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Problem Class 4 Solution
Solution to Question 1. Since {en}n∈N is a Schauder basis, every x ∈ X

can be written uniquely as

x = ∑
n∈N

αn(x)en

for some sequence of scalars {αn(x)}n∈N. We define

f (n)(x) =αn(x),

and find that f (n) is linear due to the uniqueness of the expansion of the
vector x with respect to the basis (try to show this!). We thus turn our
attention to the positivity of dn and the boundedness of f (n).
The fact that dn > 0 follows directly from the assumption that en 6∈ Xn .
Indeed, if the infimum is zero we can find a sequence {xk }k∈N ⊂Xn such
that

‖en −xk‖ ≤ inf
y∈Xn

∥∥en − y
∥∥+ 1

k
= 1

k
−→

k→∞
0.

This implies that en is a limit of a sequence of elements from Xn , i.e. en

is in Xn =Xn , which is a contradiction.
Next we focus on the boundedness of f (n). We start by noticing that

‖x‖ =
∥∥∥∥∥ ∑

k∈N
αk (x)en

∥∥∥∥∥=
∥∥∥∥∥αn(x)en + ∑

k 6=n
αk (x)ek

∥∥∥∥∥ .

Remembering that f (n)(x) = αn(x) and noticing that
∑

k 6=nαk (x)ek be-
longs to Xn

1, we find that:
If αn(x) 6= 0 then

‖x‖ = |αn(x)|
∥∥∥∥en +

∑
k 6=nαk (x)ek

αn(x)

∥∥∥∥= ∣∣ f (n)(x)
∣∣
∥∥∥∥∥∥∥∥∥en −

(
−

∑
k 6=nαk (x)ek

αn(x)

)
︸ ︷︷ ︸

∈Xn

∥∥∥∥∥∥∥∥∥≥ ∣∣ f (n)(x)
∣∣dn .

Consequently, if αn(x) 6= 0 we find that
∣∣ f (n)(x)

∣∣≤ ‖x‖
dn

.

If αn(x) = 0, on the other hand, then f (n)(x) = 0 and the above remains
true. We conclude that for all x ∈X∣∣ f (n)(x)

∣∣≤ ‖x‖
dn

,

1Since
∑

k 6=nαk (x)ek converges to x −αn(x)en and
∑N

k 6=n,k=1αk (x)ek ∈Xn .
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which shows that f (n) ∈X∗ and
∥∥ f (n)

∥∥≤ 1
dn

.

To show that this is indeed the norm of f (n) we find for any ε > 0 an ele-
ment yε in Xn such that

dn ≤ ∥∥en − yε
∥∥≤ (1+ε)dn

and notice that∣∣ f (n)(en − yε)
∣∣= ∣∣ f (n)(en)

∣∣= 1 =
∥∥en − yε

∥∥∥∥en − yε
∥∥ ≥

∥∥en − yε
∥∥

(1+ε)dn
,

and as such ∥∥ f (n)
∥∥= sup

x 6=0

∣∣ f (n)(x)
∣∣

‖x‖ ≥ 1

(1+ε)dn
.

As ε is arbitrary we conclude that
∥∥ f (n)

∥∥≥ 1
dn

and together with the upper

bound on this norm we find that
∥∥ f (n)

∥∥= 1
dn

.

Lastly, the uniqueness of the sequences
{

f (n)
}

n∈N ⊂X∗ follows from the
fact that if g (n) ⊂X∗ satisfies g (n) (ek ) = δn,k then due to its continuity

g (n)(x) = g (n)

( ∑
k∈N

αk (x)ek

)
= g (n)

(
lim

N→∞

N∑
k=1

αk (x)ek

)

= lim
N→∞

N∑
k=1

αk (x)g (n) (ek ) =αk (x) = f (n)(x).

As the above holds for any x ∈X we have that g (n) = f (n). The proof is
now complete.

Solution to Question 2. Using the given hint we see that in order to show
our desired result, we only need to show that any sequence

{
yn

}
n∈N ∈

T (M) has a converging subsequence inY. Indeed, given
{

yn
}

n∈N ∈ T (M)
we can find {xn}n∈N ∈ M such that yn = T xn . As M is bounded and T
is compact, we can find a subsequence of {xn}n∈N,

{
xnk

}
k∈N, for which

ynk = T xnk converges.
To show the continuity of T we notice that M = {x ∈X | ‖x‖ = 1} is a
bounded set. Since T (M) ⊆ T (M) and T (M) is compact we find that as
compact sets in metric spaces are always bounded we must have that for
any vector x ∈ M

‖T x‖ ≤C

for some C > 0. This implies that ‖T ‖ ≤ C and as such the operator is
bounded.

Solution to Question 3. We have seen in class that if f ∈ `∞ (N)∗ is of the
form f = fb for some b ∈ `1 (N) then

(1)
∥∥ fb

∥∥≤ ‖b‖1 .
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Let B = {en}n∈N be the standard Scahuder basis of `1 (N) and denote by
M = {

fen

}
n∈N. We claim that

f∑N
n=1αn en

=
N∑

n=1
αn fen

for any scalars α1, . . . ,αN . Indeed, given any a ∈ `∞ (N) we see that

f∑N
n=1αn en

(a) =
∑
j∈N

a j

(
N∑

n=1
αnen

)
j

= ∑
j∈N

a j

N∑
n=1

αnδn, j

=
N∑

j=1
a jα j =

N∑
n=1

α j fen (a) .

Since a ∈ `∞ (N) was arbitrary we conclude the desired identity.
This, together with (1) shows that for any b ∈ `1 (N) we have that∥∥∥∥∥ fb −

N∑
n=1

bn fen

∥∥∥∥∥=
∥∥∥ fb − f∑N

n=1 bn en

∥∥∥≤
∥∥∥∥∥b −

N∑
n=1

bnen

∥∥∥∥∥
1

−→
n→∞ 0.

Consequently, if
{

fb
}

b∈`1(N) = `∞ (N)∗ we find that spanM is dense in
`∞ (N)∗. Since M is countable we conclude that `∞ (N)∗ is separable.
From class we know that X∗ is separable implies that X is also separable
and as we know that `∞ (N) is not separable we have reached a contra-
diction.

Solution to Question 4. If (i ) holds the by the continuity of norm

‖xn‖ −→
n→∞ ‖x‖ .

Moreover, for any f ∈H∗

0 ≤ ∣∣ f (xn)− f (x)
∣∣= ∣∣ f (xn −x)

∣∣≤ ∥∥ f
∥∥‖xn −x‖ ,

which, using the squeezing lemma, shows that f (xn) −→
n→∞ f (x) for any

f ∈H∗, i.e.

xn
w−→

n→∞ x.

Note that the above proof holds in any normed space and not only in a
Hilbert space.

Assume now that (i i ) holds. We have that

‖xn −x‖2 = ‖xn‖2 −2Re〈xn , x〉+‖x‖2 .

Since the norms converge we find that

‖xn‖2 −→
n→∞ ‖x‖2 .
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Since the sequence converges weakly we have that

2Re〈xn , x〉 −→
n→∞ 2Re〈x, x〉 = 2‖x‖2 .

We conclude that

‖xn −x‖2 = ‖xn‖2 −2Re〈xn , x〉+‖x‖2 −→
n→∞ ‖x‖2 −2‖x‖2 +‖x‖2 = 0,

showing the desired result.


