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Problem Class 3 Solution
Solution to Question 1. We start by noticing that if a ∈ `p (N) for some 1 ≤
p <∞ then limn→∞ an = 0, and as such the sequence {an}n∈N is bounded,
i.e. belongs to `∞ (N). Since the addition and scalar multiplication that is
defined in all of `p (N)−s, 1 ≤ p ≤∞, is identical we conclude that `p (N)
is a subspace of `∞ (N) and as such we can consider the induced/re-
stricted norm ‖·‖∞ on it.
Next, we notice that for any n ∈N

|an | ≤
( ∑

k∈N
|ak |p

) 1
p

= ‖a‖p .

Taking the supremum over n ∈N gives us

‖a‖∞ ≤ ‖a‖p .

The converse, however, doesn’t hold. Indeed, consider the vectors

an =
n∑

i=1
ei =

1,1, . . . , 1︸︷︷︸
n−th position

,0, . . .

 .

we see that

‖an‖∞ = 1

‖an‖p = n
1
p ,

which shows that there can’t be a constant c > 0 such that

‖a‖ ≤ c ‖a‖∞
for all a ∈ `p (N) since that would have implied that

n
1
p = ‖an‖p ≤ c ‖an‖∞ = c

for all n ∈N, which is impossible. Consequently the norm ‖·‖p and ‖·‖∞
are not equivalent on `p (N).

Solution to Question 2. (i) By definition, dz ≥ 0. If dz = 0 then, by defi-
nition, we can find a sequence

{
yn

}
n∈N ∈M such that∥∥z − yn

∥∥≤ inf
y∈M

∥∥z − y
∥∥+ 1

n
= 1

n
−→

n→∞ 0.

This implies that z is a limit of a sequence of elements from M, i.e.
z is in M =M, which is a contradiction.

https://www.durham.ac.uk/study/modules/undergraduate/math4371.php
https://www.durham.ac.uk/departments/academic/mathematical-sciences/
https://www.dur.ac.uk/dates/


2

(ii) From the definition of the infimum we see that for any ε> 0 we can
find a vector yε ∈M such that

dz ≤
∥∥z − yε

∥∥≤ (1+ε)dz .

The vector xε = z−yε
‖z−yε‖ is of norm 1 and for any y ∈M∥∥x − y

∥∥= 1∥∥z − yε
∥∥ ·∥∥z − yε−

∥∥z − yε
∥∥ y

∥∥
≥

yε+‖z−yε‖y∈M
dz∥∥z − yε

∥∥ ≥ 1

1+ε .

Since y ∈ M was arbitrary, this concludes the proof as for any ε ∈
(0,1), 1

1+ε > 1−ε.
(iii) By the definition of the infimum, we can find a sequence

{
yn

}
n∈N ∈

M such that ∥∥z − yn
∥∥ −→

n→∞ dz .

Since ∥∥yn
∥∥≤ ∥∥z − yn

∥∥+‖z‖ ≤ sup
n∈N

∥∥z − yn
∥∥︸ ︷︷ ︸

bounded

+‖z‖

we conclude that
{

yn
}

n∈N is a bounded sequence in finite dimen-
sional spaces. As al the norms of finite dimensional spaces are equiv-
alent we see that by choosing the norm

‖x‖2 =
√

n∑
i=1

|αi (x)|2

where x = ∑n
i=1αi (x)ei for some basis {e1, . . . ,en} we find an iden-

tification (isomorphism) of (M,‖·‖2) with (Fn ,‖·‖2), where F is the
field above which M acts. As bounded sequences in Fn must have a
converging subsequences, the same holds for bounded sequences
in (M,‖·‖2) and consequently in any norm on M. Thus, we can
find a subsequence of

{
yn

}
n∈N,

{
ynk

}
k∈N, that converges to some el-

ement y∗. Since M is finite dimensional it is closed and we find that
y∗ ∈M. Consequently

dz = lim
k→∞

∥∥z − ynk

∥∥= ∥∥z − y∗
∥∥ .

Much like in the proof of the previous part we define x = z−y∗
‖z−y∗‖ and

find that for any y ∈M∥∥x − y
∥∥= 1∥∥z − y∗

∥∥ ·∥∥z − y∗−
∥∥z − y∗

∥∥ y
∥∥≥ d∥∥z − y∗

∥∥ = 1.

As y was arbitrary we conclude the result.
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Solution to Question 3. Let x1 be an arbitrary vector in X with norm 1
and denote by M1 = span{x1}. According to F. Riesz’s theorem we can
find x2 of norm 1 such that

inf
y∈M1

∥∥x2 − y
∥∥≥ 1.

We denote by M2 = span{x1, x2} and continue by induction. Assume that
we found x1, . . . , xn of norm 1 such that

inf
y∈Mk

∥∥xk+1 − y
∥∥≥ 1

for all 0 ≤ k ≤ n−1, where Mk = span{x1, . . . , xk } when k ≥ 1 and M0 = {0}.
Using F. Riesz’s theorem again we can find xn+1 of norm 1 such that

inf
y∈Mn

∥∥xn+1 − y
∥∥≥ 1.

and we define Mn+1 = span{x1, . . . , xn+1}.
If Mn =X for some n then X is finite dimensional which is impossible.
Hence, we have constructed a sequence of vectors of norm 1, {xn}n∈N,
and a sequence of finite dimensional spaces, {Mn}n∈N such that

inf
y∈Mn

∥∥xn+1 − y
∥∥≥ 1, and Mn ⊂

6=
Mn+1.

For any n 6= m ∈N we see that

‖xn −xm‖ ≥ inf
y∈Mmin{n,m}

∥∥xmax{n,m} − y
∥∥≥ inf

y∈Mmax{n,m}−1

∥∥xmax{n,m} − y
∥∥≥ 1,

Proving the first statement of the exercise.

Defining the sequence
{

x(M)
n

}
n∈N for an M > 0 by x(M)

n = M xn gives us a

sequence of vectors of norm M with the property∥∥x(M)
n −x(M)

m

∥∥≥ M .

The above implies that the sequence has no subsequence that is Cauchy,
which in turn shows that the sequence can have no converging subse-
quence. Thus, B M (0) can’t be compact for any M > 0 and the exercise is
now complete.

Solution to Question 4. It is worth to mention that since f ∈C [a,b], the
Fundamental Theorem of Calculus assures us that T f ∈C [a,b] (and more
than that - T f is differentiable on (a,b)). The linearity of T is an imme-
diate consequence of the linearity of the integral so we won’t show it here
(though you do need to show it when asked such questions).
To show the boundedness we notice that for any f ∈ C [a,b] and any
x ∈ [a,b] ∣∣T f (x)

∣∣≤ ∫ x

a

∣∣ f (t )
∣∣d t ≤ ∥∥ f

∥∥∞ (x −a)
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Thus ∥∥T f
∥∥∞ ≤ sup

x∈[a,b]

∥∥ f
∥∥∞ (x −a) = (b −a)

∥∥ f
∥∥∞ .

Thus, ‖T ‖ ≤ (b −a) which shows the desired boundedness.


