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Exercise 1. (a) State the Hahn-Banach theorem.
(b) Let X be a Banach space over a field F. For a given 0 6= x ∈X define

f̃x : span{x} → F

by f̃x (αx) =α‖x‖ where α ∈ F. Show that f̃x is a linear functional and
that

∥∥ f̃x
∥∥

span{x}∗ = 1.
(c) Prove that for any 0 6= x ∈X there exists fx ∈X∗ such that fx(x) = ‖x‖

and
∥∥ fx

∥∥
X∗ = 1.

Solution. (a) Let X be a normed space and let Y be a subspace of X.
Assume that g is a bounded linear functional onY. Then there exists
a bounded linear extension of g , g̃ , to all of X such that

∥∥g
∥∥
Y∗ =∥∥g̃

∥∥
X∗ , where

∥∥g
∥∥
Y∗ =

{
supy∈Y, y 6=0

|g (y)|
‖y‖ Y 6= {0}

0 Y = {0}
.

(b) Since {x} is a basis for span{x} we know that each vector in span{x}
can be written uniquely asαx for someα ∈ F. Thus, f̃x is well defined.
Moreover

f̃x (α1x +α2x) = (α1 +α2)‖x‖ =α1 ‖x‖+α2 ‖x‖ = f̃x (α1x)+ f̃x (α2x)

and for any β ∈ F
f̃x

(
β (αx)

)= f̃x
((
βα

)
x
)= (

βα
)‖x‖ =β (α‖x‖) =β f̃x (αx)

which shows that f̃x is indeed a linear functional.∥∥ f̃x
∥∥

span{x}∗ = sup
y∈span{x}\{0}

∣∣ f̃x(y)
∣∣∥∥y

∥∥ = sup
α∈F\{0}

∣∣ f̃x (αx)
∣∣

‖αx‖

= sup
α∈F\{0}

|α‖x‖|
|α|‖x‖ = 1.

(c) According to the Hahn-Banach theorem, there exists fx ∈ X∗ such
that fx |span{x} = f̃x and

fx(x) = f̃x(x) = ‖x‖ .

Moreover, the operator norm of fx equals that of f̃x , which shows the
second part of the question.
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Exercise 2. Consider the operator T : `∞ → `p , with 1 ≤ p <∞, defined
by

T (a) =
(
a1,

a2

2α
, . . . ,

an

nα
, . . .

)
.

(a) Show that T is well defined when α> 1/p. In that case also show that
it is a linear operator and that it is bounded. Is T well defined when
α= 1/p?

(b) Show that for any α > 1/p the operator T is injective but not surjec-
tive.

Solution. (a) For any a ∈ `∞ we have that∑
n∈N

∣∣∣ an

nα

∣∣∣p
= ∑

n∈N

|an |p
nαp

≤ ‖a‖p
∞

∑
n∈N

1

nαp
<∞

since αp > 1. This shows that T is well defined and, once we’ll show
that it is linear, it also shows that

‖T a‖p ≤
( ∑

n∈N

1

nαp

) 1
p

‖a‖∞

which shows that T is bounded with ‖T ‖ ≤ (∑
n∈N 1

nαp

) 1
p .

Given a,b ∈ `∞ we have that since T (a) and T (b) are in `p then

T (a +b) =
(

a1 +b1,
a2 +b2

2α
, . . . ,

an +bn

nα
, . . .

)
=

(
a1,

a2

2α
, . . . ,

an

nα
, . . .

)
+

(
b1,

b2

2α
, . . . ,

bn

nα
, . . .

)
= T a +T b

and for any α ∈ F
T (αa) =

(
αa1,

αa2

2α
, . . . ,

αan

nα
, . . .

)
=αT a,

showing the linearity of T .
In the case α = 1

p the operator is not defined on `∞. Indeed, a =
(1,1,1, . . . , ) ∈ `∞ but

T (a) =
(

1,
1

2
1
p

, . . . ,
1

n
1
p

, . . .

)
6∈ `p .

(b) We have that

T (a) = T (b)

if and only if an
nα = bn

nα for all n ∈N (pointwise equality in the sequence
space), or equivalently an = bn for all n ∈ N. This implies that a = b
which shows the injectivity.
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To show that the map is not surjective we fix 1
p < β < α. As was

shown above the vector

x =
(
1,

1

2β
, . . . ,

1

nβ
, . . .

)
belongs to `p however if T (a) = x then an

nα = 1
nβ

for all n ∈N or equiva-

lently an = nα−β. Sinceα>β the vector a can’t be in `∞, which shows
the desired result.

�

Exercise 3. Let X,Y be Banach spaces.

(a) Define what it means for a linear operator T :X→Y to be compact.
(b) Let f : X→ C be an unbounded linear functional (where we assume

that such a functional exists). For a fixed 0 6= x0 ∈X let T : X→X be
defined by T x = f (x)x0. Show that T has finite rank (i.e. dim(R(T )) <
∞) but is not compact.

Solution. (a) T is compact if it maps bounded sets to pre-compact sets.
Equivalently, T is compact if for every bounded sequence {xn}n∈N ⊂
X the sequence {T xn}n∈N ⊂Y has a convergent subsequence.

(b) Since R(T ) = span{x0} has dimension 1 <∞, T has finite rank. Since
f is unbounded, we can find a sequence {xn}n∈N ⊂X with ‖xn‖ = 1
and | f (xn)| →∞ as n →∞. If T were compact, {T xn}n∈N ⊂X would
have a convergent subsequence, but since ‖T xn‖ = ‖ f (xn)x0‖ = | f (xn)|‖x0‖→
∞, this cannot be true. Thus T is not compact.

�

Exercise 4. Let u :R→R be defined by u(x) = (1+|x|)−1.

(a) For which 1 ≤ p ≤∞ is u ∈W 1,p (R)? (note the change here from W 1,p
0

in the original exam).
(b) Give an explicit f ∈ H−1(R) such that f (u) = 1.

Solution. (a) The function u is continuous on R and differentiable at all
x 6= 0, with

u′(x) =−sgn(x)(1+|x|)−2.

From this we see that u is Lipschitz and hence from the lectures we
know that it is weakly differentiable.
Thus u ∈ W 1,p (R) if and only if u,u′ ∈ Lp (R). Since u is even, this is
equivalent to proving that u,u′ ∈ Lp ([0,∞)). For p = ∞ this is obvi-
ously true. Now let 1 ≤ p <∞. We have∫ ∞

0
|u|p dx =

∫ ∞

0
(1+x)−p dx =

{
− 1

p−1 (1+x)−p+1|x=∞x=0 = 1
p−1 , p > 1,

log(1+x)|x=∞x=0 =∞, p = 1.
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Thus u ∈ Lp (R) for p > 1 but not for p = 1. Note that since |u′| = |u|2,
we have u′ ∈ Lp (R) if and only if u ∈ L2p (R), which is true for all p >
1/2. Thus u ∈W 1,p (R) for all 1 < p ≤∞ but not for p = 1.

(b) H−1(R) is the dual space of H 1(R). We can take any g ∈ H−1(R) with
g (u) 6= 0 and then define

f (v) := g (v)

g (u)
, v ∈ H 1(R).

We know that (from Riesz’s Representation Theorem) any g ∈ H−1(R)
is of the form g (v) = 〈v,h〉H 1 for fixed h ∈ H 1(R). We can take for
example h = u, since then g (u) = ‖u‖2

H 1 ≥ ‖u‖2
L2 > 0. Thus

f (v) = 〈v,u〉H 1

‖u‖2
H 1

.

�

Exercise 5. Consider the subset H⊂ `2 given by

H=
{

a ∈ `2 |
∑

n∈N
n2 |an |2 <∞

}
.

(a) Is H closed with respect to the norm of `2? Prove your claim.
(b) Let B be the set

B =
{

a ∈H | ∑
n∈N

n2 |an |2 ≤ 1

}
⊂H.

Show that for any a ∈ B we have that∑
n≥N

|an |2 ≤ 1

N 2

and then prove that if {an}n∈N is a sequence in B such that

(an) j −→
n→∞ a j , ∀ j ∈N

for some a ∈ B (component-wise convergence) then

‖an −a‖`2
−→

n→∞ 0.

Solution. (a) H is not closed. Indeed, the sequence {an}n∈N defined by

an =
(
1,

1

2
,

1

3
, . . . ,

1

n
,0,0, . . .

)
belongs to H since ∑

j∈N
j 2

∣∣(an) j

∣∣2 = n
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and it converges to a = { 1
n

}
n∈N (this follows from the fact that {en}n∈N

is a Schauder basis for `2). This sequence is not in H since∑
n∈N

n2 |an |2 =
∑

n∈N
1 =∞.

(b) For any a ∈ B we find that∑
n≥N

|an |2 ≤
∑

n≥N

n2

N 2
|an |2 ≤

∑
n∈Nn2 |an |2

N 2
≤ 1

N 2
.

Assume now that {an}n∈N ∈ B converges component wise to a ∈ B .
Then for any N ∈N

‖an −a‖2 =
N∑

j=1

∣∣(an) j −a j
∣∣2 +

∞∑
j=N+1

∣∣(an) j −a j
∣∣2

≤
N∑

j=1

∣∣(an) j −a j
∣∣2 +2

∞∑
j=N+1

(∣∣(an) j

∣∣2 + ∣∣a j
∣∣2

)
≤

N∑
j=1

∣∣(an) j −a j
∣∣2 + 4

(N +1)2 .

Thus, due to the component convergence, we find that for any N ∈N

limsup
n→∞

‖an −a‖2 ≤ limsup
n→∞

N∑
j=1

∣∣(an) j −a j
∣∣2 + 4

(N +1)2 = 4

(N +1)2 .

As N ∈N is arbitrary we can take it to infinity and conclude that

lim
n→∞‖an −a‖2 = 0.

�

Exercise 6. Let X andY be normed spaces and let E be a given subset of
X. Let T :X→Y be a given bounded linear operator.

(a) Show that if T |E = 0 then T |M = 0 where M = spanE .
(b) Let {En}n∈N be a given sequence of subsets ofX. Show that if {Tn}n∈N ∈

B
(
X,Y

)
satisfy

Tn |E j = 0, ∀n ≥ j ,

then if {Tn}n∈N converges to T ∈ B
(
X,Y

)
in the operator norm we

have that
T |span∪n∈NEn

= 0.

Solution. (a) Let x ∈ spanE . Then there exist n ∈ N, x1, . . . , xn ∈ E and
scalars α1, . . . ,αn such that

x =
n∑

i=1
αi xi .
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Since T |E = 0 and T is a linear operator we see that

T x =
n∑

i=1
αi T xi =

n∑
i=1

αi 0 = 0.

Thus we find that T |spanE = 0. Next, given x ∈M we know that we can
find a sequence {xn}n∈N from spanE that converges to x.

Since T is bounded (and as such continuous) we have that

T x = lim
n→∞T xn =

T |spanE=0
lim

n→∞0 = 0.

As x was arbitrary we conclude that T |M = 0.
(b) Using 6.1 we see that it is enough to show that T |∪n∈NEn = 0. Indeed,

let x ∈ ∪n∈NEn . Then there exists n0 ∈ N such that x ∈ En0 . Thus, for
any n ≥ n0 we have that Tn x = 0.

Since Tn converges to T in the operator norm we see that for any
n ≥ n0

‖T x‖ = ‖T x −Tn x‖ ≤ ‖T −Tn‖‖x‖
As the above holds for any such n we can take n to infinity and con-
clude that ‖T x‖ = 0, i.e. T x = 0. Since x was arbitrary we find that
T |∪n∈NEn = 0 which completes the proof.

�

Exercise 7. Consider T : `2 → `2 defined by

T (x1, x2, x3, x4, x5, x6, . . . ) = (0, x1,0, x3,0, x5, . . . ).

(a) Compute T 2.
(b) Find ρ(T ), σ(T ), σp (T ), σc (T ) and σr (T ).

Solution. (a) Let x ∈ `2. Then T 2x = T (0, x1,0, x3,0, x5, . . . ) = (0,0,0, . . . ).
Hence T 2 = 0 in `2.

(b) The point λ= 0 is an eigenvalue because for example Te2 = 0.
Quick way: The spectral mapping theorem for polynomials implies

σ(T 2) = {λ2 : λ ∈ σ(T )}. Since σ(T 2) = σ(0) = 0, the spectrum σ(T )
contains only λ ∈ C such that λ2 = 0, whose only solution is λ = 0.
Thus σ(T ) = {0}, ρ(T ) =C\{0}.

Longer way to prove C\{0} ⊂ ρ(T ): If λ 6= 0, then T −λ is injective
because (T−λ)x = 0 means (consider separately odd and even indices
n):

−λx2 j−1 = 0, x2 j−1 −λx2 j = 0, for j ∈N.

The first equation implies that xn = 0 for all odd n = 2 j−1, and insert-
ing this into the second equation implies xn = 0 for all even n = 2 j .
Thus x = 0.
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To prove surjectivity, let (T −λ)x = y . This means

−λx2 j−1 = y2 j−1, x2 j−1 −λx2 j = y2 j , for j ∈N.

Thus x2 j−1 =−λ−1 y2 j−1 and x2 j =λ−1(x2 j−1−y2 j ) =−λ−2 y2 j−1−λ−1 y2 j .
This x belongs to `2 because

∞∑
n=1

|xn |2 =
∞∑

j=1

(|x2 j−1|2 +|x2 j |2
)= ∞∑

j=1

(|−λ−1 y2 j−1|2 +|−λ−2 y2 j−1 −λ−1 y2 j |2
)

≤ 2|λ|−2‖y‖2 +2|λ|−4‖y‖2 <∞,

where we have used ‖u + v‖2 ≤ 2(‖u‖2 +‖v‖2).
Altogether,

σp (T ) =σ(T ) = {0}, ρ(T ) =C\{0}, σc (T ) =σr (T ) =;.

�

Exercise 8. Let T = i d
dx in the Hilbert space L2([0,1]) with

D(T ) =
{

f ∈ L2([0,1]) : f absolutely continuous on [0,1], f ′ ∈ L2([0,1]), f (0) = i f (1)
}

.

(a) Show that T is densely defined.
(b) Show that T is symmetric.
(c) Show that T is selfadjoint. You may use without proof that the general

solution of f ′−µ f = g (for given µ ∈C and g ∈ L2([0,1])) is

f (x) = exp(µx)

(
C +

∫ x

0
exp(−µt )g (t )dt

)
,

for a constant C ∈C.

Solution. (a) We know that C∞
0 ((0,1)) is dense in L2([0,1]). Since C∞

0 ((0,1)) ⊂
D(T ) ⊂ L2([0,1]), the closure of D(T ) is also L2([0,1]).

(b) From the lectures we know that it suffices to prove that 〈T f , f 〉 ∈R for
all f ∈D(T ). Indeed, integration by parts yields

〈T f , f 〉 = i
∫ 1

0
f ′(x) f (x)dx = i

| f (x)|2
2

|x=1
x=0 − i

∫ 1

0
f (x) f ′(x)dx

=
∫ 1

0
f (x)i f ′(x)dx = 〈T f , f 〉,

where we have used | f (x)|2|x=1
x=0 = | f (1)|2 −| f (0)|2 = 0 by the assump-

tion f (0) = i f (1). Since a complex number is equal to its complex
conjugate if and only if it is real, we get 〈T f , f 〉 ∈R.

(c) Once we know that an operator is symmetric (we know it from (b)),
we know from the lectures that it suffices to proveR(T ±i ) = L2([0,1]).
[Instead of ±i, one can take two different points, one in the upper and
one in the lower complex half-plane.]
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Let g ∈ L2([0,1]). The equation (T −λ) f = i f ′−λ f = g has the gen-
eral solution (using a variation of constants method – see hint)

f (x) = e
λ
i x

(
C +

∫ x

0
e−

λ
i t g (t )dt

)
.

Now we choose the constant C such that f satisfies the boundary
condition f (0) = i f (1). This means

C = f (0) = i f (1) = ie
λ
i

(
C +

∫ 1

0
e−

λ
i t g (t )dt

)
,

hence, if 1− ie
λ
i 6= 0,

C = ie
λ
i
∫ 1

0 e−
λ
i t g (t )dt

1− ie
λ
i

.

Note that for λ=±i we have 1−ie
λ
i = 1−ie±1 6= 0, so C is well-defined.

The corresponding f is in D(T ), which implies R(T ± i ) = L2([0,1]).
�


