Problem Class 2

Exercise 1. Show that $\mathscr{B} = \{1, x, ...\}$ is not a Schauder basis for C[a, b].

Exercise 2. Show that if \mathcal{H} is an inner product space that has an uncountable orthonormal set then it can't be separable.

Exercise 3. Consider the Schauder basis $\mathcal{B} = \{e_n\}_{n \in \mathbb{N}}$ for $\ell_p(\mathbb{N}), p \in [1, \infty)$, defined by

$$(\boldsymbol{e}_n)_k = \begin{cases} 1 & k=n\\ 0 & k\neq n \end{cases}.$$

Define the vectors

$$\boldsymbol{x}_n = \begin{cases} \boldsymbol{e}_1 & n=1\\ \boldsymbol{e}_n - \boldsymbol{e}_{n-1} & n \ge 2 \end{cases}.$$

Show that $\widetilde{\mathscr{B}} = \{ \boldsymbol{x}_n \}_{n \in \mathbb{N}}$ is a Schauder basis for $\ell_1 (\mathbb{N})$.