Problem Class 3

Exercise 1. Consider the space $\ell_p(\mathbb{N})$ for some $1 \le p < \infty$. Show that $\ell_p(\mathbb{N}) \subset_{\neq} \ell_{\infty}(\mathbb{N})$ and conclude that the norm of $\ell_{\infty}(\mathbb{N})$, $\|\cdot\|_{\infty}$, is a norm on $\ell_p(\mathbb{N})$. Show that this norm is not equivalent to the standard norm $\|\cdot\|_p$.

Exercise 2. The goal of this exercise is to prove the following theorem by F. Riesz: Let \mathcal{X} be a normed space and let \mathcal{M} be a closed subspace of \mathcal{X} . If $\mathcal{M} \neq \mathcal{X}$ then for any $\varepsilon \in (0, 1)$ there exists $x \in \mathcal{X}$ of norm 1 such that

$$\inf_{y\in\mathscr{M}}\|x-y\|\geq 1-\varepsilon.$$

If \mathcal{M} is finite dimensional the above can be improved to

$$\inf_{y\in\mathcal{M}}\left\|x-y\right\|\geq 1$$

- (i) For any $z \notin \mathcal{M}$ show that $d_z = \inf_{y \in \mathcal{M}} ||z y|| > 0$.
- (ii) Choosing an arbitrary such $z \notin \mathcal{M}$ find $y_{\varepsilon} \in \mathcal{M}$ such that $||z y_{\varepsilon}|| \le (1 + \varepsilon) d_z$ and show that $x = \frac{z y_{\varepsilon}}{||z y_{\varepsilon}||}$ satisfies

$$\inf_{y \in \mathcal{M}} \|x - y\| \ge 1 - \varepsilon.$$

(iii) If \mathcal{M} is finite dimensional show that you can find $y_* \in \mathcal{M}$ such that $||z - y_*|| = d_z$ and conclude the improved result.

Exercise 3. Using F. Riesz's theorem show the following: Let \mathscr{X} be an infinite dimensional Banach space. Then there exists sequence $\{x_n\}_{n \in \mathbb{N}}$ of norm 1 such that for all $n \neq m \in \mathbb{N}$

$$\|x_n - x_m\| \ge 1.$$

Consequently $\overline{B}_M(0)$ is not compact for any M > 0.

Exercise 4. Consider the integration operator $T : (C[a, b], \|\cdot\|_{\infty}) \to (C[a, b], \|\cdot\|_{\infty})$ defined by

$$Tf(x) = \int_{a}^{x} f(t)dt.$$

Show that *T* is bounded.