Functional Analysis and Applications IV-Revision Class

Exercise 1. (a) State the Hahn-Banach theorem.

(b) Let \mathcal{X} be a Banach space over a field \mathbb{F} . For a given $0 \neq x \in \mathcal{X}$ define

$$\widetilde{f}_x$$
: span { x } $\to \mathbb{F}$

by $\tilde{f}_x(\alpha x) = \alpha ||x||$ where $\alpha \in \mathbb{F}$. Show that \tilde{f}_x is a linear functional and that $\|\tilde{f}_x\|_{\operatorname{span}\{x\}^*} = 1$.

- (c) Prove that for any $0 \neq x \in \mathcal{X}$ there exists $f_x \in \mathcal{X}^*$ such that $f_x(x) = ||x||$ and $||f_x||_{\mathcal{X}^*} = 1$.
- *Solution.* (a) Let \mathscr{X} be a normed space and let \mathscr{Y} be a subspace of \mathscr{X} . Assume that g is a bounded linear functional on \mathscr{Y} . Then there exists a bounded linear extension of g, \tilde{g} , to all of \mathscr{X} such that $\|g\|_{\mathscr{Y}^*} = \|\tilde{g}\|_{\mathscr{X}^*}$, where

$$\|g\|_{\mathcal{Y}^*} = \begin{cases} \sup_{y \in \mathcal{Y}, \ y \neq 0} \frac{|g(y)|}{\|y\|} & \mathcal{Y} \neq \{0\} \\ 0 & \mathcal{Y} = \{0\} \end{cases}.$$

(b) Since {*x*} is a basis for span {*x*} we know that each vector in span {*x*} can be written uniquely as αx for some $\alpha \in \mathbb{F}$. Thus, \tilde{f}_x is well defined. Moreover

$$\widetilde{f}_{x}(\alpha_{1}x + \alpha_{2}x) = (\alpha_{1} + \alpha_{2}) \|x\| = \alpha_{1} \|x\| + \alpha_{2} \|x\| = \widetilde{f}_{x}(\alpha_{1}x) + \widetilde{f}_{x}(\alpha_{2}x)$$

and for any $\beta \in \mathbb{F}$

$$\widetilde{f}_{x}(\beta(\alpha x)) = \widetilde{f}_{x}((\beta\alpha)x) = (\beta\alpha) ||x|| = \beta(\alpha ||x||) = \beta \widetilde{f}_{x}(\alpha x)$$

which shows that \tilde{f}_x is indeed a linear functional.

$$\|\widetilde{f}_x\|_{\operatorname{span}\{x\}^*} = \sup_{y \in \operatorname{span}\{x\} \setminus \{0\}} \frac{|\widetilde{f}_x(y)|}{\|y\|} = \sup_{\alpha \in \mathbb{F} \setminus \{0\}} \frac{|\widetilde{f}_x(\alpha x)|}{\|\alpha x\|}$$
$$= \sup_{\alpha \in \mathbb{F} \setminus \{0\}} \frac{|\alpha \|x\||}{|\alpha| \|x\|} = 1.$$

(c) According to the Hahn-Banach theorem, there exists $f_x \in \mathcal{X}^*$ such that $f_x|_{\text{span}\{x\}} = \tilde{f}_x$ and

$$f_x(x) = f_x(x) = ||x||.$$

Moreover, the operator norm of f_x equals that of \tilde{f}_x , which shows the second part of the question.

Exercise 2. Consider the operator $T : \ell_{\infty} \to \ell_p$, with $1 \le p < \infty$, defined by

$$T(\boldsymbol{a}) = \left(a_1, \frac{a_2}{2^{\alpha}}, \dots, \frac{a_n}{n^{\alpha}}, \dots\right).$$

- (a) Show that *T* is well defined when $\alpha > 1/p$. In that case also show that it is a linear operator and that it is bounded. Is T well defined when $\alpha = 1/p?$
- (b) Show that for any $\alpha > 1/p$ the operator *T* is injective but not surjective.

Solution. (a) For any $a \in \ell_{\infty}$ we have that

$$\sum_{n \in \mathbb{N}} \left| \frac{a_n}{n^{\alpha}} \right|^p = \sum_{n \in \mathbb{N}} \frac{|a_n|^p}{n^{\alpha p}} \le \|\boldsymbol{a}\|_{\infty}^p \sum_{n \in \mathbb{N}} \frac{1}{n^{\alpha p}} < \infty$$

since $\alpha p > 1$. This shows that *T* is well defined and, once we'll show that it is linear, it also shows that

$$\|T\boldsymbol{a}\|_{p} \leq \left(\sum_{n \in \mathbb{N}} \frac{1}{n^{\alpha p}}\right)^{\frac{1}{p}} \|\boldsymbol{a}\|_{\infty}$$

which shows that *T* is bounded with $||T|| \le \left(\sum_{n \in \mathbb{N}} \frac{1}{n^{\alpha p}}\right)^{\frac{1}{p}}$. Given $\boldsymbol{a}, \boldsymbol{b} \in \ell_{\infty}$ we have that since $T(\boldsymbol{a})$ and $T(\boldsymbol{b})$ are in ℓ_p then

$$T(\boldsymbol{a} + \boldsymbol{b}) = \left(a_1 + b_1, \frac{a_2 + b_2}{2^{\alpha}}, \dots, \frac{a_n + b_n}{n^{\alpha}}, \dots\right)$$
$$= \left(a_1, \frac{a_2}{2^{\alpha}}, \dots, \frac{a_n}{n^{\alpha}}, \dots\right) + \left(b_1, \frac{b_2}{2^{\alpha}}, \dots, \frac{b_n}{n^{\alpha}}, \dots\right) = T\boldsymbol{a} + T\boldsymbol{b}$$

and for any $\alpha \in \mathbb{F}$

$$T(\alpha \boldsymbol{a}) = \left(\alpha a_1, \frac{\alpha a_2}{2^{\alpha}}, \dots, \frac{\alpha a_n}{n^{\alpha}}, \dots\right) = \alpha T \boldsymbol{a},$$

showing the linearity of *T*.

In the case $\alpha = \frac{1}{p}$ the operator is not defined on ℓ_{∞} . Indeed, $a = (1, 1, 1, ...,) \in \ell_{\infty}$ but

$$T(\boldsymbol{a}) = \left(1, \frac{1}{2^{\frac{1}{p}}}, \dots, \frac{1}{n^{\frac{1}{p}}}, \dots\right) \notin \ell_p.$$

(b) We have that

$$T(\boldsymbol{a}) = T(\boldsymbol{b})$$

if and only if $\frac{a_n}{n^{\alpha}} = \frac{b_n}{n^{\alpha}}$ for all $n \in \mathbb{N}$ (pointwise equality in the sequence space), or equivalently $a_n = b_n$ for all $n \in \mathbb{N}$. This implies that a = bwhich shows the injectivity.

To show that the map is not surjective we fix $\frac{1}{p} < \beta < \alpha$. As was shown above the vector

$$\boldsymbol{x} = \left(1, \frac{1}{2^{\beta}}, \dots, \frac{1}{n^{\beta}}, \dots\right)$$

belongs to ℓ_p however if $T(\mathbf{a}) = \mathbf{x}$ then $\frac{a_n}{n^{\alpha}} = \frac{1}{n^{\beta}}$ for all $n \in \mathbb{N}$ or equivalently $a_n = n^{\alpha - \beta}$. Since $\alpha > \beta$ the vector \mathbf{a} can't be in ℓ_{∞} , which shows the desired result.

Exercise 3. Let \mathcal{X}, \mathcal{Y} be Banach spaces.

- (a) Define what it means for a linear operator $T: \mathcal{X} \to \mathcal{Y}$ to be compact.
- (b) Let $f : \mathcal{X} \to \mathbb{C}$ be an unbounded linear functional (where we assume that such a functional exists). For a fixed $0 \neq x_0 \in \mathcal{X}$ let $T : \mathcal{X} \to \mathcal{X}$ be defined by $Tx = f(x)x_0$. Show that *T* has finite rank (i.e. dim($\mathcal{R}(T)$) < ∞) but is not compact.
- *Solution.* (a) *T* is compact if it maps bounded sets to pre-compact sets. Equivalently, *T* is compact if for every bounded sequence $\{x_n\}_{n \in \mathbb{N}} \subset \mathcal{X}$ the sequence $\{Tx_n\}_{n \in \mathbb{N}} \subset \mathcal{Y}$ has a convergent subsequence.
- (b) Since R(T) = span{x₀} has dimension 1 < ∞, T has finite rank. Since *f* is unbounded, we can find a sequence {x_n}_{n∈ℕ} ⊂ X with ||x_n|| = 1 and |f(x_n)| → ∞ as n → ∞. If *T* were compact, {Tx_n}_{n∈ℕ} ⊂ X would have a convergent subsequence, but since ||Tx_n|| = ||f(x_n)x₀|| = |f(x_n)|||x₀|| → ∞, this cannot be true. Thus *T* is not compact.

Exercise 4. Let $u : \mathbb{R} \to \mathbb{R}$ be defined by $u(x) = (1 + |x|)^{-1}$.

- (a) For which $1 \le p \le \infty$ is $u \in W^{1,p}(\mathbb{R})$? (note the change here from $W_0^{1,p}$ in the original exam).
- (b) Give an explicit $f \in H^{-1}(\mathbb{R})$ such that f(u) = 1.
- *Solution.* (a) The function *u* is continuous on \mathbb{R} and differentiable at all $x \neq 0$, with

$$u'(x) = -\operatorname{sgn}(x)(1+|x|)^{-2}$$

From this we see that *u* is Lipschitz and hence from the lectures we know that it is weakly differentiable.

Thus $u \in W^{1,p}(\mathbb{R})$ if and only if $u, u' \in L^p(\mathbb{R})$. Since u is even, this is equivalent to proving that $u, u' \in L^p([0,\infty))$. For $p = \infty$ this is obviously true. Now let $1 \le p < \infty$. We have

$$\int_0^\infty |u|^p \, \mathrm{d}x = \int_0^\infty (1+x)^{-p} \, \mathrm{d}x = \begin{cases} -\frac{1}{p-1}(1+x)^{-p+1}|_{x=0}^{x=\infty} = \frac{1}{p-1}, & p > 1, \\ \log(1+x)|_{x=0}^{x=\infty} = \infty, & p = 1. \end{cases}$$

Thus $u \in L^p(\mathbb{R})$ for p > 1 but not for p = 1. Note that since $|u'| = |u|^2$, we have $u' \in L^p(\mathbb{R})$ if and only if $u \in L^{2p}(\mathbb{R})$, which is true for all p > 1/2. Thus $u \in W^{1,p}(\mathbb{R})$ for all 1 but not for <math>p = 1.

(b) $H^{-1}(\mathbb{R})$ is the dual space of $H^{1}(\mathbb{R})$. We can take any $g \in H^{-1}(\mathbb{R})$ with $g(u) \neq 0$ and then define

$$f(v) := \frac{g(v)}{g(u)}, \quad v \in H^1(\mathbb{R}).$$

We know that (from Riesz's Representation Theorem) any $g \in H^{-1}(\mathbb{R})$ is of the form $g(v) = \langle v, h \rangle_{H^1}$ for fixed $h \in H^1(\mathbb{R})$. We can take for example h = u, since then $g(u) = ||u||_{H^1}^2 \ge ||u||_{L^2}^2 > 0$. Thus

$$f(v) = \frac{\langle v, u \rangle_{H^1}}{\|u\|_{H^1}^2}.$$

г				
			L	
L				

Exercise 5. Consider the subset $\mathcal{H} \subset \ell_2$ given by

$$\mathcal{H} = \left\{ \boldsymbol{a} \in \ell_2 \mid \sum_{n \in \mathbb{N}} n^2 |a_n|^2 < \infty \right\}.$$

- (a) Is \mathcal{H} closed with respect to the norm of ℓ_2 ? Prove your claim.
- (b) Let *B* be the set

$$B = \left\{ \boldsymbol{a} \in \mathcal{H} \mid \sum_{n \in \mathbb{N}} n^2 |a_n|^2 \le 1 \right\} \subset \mathcal{H}.$$

Show that for any $a \in B$ we have that

$$\sum_{n \ge N} |a_n|^2 \le \frac{1}{N^2}$$

and then prove that if $\{a_n\}_{n \in \mathbb{N}}$ is a sequence in *B* such that

$$(a_n)_j \underset{n \to \infty}{\longrightarrow} a_j, \qquad \forall j \in \mathbb{N}$$

for some $a \in B$ (component-wise convergence) then

$$\|\boldsymbol{a}_n-\boldsymbol{a}\|_{\ell_2} \underset{n\to\infty}{\longrightarrow} 0.$$

Solution. (a) \mathcal{H} is not closed. Indeed, the sequence $\{a_n\}_{n \in \mathbb{N}}$ defined by

$$\boldsymbol{a}_n = \left(1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, 0, 0, \dots\right)$$

belongs to \mathcal{H} since

$$\sum_{j\in\mathbb{N}} j^2 \left| (\boldsymbol{a}_n)_j \right|^2 = n$$

and it converges to $\boldsymbol{a} = \left\{\frac{1}{n}\right\}_{n \in \mathbb{N}}$ (this follows from the fact that $\{\boldsymbol{e}_n\}_{n \in \mathbb{N}}$ is a Schauder basis for ℓ_2). This sequence is not in \mathcal{H} since

$$\sum_{n\in\mathbb{N}}n^2|a_n|^2=\sum_{n\in\mathbb{N}}1=\infty.$$

(b) For any $a \in B$ we find that

$$\sum_{n \ge N} |a_n|^2 \le \sum_{n \ge N} \frac{n^2}{N^2} |a_n|^2 \le \frac{\sum_{n \in \mathbb{N}} n^2 |a_n|^2}{N^2} \le \frac{1}{N^2}$$

Assume now that $\{a_n\}_{n \in \mathbb{N}} \in B$ converges component wise to $a \in B$. Then for any $N \in \mathbb{N}$

$$\|\boldsymbol{a}_{n} - \boldsymbol{a}\|^{2} = \sum_{j=1}^{N} |(a_{n})_{j} - a_{j}|^{2} + \sum_{j=N+1}^{\infty} |(a_{n})_{j} - a_{j}|^{2}$$

$$\leq \sum_{j=1}^{N} |(a_{n})_{j} - a_{j}|^{2} + 2 \sum_{j=N+1}^{\infty} (|(a_{n})_{j}|^{2} + |a_{j}|^{2})$$

$$\leq \sum_{j=1}^{N} |(a_{n})_{j} - a_{j}|^{2} + \frac{4}{(N+1)^{2}}.$$

Thus, due to the component convergence, we find that for any $N \in \mathbb{N}$

$$\limsup_{n \to \infty} \|\boldsymbol{a}_n - \boldsymbol{a}\|^2 \le \limsup_{n \to \infty} \sum_{j=1}^N |(a_n)_j - a_j|^2 + \frac{4}{(N+1)^2} = \frac{4}{(N+1)^2}.$$

As $N \in \mathbb{N}$ is arbitrary we can take it to infinity and conclude that

$$\lim_{n\to\infty} \|\boldsymbol{a}_n - \boldsymbol{a}\|^2 = 0.$$

Exercise 6. Let \mathscr{X} and \mathscr{Y} be normed spaces and let *E* be a given subset of \mathscr{X} . Let $T : \mathscr{X} \to \mathscr{Y}$ be a given bounded linear operator.

- (a) Show that if $T|_E = 0$ then $T|_{\mathcal{M}} = 0$ where $\mathcal{M} = \overline{\text{span}E}$.
- (b) Let $\{E_n\}_{n\in\mathbb{N}}$ be a given sequence of subsets of \mathcal{X} . Show that if $\{T_n\}_{n\in\mathbb{N}} \in B(\mathcal{X}, \mathcal{Y})$ satisfy

$$T_n|_{E_i} = 0, \qquad \forall n \ge j,$$

then if $\{T_n\}_{n\in\mathbb{N}}$ converges to $T \in B(\mathcal{X}, \mathcal{Y})$ in the operator norm we have that

$$T|_{\overline{\operatorname{span}}\cup_{n\in\mathbb{N}}E_n}=0.$$

Solution. (a) Let $x \in \text{span}E$. Then there exist $n \in \mathbb{N}$, $x_1, \ldots, x_n \in E$ and scalars $\alpha_1, \ldots, \alpha_n$ such that

$$x=\sum_{i=1}^n\alpha_i x_i.$$

Since $T|_E = 0$ and *T* is a linear operator we see that

$$Tx = \sum_{i=1}^{n} \alpha_i Tx_i = \sum_{i=1}^{n} \alpha_i 0 = 0.$$

Thus we find that $T|_{\text{span}E} = 0$. Next, given $x \in \mathcal{M}$ we know that we can find a sequence $\{x_n\}_{n \in \mathbb{N}}$ from span*E* that converges to *x*.

Since *T* is bounded (and as such continuous) we have that

$$Tx = \lim_{n \to \infty} Tx_n = \lim_{T \mid_{\text{span}E} = 0} \lim_{n \to \infty} 0 = 0.$$

As *x* was arbitrary we conclude that $T|_{\mathcal{M}} = 0$.

(b) Using 6.1 we see that it is enough to show that $T|_{\bigcup_{n\in\mathbb{N}}E_n} = 0$. Indeed, let $x \in \bigcup_{n\in\mathbb{N}}E_n$. Then there exists $n_0 \in \mathbb{N}$ such that $x \in E_{n_0}$. Thus, for any $n \ge n_0$ we have that $T_n x = 0$.

Since T_n converges to T in the operator norm we see that for any $n \ge n_0$

$$||Tx|| = ||Tx - T_nx|| \le ||T - T_n|| ||x||$$

As the above holds for any such *n* we can take *n* to infinity and conclude that ||Tx|| = 0, i.e. Tx = 0. Since *x* was arbitrary we find that $T|_{\bigcup_{n \in \mathbb{N}} E_n} = 0$ which completes the proof.

Exercise 7. Consider $T: \ell_2 \rightarrow \ell_2$ defined by

$$T(x_1, x_2, x_3, x_4, x_5, x_6, \ldots) = (0, x_1, 0, x_3, 0, x_5, \ldots).$$

- (a) Compute T^2 .
- (b) Find $\rho(T)$, $\sigma(T)$, $\sigma_p(T)$, $\sigma_c(T)$ and $\sigma_r(T)$.

Solution. (a) Let $x \in \ell_2$. Then $T^2 x = T(0, x_1, 0, x_3, 0, x_5, ...) = (0, 0, 0, ...)$. Hence $T^2 = 0$ in ℓ_2 .

(b) The point $\lambda = 0$ is an eigenvalue because for example $Te_2 = 0$.

Quick way: The spectral mapping theorem for polynomials implies $\sigma(T^2) = \{\lambda^2 : \lambda \in \sigma(T)\}$. Since $\sigma(T^2) = \sigma(0) = 0$, the spectrum $\sigma(T)$ contains only $\lambda \in \mathbb{C}$ such that $\lambda^2 = 0$, whose only solution is $\lambda = 0$. Thus $\sigma(T) = \{0\}, \rho(T) = \mathbb{C} \setminus \{0\}$.

Longer way to prove $\mathbb{C}\setminus\{0\} \subset \rho(T)$: If $\lambda \neq 0$, then $T - \lambda$ is injective because $(T-\lambda)x = 0$ means (consider separately odd and even indices *n*):

$$-\lambda x_{2j-1} = 0$$
, $x_{2j-1} - \lambda x_{2j} = 0$, for $j \in \mathbb{N}$.

The first equation implies that $x_n = 0$ for all odd n = 2j-1, and inserting this into the second equation implies $x_n = 0$ for all even n = 2j. Thus x = 0.

To prove surjectivity, let $(T - \lambda)x = y$. This means

$$-\lambda x_{2j-1} = y_{2j-1}, \quad x_{2j-1} - \lambda x_{2j} = y_{2j}, \text{ for } j \in \mathbb{N}.$$

Thus $x_{2j-1} = -\lambda^{-1} y_{2j-1}$ and $x_{2j} = \lambda^{-1} (x_{2j-1} - y_{2j}) = -\lambda^{-2} y_{2j-1} - \lambda^{-1} y_{2j}$. This *x* belongs to ℓ_2 because

$$\sum_{n=1}^{\infty} |x_n|^2 = \sum_{j=1}^{\infty} \left(|x_{2j-1}|^2 + |x_{2j}|^2 \right) = \sum_{j=1}^{\infty} \left(|-\lambda^{-1}y_{2j-1}|^2 + |-\lambda^{-2}y_{2j-1} - \lambda^{-1}y_{2j}|^2 \right)$$

$$\leq 2|\lambda|^{-2} ||y||^2 + 2|\lambda|^{-4} ||y||^2 < \infty,$$

where we have used $||u + v||^2 \le 2(||u||^2 + ||v||^2)$. Altogether,

$$\sigma_p(T) = \sigma(T) = \{0\}, \quad \rho(T) = \mathbb{C} \setminus \{0\}, \quad \sigma_c(T) = \sigma_r(T) = \emptyset.$$

Exercise 8. Let $T = i \frac{d}{dx}$ in the Hilbert space $L^2([0, 1])$ with

 $\mathcal{D}(T) = \left\{ f \in L^2([0,1]) : f \text{ absolutely continuous on } [0,1], f' \in L^2([0,1]), f(0) = if(1) \right\}.$

- (a) Show that *T* is densely defined.
- (b) Show that *T* is symmetric.
- (c) Show that *T* is selfadjoint. You may use without proof that the general solution of $f' \mu f = g$ (for given $\mu \in \mathbb{C}$ and $g \in L^2([0, 1])$) is

$$f(x) = \exp(\mu x) \left(C + \int_0^x \exp(-\mu t) g(t) \, \mathrm{d}t \right),$$

for a constant $C \in \mathbb{C}$.

- *Solution.* (a) We know that $C_0^{\infty}((0,1))$ is dense in $L^2([0,1])$. Since $C_0^{\infty}((0,1)) \subset \mathcal{D}(T) \subset L^2([0,1])$, the closure of $\mathcal{D}(T)$ is also $L^2([0,1])$.
- (b) From the lectures we know that it suffices to prove that $\langle Tf, f \rangle \in \mathbb{R}$ for all $f \in \mathcal{D}(T)$. Indeed, integration by parts yields

$$\langle Tf, f \rangle = \mathbf{i} \int_0^1 f'(x) \overline{f(x)} \, \mathrm{d}x = \mathbf{i} \frac{|f(x)|^2}{2} |_{x=0}^{x=1} - \mathbf{i} \int_0^1 f(x) \overline{f'(x)} \, \mathrm{d}x$$
$$= \int_0^1 f(x) \overline{\mathbf{i} f'(x)} \, \mathrm{d}x = \overline{\langle Tf, f \rangle},$$

where we have used $|f(x)|^2|_{x=0}^{x=1} = |f(1)|^2 - |f(0)|^2 = 0$ by the assumption f(0) = if(1). Since a complex number is equal to its complex conjugate if and only if it is real, we get $\langle Tf, f \rangle \in \mathbb{R}$.

(c) Once we know that an operator is symmetric (we know it from (b)), we know from the lectures that it suffices to prove $\Re(T \pm i) = L^2([0, 1])$. [Instead of $\pm i$, one can take two different points, one in the upper and one in the lower complex half-plane.]

Let $g \in L^2([0,1])$. The equation $(T - \lambda)f = if' - \lambda f = g$ has the general solution (using a variation of constants method – see hint)

$$f(x) = \mathrm{e}^{\frac{\lambda}{\mathrm{i}}x} \left(C + \int_0^x \mathrm{e}^{-\frac{\lambda}{\mathrm{i}}t} g(t) \,\mathrm{d}t \right).$$

Now we choose the constant *C* such that *f* satisfies the boundary condition f(0) = if(1). This means

$$C = f(0) = \mathrm{i}f(1) = \mathrm{i}\mathrm{e}^{\frac{\lambda}{\mathrm{i}}}\left(C + \int_0^1 \mathrm{e}^{-\frac{\lambda}{\mathrm{i}}t}g(t)\,\mathrm{d}t\right),$$

hence, if $1 - ie^{\frac{\lambda}{i}} \neq 0$,

$$C = \frac{\mathrm{i}\mathrm{e}^{\frac{\lambda}{\mathrm{i}}}\int_0^1 \mathrm{e}^{-\frac{\lambda}{\mathrm{i}}t}g(t)\,\mathrm{d}t}{1-\mathrm{i}\mathrm{e}^{\frac{\lambda}{\mathrm{i}}}}.$$

Note that for $\lambda = \pm i$ we have $1 - ie^{\frac{\lambda}{i}} = 1 - ie^{\pm 1} \neq 0$, so *C* is well-defined. The corresponding *f* is in $\mathcal{D}(T)$, which implies $\mathcal{R}(T \pm i) = L^2([0,1])$.