Problem Class 3

Exercise 1. Consider the space $\ell_{p}(\mathbb{N})$ for some $1 \leq p<\infty$. Show that $\ell_{p}(\mathbb{N}) \subset_{\neq} \ell_{\infty}(\mathbb{N})$ and conclude that the norm of $\ell_{\infty}(\mathbb{N}),\|\cdot\|_{\infty}$, is a norm on $\ell_{p}(\mathbb{N})$. Show that this norm is not equivalent to the standard norm $\|\cdot\|_{p}$.

Exercise 2. The goal of this exercise is to prove the following theorem by F. Riesz: Let \mathscr{X} be a normed space and let \mathscr{M} be a closed subspace of \mathscr{X}. If $\mathscr{M} \neq \mathscr{X}$ then for any $\varepsilon \in(0,1)$ there exists $x \in \mathscr{X}$ of norm 1 such that

$$
\inf _{y \in \mathscr{M}}\|x-y\| \geq 1-\varepsilon
$$

If \mathscr{M} is finite dimensional the above can be improved to

$$
\inf _{y \in, \mathcal{M}}\|x-y\| \geq 1
$$

(i) For any $z \notin \mathscr{M}$ show that $d_{z}=\inf _{y \in \mathscr{M}}\|z-y\|>0$.
(ii) Choosing an arbitrary such $z \notin \mathscr{M}$ find $y_{\varepsilon} \in \mathscr{M}$ such that $\left\|z-y_{\varepsilon}\right\| \leq$ $(1+\varepsilon) d_{z}$ and show that $x=\frac{z-y_{\varepsilon}}{\left\|z-y_{\varepsilon}\right\|}$ satisfies

$$
\inf _{y \in \mathscr{M}}\|x-y\| \geq 1-\varepsilon
$$

(iii) If \mathscr{M} is finite dimensional show that you can find $y_{*} \in \mathscr{M}$ such that $\left\|z-y_{*}\right\|=d_{z}$ and conclude the improved result.
Exercise 3. Using F. Riesz's theorem show the following: Let \mathscr{X} be an infinite dimensional Banach space. Then there exists sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ of norm 1 such that for all $n \neq m \in \mathbb{N}$

$$
\left\|x_{n}-x_{m}\right\| \geq 1
$$

Consequently $\bar{B}_{M}(0)$ is not compact for any $M>0$.
Exercise 4. Consider the integration operator $T:\left(C[a, b],\|\cdot\|_{\infty}\right) \rightarrow\left(C[a, b],\|\cdot\|_{\infty}\right)$ defined by

$$
T f(x)=\int_{a}^{x} f(t) d t
$$

Show that T is bounded.

