Problem Class 2 Solution

Solution to Question 1. Assume by contradiction that \mathscr{B} is a Schauder basis. Then for any $f \in C[a, b]$ there exists a sequence of scalars $\{\alpha_n(f)\}_{n \in \mathbb{N}}$ such that the sequence of functions

$$S_N(x) = \sum_{n=0}^N \alpha_n(f) x^n$$

converges to *f* in the norm $\|\cdot\|_{\infty}$, i.e. uniformly. This, however, implies $f(x) = \sum_{n \in \mathbb{N}} \alpha_n(f) x^n$, which means that *f* has a *power series* and thus is analytic on (a, b). Since not every continuous function is analytic, we have reached the desired contradiction.

Solution to Question 2. Let $\mathscr{B} = \{e_{\alpha}\}_{\alpha \in \mathcal{G}}$ be an uncountable orthonormal set. Then, for any $\alpha \neq \beta$ we have that

$$\left\|e_{\alpha}-e_{\beta}\right\|=\sqrt{\left\|e_{\alpha}\right\|^{2}-2\operatorname{Re}\left\langle e_{\alpha},e_{\beta}\right\rangle +\left\|e_{\beta}\right\|^{2}}=\sqrt{2}.$$

According to a theorem in class, since we found an uncountable set of elements such that $d(e_{\alpha}, e_{\beta}) > \eta > 0$ for $\eta = \sqrt{2}$ the space can't be separable.

Solution to Question 3. It is relatively straightforward to show that $\widehat{\mathscr{B}}$ is independent. Indeed, it is enough to show that $\{x_1, \ldots, x_k\}$ are independent for any $k \in \mathbb{N}$. Assume that

$$\sum_{j=1}^k \alpha_j \boldsymbol{x}_j = 0$$

Then, by definition,

$$0 = \alpha_1 \boldsymbol{e}_1 + \sum_{j=2}^k \alpha_j \left(\boldsymbol{e}_j - \boldsymbol{e}_{j-1} \right) = \sum_{j=1}^{k-1} \left(\alpha_j - \alpha_{j+1} \right) \boldsymbol{e}_j + \alpha_k \boldsymbol{e}_k.$$

Since $\{e_1, ..., e_k\}$ are independent we have that $\alpha_k = 0$ and $\alpha_j = \alpha_{j+1}$ for any j = 1, ..., k - 1. This implies that $\alpha_j = 0$ for any j = 1, ..., k which concludes the independence.

Next we notice that

$$\sum_{j=1}^{n} x_{j} = e_{1} + \sum_{j=2}^{n} (e_{j} - e_{j-1}) = e_{n}$$

To show the expansion of any element $\boldsymbol{a} \in \ell_1$ (\mathbb{N}) with respect to $\widetilde{\mathscr{B}}$ we remind ourselves that for any given $\boldsymbol{a} \in \ell_1$ (\mathbb{N}) we have that $S_N = \sum_{n=1}^N a_n \boldsymbol{e}_n$

converges to it in norm. Since

$$S_N = \sum_{n=1}^N a_n \left(\sum_{j=1}^n \mathbf{x}_j \right) = \sum_{j=1}^N \left(\sum_{n=j}^N a_n \right) \mathbf{x}_j$$

we would guess an expansion of the form

$$S_N = \sum_{j=1}^N \left(\sum_{n=j}^\infty a_n \right) \mathbf{x}_j.$$

The above is indeed well defined since $||a||_1 = \sum_{n \in \mathbb{N}} |a_n| < \infty$. We find that

$$\mathcal{S}_N = \sum_{j=1}^N \left(\sum_{n=j}^N a_n + \sum_{n=N+1}^\infty a_n \right) \mathbf{x}_j = \sum_{j=1}^N \left(\sum_{n=j}^N a_n \right) \mathbf{x}_j + \sum_{j=1}^N \left(\sum_{n=N+1}^\infty a_n \right) \mathbf{x}_j$$
$$= S_N + \left(\sum_{n=N+1}^\infty a_n \right) \left(\sum_{j=1}^N \mathbf{x}_j \right) = S_N + \left(\sum_{n=N+1}^\infty a_n \right) \mathbf{e}_N.$$

and consequently,

$$\|\mathcal{S}_N - \boldsymbol{a}\|_1 \le \|S_N - \boldsymbol{a}\|_1 + \left|\sum_{n=N+1}^{\infty} a_n\right| \underbrace{\|\boldsymbol{e}_N\|}_{=1} \xrightarrow[N \to \infty]{} 0.$$

To conclude the exercise we need to show that the coefficients in the expansion with respect to $\widetilde{\mathscr{B}}$ are unique. Indeed, if $\widehat{S}_N = \sum_{n=1}^N \alpha_n \mathbf{x}_n$ converges to \mathbf{a} then since

$$\widehat{S}_N = \alpha_1 \boldsymbol{e}_1 + \sum_{n=2}^N \alpha_n \left(\boldsymbol{e}_n - \boldsymbol{e}_{n-1} \right) = \sum_{n=1}^{N-1} \left(\alpha_n - \alpha_{n+1} \right) \boldsymbol{e}_n + \alpha_N \boldsymbol{e}_N$$

and since for a given $j \in \mathbb{N}$ we know (from the home assignment) that

$$\left|a_{j}-(\widehat{S}_{N})_{j}\right|\leq \left\|\boldsymbol{a}-\widehat{S}_{N}\right\|.$$

we find that for any $j \le N - 1$

(1)
$$|a_j - (\alpha_j - \alpha_{j+1})| \le ||a - \widehat{S}_N|$$

and for j = N we get that

$$|a_N - \alpha_N| \le \left\| \boldsymbol{a} - \widehat{S}_N \right\|$$

(1) implies that for any fixed j we have that

$$0 \le |a_j - (\alpha_j - \alpha_{j+1})| \le \liminf_{N \to \infty} ||\boldsymbol{a} - \widehat{S}_N|| = 0$$

i.e.

$$a_j = \alpha_j - \alpha_{j+1}.$$

With this at hand we see that for any fixed $k \in \mathbb{N}$ and $N \ge k$

$$\sum_{j=k}^N a_j = \sum_{j=k}^N (\alpha_j - \alpha_{j+1}) = \alpha_k - \alpha_{N+1}.$$

If we'll show that $\lim_{N\to\infty} \alpha_N = 0$ we will conclude that, since $a \in \ell_1(\mathbb{N})$,

$$\alpha_k = \sum_{j=k}^{\infty} a_j,$$

which will show the desired uniqueness of the coefficients. Indeed, according to (2) we have that

$$0 \le |a_N - \alpha_N| \le \left\| \boldsymbol{a} - \widehat{S}_N \right\|$$

which implies that $\lim_{N\to\infty} (a_N - \alpha_N) = 0$. Since $\mathbf{a} \in \ell_1(\mathbb{N})$ we know that $\lim_{N\to\infty} a_N = 0$ from which we can now conclude that $\lim_{N\to\infty} \alpha_N = 0$ as well. The proof is thus complete.