Problem Class 4

Exercise 1. Prove the following statement: Let \mathscr{X} be a Banach space with Schauder basis $\mathscr{B} = \{e_n\}_{n \in \mathbb{N}}$ and denote by

$$\mathscr{X}_n = \overline{\operatorname{span} \{e_k\}_{k \in \mathbb{N}, \ k \neq n}}.$$

If for every $n \in \mathbb{N}$ we have that $e_n \notin \mathcal{X}_n$ then there exists a unique sequence $\{f^{(n)}\}_{n \in \mathbb{N}} \subset \mathcal{X}^*$ such that $f^{(n)}(e_j) = \delta_{n,j}$. Moreover, denoting by

$$d_n = \inf_{y \in \mathcal{X}_n} \left\| e_n - y \right\|$$

we have that $d_n > 0$ for every $n \in \mathbb{N}$ and $||f^{(n)}|| = \frac{1}{d_n}$.

Exercise 2. Let \mathscr{X} and \mathscr{Y} be normed spaces. A linear operator T is called *compact* if for any bounded sequence $\{x_n\}_{n\in\mathbb{N}} \in \mathscr{X}$ there exists a subsequence $\{x_{n_k}\}_{k\in\mathbb{N}} \in \mathscr{X}$ such that the sequence $\{Tx_{n_k}\}_{k\in\mathbb{N}} \in \mathscr{Y}$ converges. Show that if T is compact then for any bounded set $M \subseteq X$ we have that $\overline{T(M)}$ is compact in \mathscr{Y} and conclude that if T is compact then it is bounded.

Hint: You may use the following known fact from the theory of metric spaces: A set A in a metric space satisfies that \overline{A} is compact¹ if and only if any sequence of elements in A has a subsequence that converges in the space.

Exercise 3. Show that there exists a functional in $\ell_{\infty}(\mathbb{N})^*$ that is not of the form f_b for some $b \in \ell_1(\mathbb{N})$.

Hint: Using the fact that

$$f_{\sum_{n=1}^{N} \alpha_n \boldsymbol{e}_n} = \sum_{n=1}^{N} \overline{\alpha_n} f_{\boldsymbol{e}_n}$$

conclude that if every $\ell_{\infty}(\mathbb{N})^*$ is of the form $f_{\boldsymbol{b}}$ for some $\boldsymbol{b} \in \ell_1(\mathbb{N})$ then $\ell_{\infty}(\mathbb{N})^*$ is separable.

Exercise 4. Let \mathcal{H} be a Hilbert space. Show that the following conditions are equivalent:

(i)
$$x_n \xrightarrow[n \to \infty]{} x$$
.
(ii) $x_n \xrightarrow[n \to \infty]{} x$ and $||x_n|| \xrightarrow[n \to \infty]{} ||x||$.

¹In this case we say that *A* is *pre-compact*.