Functional Analysis and Applications IVRevision Class

Exercise 1. (a) State the Hahn-Banach theorem.
(b) Let \mathscr{X} be a Banach space over a field \mathbb{F}. For a given $0 \neq x \in \mathcal{X}$ define

$$
\widetilde{f}_{x}: \operatorname{span}\{x\} \rightarrow \mathbb{F}
$$

by $\widetilde{f}_{x}(\alpha x)=\alpha\|x\|$ where $\alpha \in \mathbb{F}$. Show that \tilde{f}_{x} is a linear functional and that $\left\|\widetilde{f}_{x}\right\|_{\text {span }\{x\}^{*}}=1$.
(c) Prove that for any $0 \neq x \in \mathcal{X}$ there exists $f_{x} \in \mathcal{X}^{*}$ such that $f_{x}(x)=\|x\|$ and $\left\|f_{x}\right\|_{\text {C }^{*}}=1$.

Solution. (a) Let \mathscr{X} be a normed space and let \mathscr{Y} be a subspace of \mathscr{X}. Assume that g is a bounded linear functional on \mathscr{Y}. Then there exists a bounded linear extension of g, \widetilde{g}, to all of \mathscr{X} such that $\|g\|_{\mathscr{Y}^{*}}=$ $\|\widetilde{g}\|_{X^{*}}$, where

$$
\|g\|_{\mathscr{Y}^{*}}=\left\{\begin{array}{ll}
\sup _{y \in \mathscr{Y}, y \neq 0} \frac{|g(y)|}{\|y\|} & \mathscr{y} \neq\{0\} \\
0 & \mathscr{y}=\{0\}
\end{array} .\right.
$$

(b) Since $\{x\}$ is a basis for $\operatorname{span}\{x\}$ we know that each vector in $\operatorname{span}\{x\}$ can be written uniquely as αx for some $\alpha \in \mathbb{F}$. Thus, \widetilde{f}_{x} is well defined. Moreover
$\tilde{f}_{x}\left(\alpha_{1} x+\alpha_{2} x\right)=\left(\alpha_{1}+\alpha_{2}\right)\|x\|=\alpha_{1}\|x\|+\alpha_{2}\|x\|=\widetilde{f}_{x}\left(\alpha_{1} x\right)+\widetilde{f}_{x}\left(\alpha_{2} x\right)$
and for any $\beta \in \mathbb{F}$

$$
\widetilde{f}_{x}(\beta(\alpha x))=\widetilde{f}_{x}((\beta \alpha) x)=(\beta \alpha)\|x\|=\beta(\alpha\|x\|)=\beta \widetilde{f}_{x}(\alpha x)
$$

which shows that \widetilde{f}_{x} is indeed a linear functional.

$$
\begin{aligned}
\left\|\tilde{f}_{x}\right\|_{\text {span }\{x\}^{*}}= & \sup _{y \in \operatorname{span}\{x\} \backslash\{0\}} \frac{\left|\widetilde{f}_{x}(y)\right|}{\|y\|}=\sup _{\alpha \in \mathbb{F} \backslash\{0\}} \frac{\left|\tilde{f}_{x}(\alpha x)\right|}{\|\alpha x\|} \\
& =\sup _{\alpha \in \mathbb{F} \backslash\{0\}} \frac{|\alpha\|x\||}{|\alpha|\|x\|}=1 .
\end{aligned}
$$

(c) According to the Hahn-Banach theorem, there exists $f_{x} \in X^{*}$ such that $\left.f_{x}\right|_{\operatorname{span}\{x\}}=\widetilde{f}_{x}$ and

$$
f_{x}(x)=\widetilde{f}_{x}(x)=\|x\| .
$$

Moreover, the operator norm of f_{x} equals that of \tilde{f}_{x}, which shows the second part of the question.

Exercise 2. Consider the operator $T: \ell_{\infty} \rightarrow \ell_{p}$, with $1 \leq p<\infty$, defined by

$$
T(\boldsymbol{a})=\left(a_{1}, \frac{a_{2}}{2^{\alpha}}, \ldots, \frac{a_{n}}{n^{\alpha}}, \ldots\right) .
$$

(a) Show that T is well defined when $\alpha>1 / p$. In that case also show that it is a linear operator and that it is bounded. Is T well defined when $\alpha=1 / p$?
(b) Show that for any $\alpha>1 / p$ the operator T is injective but not surjective.

Solution. (a) For any $\boldsymbol{a} \in \ell_{\infty}$ we have that

$$
\sum_{n \in \mathbb{N}}\left|\frac{a_{n}}{n^{\alpha}}\right|^{p}=\sum_{n \in \mathbb{N}} \frac{\left|a_{n}\right|^{p}}{n^{\alpha p}} \leq\|\boldsymbol{a}\|_{\infty}^{p} \sum_{n \in \mathbb{N}} \frac{1}{n^{\alpha p}}<\infty
$$

since $\alpha p>1$. This shows that T is well defined and, once we'll show that it is linear, it also shows that

$$
\|T \boldsymbol{a}\|_{p} \leq\left(\sum_{n \in \mathbb{N}} \frac{1}{n^{\alpha p}}\right)^{\frac{1}{p}}\|\boldsymbol{a}\|_{\infty}
$$

which shows that T is bounded with $\|T\| \leq\left(\sum_{n \in \mathbb{N}} \frac{1}{n^{\alpha p}}\right)^{\frac{1}{p}}$.
Given $\boldsymbol{a}, \boldsymbol{b} \in \ell_{\infty}$ we have that since $T(\boldsymbol{a})$ and $T(\boldsymbol{b})$ are in ℓ_{p} then

$$
\begin{gathered}
T(\boldsymbol{a}+\boldsymbol{b})=\left(a_{1}+b_{1}, \frac{a_{2}+b_{2}}{2^{\alpha}}, \ldots, \frac{a_{n}+b_{n}}{n^{\alpha}}, \ldots\right) \\
=\left(a_{1}, \frac{a_{2}}{2^{\alpha}}, \ldots, \frac{a_{n}}{n^{\alpha}}, \ldots\right)+\left(b_{1}, \frac{b_{2}}{2^{\alpha}}, \ldots, \frac{b_{n}}{n^{\alpha}}, \ldots\right)=T \boldsymbol{a}+T \boldsymbol{b}
\end{gathered}
$$

and for any $\alpha \in \mathbb{F}$

$$
T(\alpha \boldsymbol{a})=\left(\alpha a_{1}, \frac{\alpha a_{2}}{2^{\alpha}}, \ldots, \frac{\alpha a_{n}}{n^{\alpha}}, \ldots\right)=\alpha T \boldsymbol{a}
$$

showing the linearity of T.
In the case $\alpha=\frac{1}{p}$ the operator is not defined on ℓ_{∞}. Indeed, $\boldsymbol{a}=$ $(1,1,1, \ldots,) \in \ell_{\infty}$ but

$$
T(\boldsymbol{a})=\left(1, \frac{1}{2^{\frac{1}{p}}}, \ldots, \frac{1}{n^{\frac{1}{p}}}, \ldots\right) \notin \ell_{p} .
$$

(b) We have that

$$
T(\boldsymbol{a})=T(\boldsymbol{b})
$$

if and only if $\frac{a_{n}}{n^{\alpha}}=\frac{b_{n}}{n^{\alpha}}$ for all $n \in \mathbb{N}$ (pointwise equality in the sequence space), or equivalently $a_{n}=b_{n}$ for all $n \in \mathbb{N}$. This implies that $\boldsymbol{a}=\boldsymbol{b}$ which shows the injectivity.

To show that the map is not surjective we fix $\frac{1}{p}<\beta<\alpha$. As was shown above the vector

$$
\boldsymbol{x}=\left(1, \frac{1}{2^{\beta}}, \ldots, \frac{1}{n^{\beta}}, \ldots\right)
$$

belongs to ℓ_{p} however if $T(\boldsymbol{a})=\boldsymbol{x}$ then $\frac{a_{n}}{n^{\alpha}}=\frac{1}{n^{\beta}}$ for all $n \in \mathbb{N}$ or equivalently $a_{n}=n^{\alpha-\beta}$. Since $\alpha>\beta$ the vector \boldsymbol{a} can't be in ℓ_{∞}, which shows the desired result.

Exercise 3. Let \mathscr{X}, \mathscr{Y} be Banach spaces.
(a) Define what it means for a linear operator $T: \mathscr{X} \rightarrow \mathscr{Y}$ to be compact.
(b) Let $f: \mathscr{X} \rightarrow \mathbb{C}$ be an unbounded linear functional (where we assume that such a functional exists). For a fixed $0 \neq x_{0} \in \mathscr{X}$ let $T: \mathscr{X} \rightarrow \mathscr{X}$ be defined by $T x=f(x) x_{0}$. Show that T has finite rank (i.e. $\operatorname{dim}(\mathscr{R}(T))<$ $\infty)$ but is not compact.

Solution. (a) T is compact if it maps bounded sets to pre-compact sets. Equivalently, T is compact if for every bounded sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset$ \mathcal{X} the sequence $\left\{T x_{n}\right\}_{n \in \mathbb{N}} \subset \mathscr{Y}$ has a convergent subsequence.
(b) Since $\mathscr{R}(T)=\operatorname{span}\left\{x_{0}\right\}$ has dimension $1<\infty, T$ has finite rank. Since f is unbounded, we can find a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset \mathscr{X}$ with $\left\|x_{n}\right\|=1$ and $\left|f\left(x_{n}\right)\right| \rightarrow \infty$ as $n \rightarrow \infty$. If T were compact, $\left\{T x_{n}\right\}_{n \in \mathbb{N}} \subset \mathcal{X}$ would have a convergent subsequence, but since $\left\|T x_{n}\right\|=\left\|f\left(x_{n}\right) x_{0}\right\|=\left|f\left(x_{n}\right)\right|\left\|x_{0}\right\| \rightarrow$ ∞, this cannot be true. Thus T is not compact.

Exercise 4. Let $u: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $u(x)=(1+|x|)^{-1}$.
(a) For which $1 \leq p \leq \infty$ is $u \in W^{1, p}(\mathbb{R})$? (note the change here from $W_{0}^{1, p}$ in the original exam).
(b) Give an explicit $f \in H^{-1}(\mathbb{R})$ such that $f(u)=1$.

Solution. (a) The function u is continuous on \mathbb{R} and differentiable at all $x \neq 0$, with

$$
u^{\prime}(x)=-\operatorname{sgn}(x)(1+|x|)^{-2} .
$$

From this we see that u is Lipschitz and hence from the lectures we know that it is weakly differentiable.
Thus $u \in W^{1, p}(\mathbb{R})$ if and only if $u, u^{\prime} \in L^{p}(\mathbb{R})$. Since u is even, this is equivalent to proving that $u, u^{\prime} \in L^{p}([0, \infty)$). For $p=\infty$ this is obviously true. Now let $1 \leq p<\infty$. We have

$$
\int_{0}^{\infty}|u|^{p} \mathrm{~d} x=\int_{0}^{\infty}(1+x)^{-p} \mathrm{~d} x= \begin{cases}-\left.\frac{1}{p-1}(1+x)^{-p+1}\right|_{x=0} ^{x=\infty}=\frac{1}{p-1}, & p>1 \\ \left.\log (1+x)\right|_{x=0} ^{x=\infty}=\infty, & p=1\end{cases}
$$

Thus $u \in L^{p}(\mathbb{R})$ for $p>1$ but not for $p=1$. Note that since $\left|u^{\prime}\right|=|u|^{2}$, we have $u^{\prime} \in L^{p}(\mathbb{R})$ if and only if $u \in L^{2 p}(\mathbb{R})$, which is true for all $p>$ $1 / 2$. Thus $u \in W^{1, p}(\mathbb{R})$ for all $1<p \leq \infty$ but not for $p=1$.
(b) $H^{-1}(\mathbb{R})$ is the dual space of $H^{1}(\mathbb{R})$. We can take any $g \in H^{-1}(\mathbb{R})$ with $g(u) \neq 0$ and then define

$$
f(\nu):=\frac{g(v)}{g(u)}, \quad v \in H^{1}(\mathbb{R}) .
$$

We know that (from Riesz's Representation Theorem) any $g \in H^{-1}(\mathbb{R})$ is of the form $g(v)=\langle\nu, h\rangle_{H^{1}}$ for fixed $h \in H^{1}(\mathbb{R})$. We can take for example $h=u$, since then $g(u)=\|u\|_{H^{1}}^{2} \geq\|u\|_{L^{2}}^{2}>0$. Thus

$$
f(v)=\frac{\langle v, u\rangle_{H^{1}}}{\|u\|_{H^{1}}^{2}} .
$$

Exercise 5. Consider the subset $\mathscr{H} \subset \ell_{2}$ given by

$$
\mathscr{H}=\left\{\left.\boldsymbol{a} \in \ell_{2}\left|\sum_{n \in \mathbb{N}} n^{2}\right| a_{n}\right|^{2}<\infty\right\} .
$$

(a) Is \mathscr{H} closed with respect to the norm of ℓ_{2} ? Prove your claim.
(b) Let B be the set

$$
B=\left\{\left.\boldsymbol{a} \in \mathcal{H}\left|\sum_{n \in \mathbb{N}} n^{2}\right| a_{n}\right|^{2} \leq 1\right\} \subset \mathscr{H} .
$$

Show that for any $\boldsymbol{a} \in B$ we have that

$$
\sum_{n \geq N}\left|a_{n}\right|^{2} \leq \frac{1}{N^{2}}
$$

and then prove that if $\left\{\boldsymbol{a}_{n}\right\}_{n \in \mathbb{N}}$ is a sequence in B such that

$$
\left(a_{n}\right)_{j} \underset{n \rightarrow \infty}{\longrightarrow} a_{j}, \quad \forall j \in \mathbb{N}
$$

for some $\boldsymbol{a} \in B$ (component-wise convergence) then

$$
\left\|\boldsymbol{a}_{n}-\boldsymbol{a}\right\|_{\ell_{2}} \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

Solution. (a) \mathscr{H} is not closed. Indeed, the sequence $\left\{\boldsymbol{a}_{n}\right\}_{n \in \mathbb{N}}$ defined by

$$
\boldsymbol{a}_{n}=\left(1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}, 0,0, \ldots\right)
$$

belongs to \mathscr{H} since

$$
\sum_{j \in \mathbb{N}} j^{2}\left|\left(\boldsymbol{a}_{n}\right)_{j}\right|^{2}=n
$$

and it converges to $\boldsymbol{a}=\left\{\frac{1}{n}\right\}_{n \in \mathbb{N}}$ (this follows from the fact that $\left\{\boldsymbol{e}_{n}\right\}_{n \in \mathbb{N}}$ is a Schauder basis for ℓ_{2}). This sequence is not in \mathscr{H} since

$$
\sum_{n \in \mathbb{N}} n^{2}\left|a_{n}\right|^{2}=\sum_{n \in \mathbb{N}} 1=\infty
$$

(b) For any $\boldsymbol{a} \in B$ we find that

$$
\sum_{n \geq N}\left|a_{n}\right|^{2} \leq \sum_{n \geq N} \frac{n^{2}}{N^{2}}\left|a_{n}\right|^{2} \leq \frac{\sum_{n \in \mathbb{N}} n^{2}\left|a_{n}\right|^{2}}{N^{2}} \leq \frac{1}{N^{2}}
$$

Assume now that $\left\{\boldsymbol{a}_{n}\right\}_{n \in \mathbb{N}} \in B$ converges component wise to $\boldsymbol{a} \in B$. Then for any $N \in \mathbb{N}$

$$
\begin{gathered}
\left\|\boldsymbol{a}_{n}-\boldsymbol{a}\right\|^{2}=\sum_{j=1}^{N}\left|\left(a_{n}\right)_{j}-a_{j}\right|^{2}+\sum_{j=N+1}^{\infty}\left|\left(a_{n}\right)_{j}-a_{j}\right|^{2} \\
\leq \sum_{j=1}^{N}\left|\left(a_{n}\right)_{j}-a_{j}\right|^{2}+2 \sum_{j=N+1}^{\infty}\left(\left|\left(a_{n}\right)_{j}\right|^{2}+\left|a_{j}\right|^{2}\right) \\
\leq \sum_{j=1}^{N}\left|\left(a_{n}\right)_{j}-a_{j}\right|^{2}+\frac{4}{(N+1)^{2}} .
\end{gathered}
$$

Thus, due to the component convergence, we find that for any $N \in \mathbb{N}$

$$
\limsup _{n \rightarrow \infty}\left\|\boldsymbol{a}_{n}-\boldsymbol{a}\right\|^{2} \leq \limsup _{n \rightarrow \infty} \sum_{j=1}^{N}\left|\left(a_{n}\right)_{j}-a_{j}\right|^{2}+\frac{4}{(N+1)^{2}}=\frac{4}{(N+1)^{2}}
$$

As $N \in \mathbb{N}$ is arbitrary we can take it to infinity and conclude that

$$
\lim _{n \rightarrow \infty}\left\|\boldsymbol{a}_{n}-\boldsymbol{a}\right\|^{2}=0
$$

Exercise 6. Let \mathscr{X} and \mathscr{Y} be normed spaces and let E be a given subset of \mathscr{X}. Let $T: \mathscr{X} \rightarrow \mathscr{Y}$ be a given bounded linear operator.
(a) Show that if $\left.T\right|_{E}=0$ then $\left.T\right|_{\mathscr{M}}=0$ where $\mathscr{M}=\overline{\operatorname{span} E}$.
(b) Let $\left\{E_{n}\right\}_{n \in \mathbb{N}}$ be a given sequence of subsets of \mathscr{X}. Show that if $\left\{T_{n}\right\}_{n \in \mathbb{N}} \in$ $B(X, \mathscr{Y})$ satisfy

$$
\left.T_{n}\right|_{E_{j}}=0, \quad \forall n \geq j,
$$

then if $\left\{T_{n}\right\}_{n \in \mathbb{N}}$ converges to $T \in B(\mathcal{X}, \mathscr{Y})$ in the operator norm we have that

$$
\left.T\right|_{\overline{\text { span }} \cup_{n \in \mathbb{N}} E_{n}}=0 .
$$

Solution. (a) Let $x \in \operatorname{span} E$. Then there exist $n \in \mathbb{N}, x_{1}, \ldots, x_{n} \in E$ and scalars $\alpha_{1}, \ldots, \alpha_{n}$ such that

$$
x=\sum_{i=1}^{n} \alpha_{i} x_{i} .
$$

Since $\left.T\right|_{E}=0$ and T is a linear operator we see that

$$
T x=\sum_{i=1}^{n} \alpha_{i} T x_{i}=\sum_{i=1}^{n} \alpha_{i} 0=0 .
$$

Thus we find that $\left.T\right|_{\text {span } E}=0$. Next, given $x \in \mathscr{M}$ we know that we can find a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ from span E that converges to x.

Since T is bounded (and as such continuous) we have that

$$
T x=\lim _{n \rightarrow \infty} T x_{n} \underset{T \mid \text { span } E=0}{=} \lim _{n \rightarrow \infty} 0=0 .
$$

As x was arbitrary we conclude that $\left.T\right|_{\mathscr{M}}=0$.
(b) Using 6.1 we see that it is enough to show that $\left.T\right|_{\cup_{n \in \mathbb{N}} E_{n}}=0$. Indeed, let $x \in \cup_{n \in \mathbb{N}} E_{n}$. Then there exists $n_{0} \in \mathbb{N}$ such that $x \in E_{n_{0}}$. Thus, for any $n \geq n_{0}$ we have that $T_{n} x=0$.

Since T_{n} converges to T in the operator norm we see that for any $n \geq n_{0}$

$$
\|T x\|=\left\|T x-T_{n} x\right\| \leq\left\|T-T_{n}\right\|\|x\|
$$

As the above holds for any such n we can take n to infinity and conclude that $\|T x\|=0$, i.e. $T x=0$. Since x was arbitrary we find that $\left.T\right|_{\cup_{n \in \mathbb{N}} E_{n}}=0$ which completes the proof.

Exercise 7. Consider $T: \ell_{2} \rightarrow \ell_{2}$ defined by

$$
T\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, \ldots\right)=\left(0, x_{1}, 0, x_{3}, 0, x_{5}, \ldots\right) .
$$

(a) Compute T^{2}.
(b) Find $\rho(T), \sigma(T), \sigma_{p}(T), \sigma_{c}(T)$ and $\sigma_{r}(T)$.

Solution. (a) Let $x \in \ell_{2}$. Then $T^{2} x=T\left(0, x_{1}, 0, x_{3}, 0, x_{5}, \ldots\right)=(0,0,0, \ldots)$. Hence $T^{2}=0$ in ℓ_{2}.
(b) The point $\lambda=0$ is an eigenvalue because for example $T e_{2}=0$.

Quick way: The spectral mapping theorem for polynomials implies $\sigma\left(T^{2}\right)=\left\{\lambda^{2}: \lambda \in \sigma(T)\right\}$. Since $\sigma\left(T^{2}\right)=\sigma(0)=0$, the spectrum $\sigma(T)$ contains only $\lambda \in \mathbb{C}$ such that $\lambda^{2}=0$, whose only solution is $\lambda=0$. Thus $\sigma(T)=\{0\}, \rho(T)=\mathbb{C} \backslash\{0\}$.

Longer way to prove $\mathbb{C} \backslash\{0\} \subset \rho(T)$: If $\lambda \neq 0$, then $T-\lambda$ is injective because $(T-\lambda) x=0$ means (consider separately odd and even indices $n)$:

$$
-\lambda x_{2 j-1}=0, \quad x_{2 j-1}-\lambda x_{2 j}=0, \quad \text { for } j \in \mathbb{N} .
$$

The first equation implies that $x_{n}=0$ for all odd $n=2 j-1$, and inserting this into the second equation implies $x_{n}=0$ for all even $n=2 j$. Thus $x=0$.

To prove surjectivity, let $(T-\lambda) x=y$. This means

$$
-\lambda x_{2 j-1}=y_{2 j-1}, \quad x_{2 j-1}-\lambda x_{2 j}=y_{2 j}, \quad \text { for } j \in \mathbb{N} .
$$

Thus $x_{2 j-1}=-\lambda^{-1} y_{2 j-1}$ and $x_{2 j}=\lambda^{-1}\left(x_{2 j-1}-y_{2 j}\right)=-\lambda^{-2} y_{2 j-1}-\lambda^{-1} y_{2 j}$.
This x belongs to ℓ_{2} because

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|x_{n}\right|^{2} & =\sum_{j=1}^{\infty}\left(\left|x_{2 j-1}\right|^{2}+\left|x_{2 j}\right|^{2}\right)=\sum_{j=1}^{\infty}\left(\left|-\lambda^{-1} y_{2 j-1}\right|^{2}+\left|-\lambda^{-2} y_{2 j-1}-\lambda^{-1} y_{2 j}\right|^{2}\right) \\
& \leq 2|\lambda|^{-2}\|y\|^{2}+2|\lambda|^{-4}\|y\|^{2}<\infty
\end{aligned}
$$

where we have used $\|u+v\|^{2} \leq 2\left(\|u\|^{2}+\|v\|^{2}\right)$.
Altogether,

$$
\sigma_{p}(T)=\sigma(T)=\{0\}, \quad \rho(T)=\mathbb{C} \backslash\{0\}, \quad \sigma_{c}(T)=\sigma_{r}(T)=\varnothing .
$$

Exercise 8. Let $T=\mathrm{i} \frac{\mathrm{d}}{\mathrm{d} x}$ in the Hilbert space $L^{2}([0,1])$ with
$\mathscr{D}(T)=\left\{f \in L^{2}([0,1]): f\right.$ absolutely continuous on $\left.[0,1], f^{\prime} \in L^{2}([0,1]), f(0)=\mathrm{i} f(1)\right\}$.
(a) Show that T is densely defined.
(b) Show that T is symmetric.
(c) Show that T is selfadjoint. You may use without proof that the general solution of $f^{\prime}-\mu f=g$ (for given $\mu \in \mathbb{C}$ and $g \in L^{2}([0,1])$) is

$$
f(x)=\exp (\mu x)\left(C+\int_{0}^{x} \exp (-\mu t) g(t) \mathrm{d} t\right)
$$

for a constant $C \in \mathbb{C}$.
Solution. (a) We know that $C_{0}^{\infty}((0,1))$ is dense in $L^{2}([0,1])$. Since $C_{0}^{\infty}((0,1)) \subset$ $\mathscr{D}(T) \subset L^{2}([0,1])$, the closure of $\mathscr{D}(T)$ is also $L^{2}([0,1])$.
(b) From the lectures we know that it suffices to prove that $\langle T f, f\rangle \in \mathbb{R}$ for all $f \in \mathscr{D}(T)$. Indeed, integration by parts yields

$$
\begin{gathered}
\langle T f, f\rangle=\mathrm{i} \int_{0}^{1} f^{\prime}(x) \overline{f(x)} \mathrm{d} x=\left.\mathrm{i} \frac{|f(x)|^{2}}{2}\right|_{x=0} ^{x=1}-\mathrm{i} \int_{0}^{1} f(x) \overline{f^{\prime}(x)} \mathrm{d} x \\
=\int_{0}^{1} f(x) \overline{\mathrm{i} f^{\prime}(x)} \mathrm{d} x=\overline{\langle T f, f\rangle},
\end{gathered}
$$

where we have used $\left.|f(x)|^{2}\right|_{x=0} ^{x=1}=|f(1)|^{2}-|f(0)|^{2}=0$ by the assumption $f(0)=\mathrm{i} f(1)$. Since a complex number is equal to its complex conjugate if and only if it is real, we get $\langle T f, f\rangle \in \mathbb{R}$.
(c) Once we know that an operator is symmetric (we know it from (b)), we know from the lectures that it suffices to prove $\mathscr{R}(T \pm i)=L^{2}([0,1])$. [Instead of $\pm \mathrm{i}$, one can take two different points, one in the upper and one in the lower complex half-plane.]

Let $g \in L^{2}([0,1])$. The equation $(T-\lambda) f=\mathrm{i} f^{\prime}-\lambda f=g$ has the general solution (using a variation of constants method - see hint)

$$
f(x)=\mathrm{e}^{\frac{\lambda}{\mathrm{i}} x}\left(C+\int_{0}^{x} \mathrm{e}^{-\frac{\lambda}{\mathrm{i}} t} g(t) \mathrm{d} t\right) .
$$

Now we choose the constant C such that f satisfies the boundary condition $f(0)=\mathrm{i} f(1)$. This means

$$
C=f(0)=\mathrm{i} f(1)=\mathrm{i}^{\frac{\lambda}{\mathrm{i}}}\left(C+\int_{0}^{1} \mathrm{e}^{-\frac{\lambda}{\mathrm{i}} t} g(t) \mathrm{d} t\right),
$$

hence, if $1-\mathrm{ie}^{\frac{\lambda}{\mathrm{i}}} \neq 0$,

$$
C=\frac{\mathrm{ie}^{\frac{\lambda}{\mathrm{i}}} \int_{0}^{1} \mathrm{e}^{-\frac{\lambda}{\mathrm{i}} t} g(t) \mathrm{d} t}{1-\mathrm{i}^{\frac{\lambda}{\mathrm{i}}}}
$$

Note that for $\lambda= \pm i$ we have $1-\mathrm{ie}^{\frac{\lambda}{i}}=1-\mathrm{ie}^{ \pm 1} \neq 0$, so C is well-defined.
The corresponding f is in $\mathscr{D}(T)$, which implies $\mathscr{R}(T \pm i)=L^{2}([0,1])$.

