

The result is thus shown.

(ii) Let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence in \mathscr{X} such that $\sum_{n\in\mathbb{N}} x_n$ converges absolutely and consider the partial sums sequence $\{S_N\}_{N\in\mathbb{N}}$. Since \mathscr{X} is complete it is enough for us to show that $\{S_N\}_{N\in\mathbb{N}}$ is Cauchy to know that it converges. Indeed

$$\|S_N - S_M\| = \left\|\sum_{\min\{N,M\}+1}^{\max\{N,M\}} x_n\right\| \le \sum_{\min\{N,M\}+1}^{\max\{N,M\}} \|x_n\| = |s_N - s_M|$$

where $s_N = \sum_{n=1}^N ||x_n||$. Since the series converges absolutely we know that $\{s_N\}_{N\in\mathbb{N}}$ converges and as such Cauchy. Thus, for any $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that if $N, M \ge n_0$ we have that $|s_N - s_M| < \varepsilon$. Consequently, if $N, M \ge n_0$

$$\|S_N - S_M\| < \varepsilon,$$

which shows the desired Cauchy criterion. The proof is concluded.

- (iii) We assume that \mathscr{X} is a normed space where every absolutely convergent series also converges and we'll show that any Cauchy sequence in \mathscr{X} has a limit. This follows from the following:
 - Given a Cauchy sequence $\{x_n\}_{n \in \mathbb{N}}$ we can use the first part of the exercise to find a subsequence of it, $\{x_{n_k}\}_{k \in \mathbb{N}}$ such that

$$||x_{n_k} - x_{n_{k+1}}|| < \frac{1}{2^k}.$$

• Since $\sum_{k \in \mathbb{N}} ||x_{n_k} - x_{n_{k+1}}|| < 1$ we conclude, from our assumption, that

$$S_N = \sum_{k=1}^{N} \left(x_{n_{k+1}} - x_{n_k} \right)$$

converges to some vector $S \in \mathcal{X}$.

• As

$$S_N = x_{n_{N+1}} - \underbrace{x_{n_1}}_{\text{fixed vector}}$$

we conclude that $\{x_{n_{N+1}}\}_{N \in \mathbb{N}}$ converges to $S - x_{n_1}$.

• As we have found a subsequence to $\{x_n\}_{n \in \mathbb{N}}$, which is a Cauchy sequence, that converges we can conclude that $\{x_n\}_{n \in \mathbb{N}}$ must also converge.

Since $\{x_n\}_{n \in \mathbb{N}}$ was arbitrary we have shown that any Cauchy sequence converges. Thus \mathcal{X} is a Banach space.

Solution to Question 3. Assuming that n > m without loss of generality we see that

$$\left\|f_n - f_m\right\|_1 = \int_{\frac{1}{2}}^{\frac{1}{2} + \frac{1}{m}} \left|f_n(x) - f_m(x)\right| dx \le \int_{\frac{1}{2}}^{\frac{1}{2} + \frac{1}{m}} 2dx = \frac{2}{m}$$

where we have used the fact that $0 \le f_n(x) \le 1$ for any $x \in [0, 1]$ and any $n \in \mathbb{N}$. We conclude that

$$\|f_n - f_m\|_1 < \varepsilon$$

when $n, m > \frac{2}{\varepsilon}$, which shows that $\{f_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in $\|\cdot\|_1$. We now need to show that f_n doesn't converge to any function in C[0, 1]. We can immediately see that f_n converges pointwise to a function \tilde{f} such that

$$\widetilde{f}(x) = 0, \ x \in \left[0, \frac{1}{2}\right] \text{ and } \widetilde{f}(x) = 1 \ x \in \left(\frac{1}{2}, 1\right]$$

Looking at the left and right limits at $x = \frac{1}{2}$ we conclude that \tilde{f} is not continuous. Intuitively speaking, we expect that if f_n converges to anything in $\|\cdot\|_1$, then it should be the above function¹. We will proceed by assuming that $\{f_n\}_{n \in \mathbb{N}}$ converges to a function $f \in C[0, 1]$ and prove that f can't be continuous, showing the desired contradiction.

Assume that $\{f_n\}_{n \in \mathbb{N}}$ converges to $f \in C[0, 1]$. Then, since

$$\int_{0}^{\frac{1}{2}} |f(x)| \, dx = \int_{0}^{\frac{1}{2}} |f(x) - f_n(x)| \, dx \le \int_{0}^{1} |f(x) - f_n(x)| \, dx = \|f - f_n\|_{1}$$

for all $n \in \mathbb{N}$, we see that by taking *n* to infinity we find that

$$0 \le \int_0^{\frac{1}{2}} |f(x)| \, dx \le \lim_{n \to \infty} \|f - f_n\|_1 = 0.$$

4

¹This, in fact, is true in any of the L^p norms. A known theorem in Measure Theory states that if $\{f_n\}_{n\in\mathbb{N}}$ converges to f in $\|\cdot\|_p$ then it has a subsequence, $\{f_{n_k}\}_{k\in\mathbb{N}}$, that converges pointwise almost everywhere to f.

This implies that $\int_0^{\frac{1}{2}} |f(x)| dx = 0$ and since *f* is continuous we conclude that f(x) = 0 on $[0, \frac{1}{2}]$. Similarly, for any $\delta > 0$ we have that if $n > \frac{1}{\delta}$ then²

$$\int_{\frac{1}{2}+\delta}^{1} |f(x)-1| dx = \int_{\frac{1}{2}+\delta}^{1} |f(x)-f_{n}(x)| dx \le ||f-f_{n}||_{1},$$

from which we conclude that f(x) = 1 on $\left[\frac{1}{2} + \delta, 1\right]$ for any $\delta > 0$. Thus, as δ was arbitrary, f(x) = 1 on $\left(\frac{1}{2}, 1\right]$. Noticing that

$$\lim_{x \to \frac{1}{2}^{-}} f(x) = 0 \neq 1 = \lim_{x \to \frac{1}{2}^{+}} f(x)$$

we conclude that f can't be continuous - contradicting the convergence in C[0,1]. We conclude that $\{f_n\}_{n\in\mathbb{N}}$ has no limit and as such $(C[0,1], \|\cdot\|_1)$ is not complete.

In almost the exact same way we could have shown that $(C[0,1], \|\cdot\|_p)$, where $\|\cdot\|_p$ is the norm defined on $L^p[0,1]$, is not complete for any 1 .

²As $n > \frac{1}{\delta}$ we have that $\frac{1}{2} + \frac{1}{n} < \frac{1}{2} + \delta$.