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Problem Class 1 Solution

Solution to Question 1. We start by noticing that the zero function, 0, be-
longs to C*[0,1] and C; [0, 1].

Next we use the fact that pointwise addition and pointwise multiplication
of continuously differentiable functions is continuously differentiable to
conclude that C! [a, b] is closed under the addition and scalar multiplica-
tion operations. This shows that C'10,1] is indeed a subspace of C [0, 1].
Moreover, if f,g € Cé [0,1] then

(f+8)0)=f0)+g0)=0+0=0, (f+g)M=f)+g1)=0+0=0

which shows that f + g€ Cé [0,1], and similarly for any f € C 110,11 and a
scalar a

(af)@=af@=0  (af)(D)=af)=0

which shows that a f € Cj [0,1]. We conclude that C; [0,1] is also a sub-
space.

(iii) We notice that
Ifllc=0 < |f.=0  f'=0Vvxe(01) < f=Const.

As any constant is in C'[0,1], we see that | f| . = 0 doesn’t imply
that f =0 in C'[0,1]. For instance, consider f = 1. This shows that
[-llc1 is not a norm on C'[0,1]. If, however, fe Cé [0,1] then since
f(0) = 0 we conclude that if f is constant, then f = 0. We'll continue
to check the scalar property and triangle inequality on C& [0,1].

For any f € Cé [0,1] and any scalar @ we know from basic rules of
differentiation and the fact that |- ||, is a norm that

lafle=|(@f)] = laf le=1allf =10l Flcr-

Similarly, for any f, g € Cé [0,1]

r+gla=|r+8)]

which shows the triangle inequality. We conclude that ||| is in-
deed a norm on C; [0, 1].

(iv) We start by noticing that{f,}, ., € C; [0,1]is Cauchyin (C; [0,1], |-l c1)
implies (by definition) that {f;} . € C[0,1] is Cauchy. We know
from class that C[0,1] is complete, which implies that there exists
g € C[0,1] such that lim,_ ||f,; — g||OO = 0. g is our candidate for

N8 o =1 oo+ 18 oo = 1 F Nl + N8l
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the derivative of our limit function f. We thus define

X
fx) =f0 gyay.

By the fundamental theorem of Calculus we have that f € C 110,1]
with f' = g and f(0) = 0. Moreover, if f(1) = 0 we'll conclude that

fecC'[o,1] and
I fn=Fller =110 -8lo ;=20
which will show the completeness of (Cj [0,1], ||l c1). Indeed, since

{7} ,.en € C 10, 1] converges uniformly to g we have that
1 1 1
f :fo gdy =f0 (Jim 1)) dy= ,}iggofo fdy

= lim (f,(1) - f»() = lim (0) =0.
The proof is thus complete.

Solution to Question 2. (i) The claim is actually true in general metric
spaces. In that case it reads as: if {x,},¢n is @ Cauchy sequence in X
then one can extract a subsequence of it, {xy, } ., such that

1
?.
We will prove this more general statement as the proof of it and (2?)
is identical.

Let {x,},en be a Cauchy sequence. For €; = % we can find n; € N
such that for all n, m = n; we have that

d (xnk’ x”k+1) <

1
d (X, Xm) < 2
For e, = i we can find 7, € N such that for all n, m = 71, we have that

1
d (X, Xm) < T

Defining n, = max(n; + 1, n1) we find that n, > n; and forany n, m =
n, we have that

1
d (X, Xm) < T

We continue by induction. Assume that for a fixed k € N we have
found n > ni_; such that for all n, m > n; we have that

1
d(x,,xXm) < 2_k



(i)

(iii)
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Forep,q = 2,% we can find 7,1 € N such that for all n, m = 7131 we
have that

d(x,,x,) < SET

Defining nj;; = max(ny + 1, nix4+1) we find that ny;, > ny and for any
n, m = ny4+1 we have that

d (X, Xm) < YR
The set {xp, } .., is a subsequence of {x,,} e (since n.1 > ny for any
k € N) and for any k € N we have that ng, ny.; = ni and as such

1
d(xnk’xnkH) < 2_k
The result is thus shown.
Let {x,},en be a sequence in 2 such that ),y X, converges abso-
lutely and consider the partial sums sequence {Sy}yen- Since & is
complete it is enough for us to show that {Sy} yen is Cauchy to know

that it converges. Indeed

max{N,M} max{N, M}
ISy — Syl = Yoo xal= ) lxal =lsn—sul
min{N,M}+1 min{N,M}+1

where sy = erY:l lx,|l. Since the series converges absolutely we know
that {sy} yen converges and as such Cauchy. Thus, for any € > 0 there
exists ny € N such that if N, M = ny we have that |sy — sp/| < €. Con-
sequently, if N, M = n

ISy —Smll <€,

which shows the desired Cauchy criterion. The proof is concluded.
We assume that 2" is anormed space where every absolutely conver-
gent series also converges and we’ll show that any Cauchy sequence
in 2 has a limit. This follows from the following:
e Given a Cauchy sequence {x,},cn We can use the first part of
the exercise to find a subsequence of it, {x,, } ., such that

1
s~ ol < 5

e Since Y gen || %n, — *n,.,, || < 1 we conclude, from our assump-

tion, that
N

SN = Z (x”k+1 _xnk)
k=1

converges to some vector S€ 2.



e As
SN =Xny\ — Xny
~—~
fixed
vector
we conclude that {x,,,, } v CONVerges to S—xp, .

» As we have found a subsequence to {x,},en, Which is a Cauchy
sequence, that converges we can conclude that {x,},cy must
also converge.

Since {x,},en Was arbitrary we have shown that any Cauchy sequence
converges. Thus 2 is a Banach space.

Solution to Question 3. Assuming that n > m without loss of generality
we see that

2 3t 2
=l = [ " 10~ ol axs [ 2ax= 2,
2 2

where we have used the fact that 0 < f,,(x) < 1 for any x € [0,1] and any
n € N. We conclude that

| /o= fmlly <€

when 71, m > £, which shows that {f} ., is a Cauchy sequence in [|-||;.
We now need to show that f,, doesn’t converge to any function in C [0, 1].
We can immediately see that f;, converges pointwise to a function f such
that

~ 1
f(X):O, X € O,E

and f(x) =1xe (%,1

Looking at the left and right limits at x = % we conclude that f is not con-
tinuous. Intuitively speaking, we expect that if f,, converges to anything
in ||-|l;, then it should be the above functiorﬂ We will proceed by assum-
ing that {f,;} aen Converges to a function f € C[0,1] and prove that f can't
be continuous, showing the desired contradiction.

Assume that {f,},, converges to f € C[0,1]. Then, since

1 1 1
foz|f(x)|dx:f02 |f(x)—fn(x)|dxsf0 1f ) - fu@)|dx =] f - ful

for all n € N, we see that by taking 7 to infinity we find that
1
2
OS/O |F0ldx < lim [[£ = ful, =o0.

IThis, in fact, is true in any of the L” norms. A known theorem in Measure Theory
states that if {f,,},,_,, converges to f in |-|l,, then it has a subsequence, {fy, } ., that
converges pointwise almost everywhere to f.
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1
This implies that f? | f(x)| dx = 0 and since f is continuous we conclude
that f(x) =0 on [0, ]. Similarly, for any 6 > 0 we have thatif n > 5 thenﬂ

1 1
j; |f(X)—1|dx:ﬁ |f(X)_fn(x)|dxs||f_fi’l||1)
§+5 §+5

from which we conclude that f(x) =1 on [} +§,1] for any 6 > 0. Thus, as
6 was arbitrary, f(x) =1 on (%, 1]. Noticing that
liIIll fxX)=0#1= lim f(x)
3 0

x—»i x_,i

we conclude that f can’t be continuous - contradicting the convergence
in C[0,1]. We conclude that {f,;}, .., has nolimitand as such (C[0,1], |-l
is not complete.

In almost the exact same way we could have shown that (C (0,11, II-1l p),
where |||, is the norm defined on LP10,1], is not complete for any 1 <
p < oo.

neN

2 1 1,1 _1
Asn>3wehavethat§+z<§+5.



