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Problem Class 1 Solution
Solution to Question 1. We start by noticing that the zero function, 0, be-
longs to C 1 [0,1] and C 1

0 [0,1].
Next we use the fact that pointwise addition and pointwise multiplication
of continuously differentiable functions is continuously differentiable to
conclude that C 1 [a,b] is closed under the addition and scalar multiplica-
tion operations. This shows that C 1 [0,1] is indeed a subspace of C [0,1].
Moreover, if f , g ∈C 1

0 [0,1] then(
f + g

)
(0) = f (0)+ g (0) = 0+0 = 0,

(
f + g

)
(1) = f (1)+ g (1) = 0+0 = 0

which shows that f +g ∈C 1
0 [0,1] , and similarly for any f ∈C 1 [0,1] and a

scalar α (
α f

)
(0) =α f (0) = 0,

(
α f

)
(1) =α f (1) = 0

which shows that α f ∈ C 1
0 [0,1]. We conclude that C 1

0 [0,1] is also a sub-
space.

(iii) We notice that∥∥ f
∥∥

C 1 = 0 ⇔ ∥∥ f ′∥∥∞ = 0 ⇔ f ′ = 0 ∀x ∈ (0,1) ⇔ f ≡ Const..

As any constant is in C 1 [0,1], we see that
∥∥ f

∥∥
C 1 = 0 doesn’t imply

that f = 0 in C 1 [0,1]. For instance, consider f ≡ 1. This shows that
‖·‖C 1 is not a norm on C 1 [0,1]. If, however, f ∈ C 1

0 [0,1] then since
f (0) = 0 we conclude that if f is constant, then f = 0. We’ll continue
to check the scalar property and triangle inequality on C 1

0 [0,1].
For any f ∈ C 1

0 [0,1] and any scalar α we know from basic rules of
differentiation and the fact that ‖·‖∞ is a norm that∥∥α f

∥∥
C 1 =

∥∥∥(
α f

)′∥∥∥∞ = ∥∥α f ′∥∥∞ = |α|∥∥ f ′∥∥∞ = |α|∥∥ f
∥∥

C 1 .

Similarly, for any f , g ∈C 1
0 [0,1]∥∥ f + g

∥∥
C 1 =

∥∥∥(
f + g

)′∥∥∥∞ = ∥∥ f ′+ g ′∥∥∞ ≤ ∥∥ f ′∥∥∞+∥∥g ′∥∥∞ = ∥∥ f
∥∥

C 1 +
∥∥g

∥∥
C 1 ,

which shows the triangle inequality. We conclude that ‖·‖C 1 is in-
deed a norm on C 1

0 [0,1].
(iv) We start by noticing that

{
fn

}
n∈N ∈C 1

0 [0,1] is Cauchy in
(
C 1

0 [0,1] ,‖·‖C 1

)
implies (by definition) that

{
f ′

n

}
n∈N ∈ C [0,1] is Cauchy. We know

from class that C [0,1] is complete, which implies that there exists
g ∈ C [0,1] such that limn→∞

∥∥ f ′
n − g

∥∥∞ = 0. g is our candidate for
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the derivative of our limit function f . We thus define

f (x) =
∫ x

0
g (y)d y.

By the fundamental theorem of Calculus we have that f ∈ C 1 [0,1]
with f ′ = g and f (0) = 0. Moreover, if f (1) = 0 we’ll conclude that
f ∈C 1 [0,1] and ∥∥ fn − f

∥∥
C 1 =

∥∥ f ′
n − g

∥∥∞ −→
n→∞ 0,

which will show the completeness of
(
C 1

0 [0,1] ,‖·‖C 1

)
. Indeed, since{

f ′
n

}
n∈N ∈C 1

0 [0,1] converges uniformly to g we have that

f (1) =
∫ 1

0
g (y)d y =

∫ 1

0

(
lim

n→∞ f ′
n(y)

)
d y = lim

n→∞

∫ 1

0
f ′

n(y)d y

= lim
n→∞

(
fn(1)− fn(0)

)= lim
n→∞ (0) = 0.

The proof is thus complete.

Solution to Question 2. (i) The claim is actually true in general metric
spaces. In that case it reads as: if {xn}n∈N is a Cauchy sequence in X
then one can extract a subsequence of it,

{
xnk

}
k∈N such that

d
(
xnk , xnk+1

)< 1

2k
.

We will prove this more general statement as the proof of it and (??)
is identical.
Let {xn}n∈N be a Cauchy sequence. For ε1 = 1

2 we can find n1 ∈ N
such that for all n,m ≥ n1 we have that

d (xn , xm) < 1

2
.

For ε2 = 1
4 we can find ñ2 ∈N such that for all n,m ≥ ñ2 we have that

d (xn , xm) < 1

4
.

Defining n2 = max(n1 +1, ñ2) we find that n2 > n1 and for any n,m ≥
n2 we have that

d (xn , xm) < 1

4
.

We continue by induction. Assume that for a fixed k ∈ N we have
found nk > nk−1 such that for all n,m > nk we have that

d (xn , xm) < 1

2k
.
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For εk+1 = 1
2k+1 we can find ñk+1 ∈N such that for all n,m ≥ ñk+1 we

have that

d (xn , xm) < 1

2k+1
.

Defining nk+1 = max(nk +1, ñk+1) we find that nk+1 > nk and for any
n,m ≥ nk+1 we have that

d (xn , xm) < 1

2k+1
.

The set
{

xnk

}
k∈N is a subsequence of {xn}n∈N (since nk+1 > nk for any

k ∈N) and for any k ∈Nwe have that nk ,nk+1 ≥ nk and as such

d
(
xnk , xnk+1

)< 1

2k
.

The result is thus shown.
(ii) Let {xn}n∈N be a sequence in X such that

∑
n∈N xn converges abso-

lutely and consider the partial sums sequence {SN }N∈N. Since X is
complete it is enough for us to show that {SN }N∈N is Cauchy to know
that it converges. Indeed

‖SN −SM‖ =
∥∥∥∥∥ max{N ,M }∑

min{N ,M }+1
xn

∥∥∥∥∥≤
max{N ,M }∑

min{N ,M }+1
‖xn‖ = |sN − sM |

where sN =∑N
n=1 ‖xn‖. Since the series converges absolutely we know

that {sN }N∈N converges and as such Cauchy. Thus, for any ε> 0 there
exists n0 ∈N such that if N , M ≥ n0 we have that |sN − sM | < ε. Con-
sequently, if N , M ≥ n0

‖SN −SM‖ < ε,

which shows the desired Cauchy criterion. The proof is concluded.
(iii) We assume thatX is a normed space where every absolutely conver-

gent series also converges and we’ll show that any Cauchy sequence
in X has a limit. This follows from the following:

• Given a Cauchy sequence {xn}n∈N we can use the first part of
the exercise to find a subsequence of it,

{
xnk

}
k∈N such that∥∥xnk −xnk+1

∥∥< 1

2k
.

• Since
∑

k∈N
∥∥xnk −xnk+1

∥∥ < 1 we conclude, from our assump-
tion, that

SN =
N∑

k=1

(
xnk+1 −xnk

)
converges to some vector S ∈X.
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• As
SN = xnN+1 − xn1︸︷︷︸

fixed
vector

we conclude that
{

xnN+1

}
N∈N converges to S −xn1 .

• As we have found a subsequence to {xn}n∈N, which is a Cauchy
sequence, that converges we can conclude that {xn}n∈N must
also converge.

Since {xn}n∈N was arbitrary we have shown that any Cauchy sequence
converges. Thus X is a Banach space.

Solution to Question 3. Assuming that n > m without loss of generality
we see that∥∥ fn − fm

∥∥
1 =

∫ 1
2+ 1

m

1
2

∣∣ fn(x)− fm(x)
∣∣d x ≤

∫ 1
2+ 1

m

1
2

2d x = 2

m
,

where we have used the fact that 0 ≤ fn(x) ≤ 1 for any x ∈ [0,1] and any
n ∈N. We conclude that ∥∥ fn − fm

∥∥
1 < ε

when n,m > 2
ε

, which shows that
{

fn
}

n∈N is a Cauchy sequence in ‖·‖1.
We now need to show that fn doesn’t converge to any function in C [0,1].
We can immediately see that fn converges pointwise to a function f̃ such
that

f̃ (x) = 0, x ∈
[

0,
1

2

]
and f̃ (x) = 1 x ∈

(
1

2
,1

]
.

Looking at the left and right limits at x = 1
2 we conclude that f̃ is not con-

tinuous. Intuitively speaking, we expect that if fn converges to anything
in ‖·‖1, then it should be the above function1. We will proceed by assum-
ing that

{
fn

}
n∈N converges to a function f ∈C [0,1] and prove that f can’t

be continuous, showing the desired contradiction.
Assume that

{
fn

}
n∈N converges to f ∈C [0,1]. Then, since∫ 1

2

0

∣∣ f (x)
∣∣d x =

∫ 1
2

0

∣∣ f (x)− fn(x)
∣∣d x ≤

∫ 1

0

∣∣ f (x)− fn(x)
∣∣d x = ∥∥ f − fn

∥∥
1

for all n ∈N, we see that by taking n to infinity we find that

0 ≤
∫ 1

2

0

∣∣ f (x)
∣∣d x ≤ lim

n→∞
∥∥ f − fn

∥∥
1 = 0.

1This, in fact, is true in any of the Lp norms. A known theorem in Measure Theory
states that if

{
fn

}
n∈N converges to f in ‖·‖p then it has a subsequence,

{
fnk

}
k∈N, that

converges pointwise almost everywhere to f .
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This implies that
∫ 1

2
0

∣∣ f (x)
∣∣d x = 0 and since f is continuous we conclude

that f (x) = 0 on
[
0, 1

2

]
. Similarly, for any δ> 0 we have that if n > 1

δ then2∫ 1

1
2+δ

∣∣ f (x)−1
∣∣d x =

∫ 1

1
2+δ

∣∣ f (x)− fn(x)
∣∣d x ≤ ∥∥ f − fn

∥∥
1 ,

from which we conclude that f (x) = 1 on
[1

2 +δ,1
]

for any δ> 0. Thus, as
δwas arbitrary, f (x) = 1 on

(1
2 ,1

]
. Noticing that

lim
x→ 1

2
− f (x) = 0 6= 1 = lim

x→ 1
2
+ f (x)

we conclude that f can’t be continuous - contradicting the convergence
in C [0,1]. We conclude that

{
fn

}
n∈N has no limit and as such (C [0,1] ,‖·‖1)

is not complete.
In almost the exact same way we could have shown that

(
C [0,1] ,‖·‖p

)
,

where ‖·‖p is the norm defined on Lp [0,1], is not complete for any 1 <
p <∞.

2As n > 1
δ we have that 1

2 + 1
n < 1

2 +δ.


