Problem Class 2 Solution

Solution to Question 1. Assume by contradiction that \mathscr{B} is a Schauder basis. Then for any $f \in C[a, b]$ there exists a sequence of scalars $\left\{\alpha_{n}(f)\right\}_{n \in \mathbb{N}}$ such that the sequence of functions

$$
S_{N}(x)=\sum_{n=0}^{N} \alpha_{n}(f) x^{n}
$$

converges to f in the norm $\|\cdot\|_{\infty}$, i.e. uniformly. This, however, implies $f(x)=\sum_{n \in \mathbb{N}} \alpha_{n}(f) x^{n}$, which means that f has a power series and thus is analytic on (a, b). Since not every continuous function is analytic, we have reached the desired contradiction.

Solution to Question 2. Let $\mathscr{B}=\left\{e_{\alpha}\right\}_{\alpha \in \mathscr{I}}$ be an uncountable orthonormal set. Then, for any $\alpha \neq \beta$ we have that

$$
\left\|e_{\alpha}-e_{\beta}\right\|=\sqrt{\left\|e_{\alpha}\right\|^{2}-2 \operatorname{Re}\left\langle e_{\alpha}, e_{\beta}\right\rangle+\left\|e_{\beta}\right\|^{2}}=\sqrt{2}
$$

According to a theorem in class, since we found an uncountable set of elements such that $d\left(e_{\alpha}, e_{\beta}\right)>\eta>0$ for $\eta=\sqrt{2}$ the space can't be separable.

Solution to Question 3. It is relatively straightforward to show that $\widetilde{\mathscr{B}}$ is independent. Indeed, it is enough to show that $\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right\}$ are independent for any $k \in \mathbb{N}$. Assume that

$$
\sum_{j=1}^{k} \alpha_{j} x_{j}=0 .
$$

Then, by definition,

$$
0=\alpha_{1} \boldsymbol{e}_{1}+\sum_{j=2}^{k} \alpha_{j}\left(\boldsymbol{e}_{j}-\boldsymbol{e}_{j-1}\right)=\sum_{j=1}^{k-1}\left(\alpha_{j}-\alpha_{j+1}\right) \boldsymbol{e}_{j}+\alpha_{k} \boldsymbol{e}_{k} .
$$

Since $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{k}\right\}$ are independent we have that $\alpha_{k}=0$ and $\alpha_{j}=\alpha_{j+1}$ for any $j=1, \ldots, k-1$. This implies that $\alpha_{j}=0$ for any $j=1, \ldots, k$ which concludes the independence.
Next we notice that

$$
\sum_{j=1}^{n} \boldsymbol{x}_{j}=\boldsymbol{e}_{1}+\sum_{j=2}^{n}\left(\boldsymbol{e}_{j}-\boldsymbol{e}_{j-1}\right)=\boldsymbol{e}_{n} .
$$

To show the expansion of any element $\boldsymbol{a} \in \ell_{1}(\mathbb{N})$ with respect to $\widetilde{\mathscr{B}}$ we remind ourselves that for any given $\boldsymbol{a} \in \ell_{1}(\mathbb{N})$ we have that $S_{N}=\sum_{n=1}^{N} a_{n} \boldsymbol{e}_{n}$
converges to it in norm. Since

$$
S_{N}=\sum_{n=1}^{N} a_{n}\left(\sum_{j=1}^{n} \boldsymbol{x}_{j}\right)=\sum_{j=1}^{N}\left(\sum_{n=j}^{N} a_{n}\right) \boldsymbol{x}_{j}
$$

we would guess an expansion of the form

$$
\mathcal{S}_{N}=\sum_{j=1}^{N}\left(\sum_{n=j}^{\infty} a_{n}\right) \boldsymbol{x}_{j}
$$

The above is indeed well defined since $\|a\|_{1}=\sum_{n \in \mathbb{N}}\left|a_{n}\right|<\infty$. We find that

$$
\begin{gathered}
\mathcal{S}_{N}=\sum_{j=1}^{N}\left(\sum_{n=j}^{N} a_{n}+\sum_{n=N+1}^{\infty} a_{n}\right) \boldsymbol{x}_{j}=\sum_{j=1}^{N}\left(\sum_{n=j}^{N} a_{n}\right) \boldsymbol{x}_{j}+\sum_{j=1}^{N}\left(\sum_{n=N+1}^{\infty} a_{n}\right) \boldsymbol{x}_{j} \\
=S_{N}+\left(\sum_{n=N+1}^{\infty} a_{n}\right)\left(\sum_{j=1}^{N} \boldsymbol{x}_{j}\right)=S_{N}+\left(\sum_{n=N+1}^{\infty} a_{n}\right) \boldsymbol{e}_{N}
\end{gathered}
$$

and consequently,

$$
\left\|\mathcal{S}_{N}-\boldsymbol{a}\right\|_{1} \leq\left\|S_{N}-\boldsymbol{a}\right\|_{1}+\left|\sum_{n=N+1}^{\infty} a_{n}\right| \underbrace{\left\|\boldsymbol{e}_{N}\right\|}_{=1} \underset{N \rightarrow \infty}{\longrightarrow} 0 .
$$

To conclude the exercise we need to show that the coefficients in the expansion with respect to $\widetilde{\mathscr{B}}$ are unique. Indeed, if $\widehat{S}_{N}=\sum_{n=1}^{N} \alpha_{n} \boldsymbol{x}_{n}$ converges to \boldsymbol{a} then since

$$
\widehat{S}_{N}=\alpha_{1} \boldsymbol{e}_{1}+\sum_{n=2}^{N} \alpha_{n}\left(\boldsymbol{e}_{n}-\boldsymbol{e}_{n-1}\right)=\sum_{n=1}^{N-1}\left(\alpha_{n}-\alpha_{n+1}\right) \boldsymbol{e}_{n}+\alpha_{N} \boldsymbol{e}_{N}
$$

and since for a given $j \in \mathbb{N}$ we know (from the home assignment) that

$$
\left|a_{j}-\left(\widehat{S}_{N}\right)_{j}\right| \leq\left\|\boldsymbol{a}-\widehat{S}_{N}\right\| .
$$

we find that for any $j \leq N-1$

$$
\begin{equation*}
\left|a_{j}-\left(\alpha_{j}-\alpha_{j+1}\right)\right| \leq\left\|\boldsymbol{a}-\widehat{S}_{N}\right\| \tag{1}
\end{equation*}
$$

and for $j=N$ we get that

$$
\begin{equation*}
\left|a_{N}-\alpha_{N}\right| \leq\left\|\boldsymbol{a}-\widehat{S}_{N}\right\| \tag{2}
\end{equation*}
$$

(1) implies that for any fixed j we have that

$$
0 \leq\left|a_{j}-\left(\alpha_{j}-\alpha_{j+1}\right)\right| \leq \liminf _{N \rightarrow \infty}\left\|\boldsymbol{a}-\widehat{S}_{N}\right\|=0
$$

i.e.

$$
a_{j}=\alpha_{j}-\alpha_{j+1}
$$

With this at hand we see that for any fixed $k \in \mathbb{N}$ and $N \geq k$

$$
\sum_{j=k}^{N} a_{j}=\sum_{j=k}^{N}\left(\alpha_{j}-\alpha_{j+1}\right)=\alpha_{k}-\alpha_{N+1}
$$

If we'll show that $\lim _{N \rightarrow \infty} \alpha_{N}=0$ we will conclude that, since $\boldsymbol{a} \in \ell_{1}(\mathbb{N})$,

$$
\alpha_{k}=\sum_{j=k}^{\infty} a_{j}
$$

which will show the desired uniqueness of the coefficients. Indeed, according to (2) we have that

$$
0 \leq\left|a_{N}-\alpha_{N}\right| \leq\left\|\boldsymbol{a}-\widehat{S}_{N}\right\|
$$

which implies that $\lim _{N \rightarrow \infty}\left(a_{N}-\alpha_{N}\right)=0$. Since $\boldsymbol{a} \in \ell_{1}(\mathbb{N})$ we know that $\lim _{N \rightarrow \infty} a_{N}=0$ from which we can now conclude that $\lim _{N \rightarrow \infty} \alpha_{N}=0$ as well. The proof is thus complete.

