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Functional Analysis and Applications IV-
Revision Class

Exercise 1. (a) State the Hahn-Banach theorem.
(b) Let X' be a Banach space over a field F. For a given 0 # x € X define
f; :spani{x} —[F

by f; (ax) = a | x|| where a € F. Show that fx is a linear functional and

that “fx”span{x}* = 1.
(c) Prove that for any 0 # x € X there exists f, € X'* such that f;(x) = || x|l

and | fx|| - = 1.

Solution. (a) Let 2 be a normed space and let % be a subspace of 2.
Assume that g is a bounded linear functional on % . Then there exists
a bounded linear extension of g, g, to all of & such that ||g||? =

||§||%*, where

lgw)]
Sup o Y #1{0}
l&ly- —{ y<Y y20 Il .

o Y = {0}

(b) Since {x} is a basis for span{x} we know that each vector in span {x}
can be written uniquely as ax for some a € F. Thus, f is well defined.
Moreover

Felarx+az0) = (@ + ap) |xll = ay x| + @z x| = f (@12) + fi (@2x)
and forany feF
fx(Ban) = fx ((Ba) x) = (Ba) Il = f(allxI) = Bf: ()
which shows that f is indeed a linear functional.

Ll @]
yespan{x}\{0} ||y|| acF\{0} lax||

”ﬁf”span{x}* -

allxll

up =1.

aer\oy |l x|l

(c) According to the Hahn-Banach theorem, there exists fy € 2 such
that fx|span{x} = frand

fe®) = fro(x) = llx]l.

Moreover, the operator norm of fy equals that of f;, which shows the

second part of the question.
U
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Exercise 2. Consider the operator T : o, — ¢p, with 1 < p < oo, defined
by
T(a) = (“1’27""’F"")'

(a) Show that T is well defined when a > 1/p. In that case also show that
it is a linear operator and that it is bounded. Is T well defined when
a=1/p?

(b) Show that for any a > 1/p the operator T is injective but not surjec-
tive.

Solution. (a) For any a € ¢, we have that

lan|P 1
Y =) n’;p <lallk 7

neN neN neN

an |P

<00

na

since ap > 1. This shows that T is well defined and, once we’ll show
that it is linear, it also shows that

1
ITall, < (Z W) laleo

neN

< =

—

which shows that T is bounded with || T|| < (X en =25 ) 7 -

nar
Given a, b € ¢, we have that since T'(a) and T'(b) are in £, then

T(a+b) = a1+b1, oa yeeey a

a + by a,+by, )
yeus

ap an bg b
S P T Y P
2¢ n¢ 2¢

and forany a € F

—”,...):Ta+Tb
na

aa aay,
z—a,...,

T(aa):(aal, ,...):aTu,

na
showing the linearity of T.

In the case a = % the operator is not defined on ¢,. Indeed, a =
1,1,1,...,) € £, but

1 1
T(a) = (1,—1,...,—1,...) Q’(p
2P nr
(b) We have that
T(a)=T(b)

if and only if % = % for all n € N (pointwise equality in the sequence
space), or equivalently a,, = b, for all n € N. This implies that a = b
which shows the injectivity.
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To show that the map is not surjective we fix % < fB < a. As was
shown above the vector

(2 1
X = Py I I
belongs to £, howeverif T (a) = x then % = # for all n € N or equiva-
lently a,, = n®P. Since a > B the vector a can’t be in ¢, which shows
the desired result.

O

Exercise 3. Let 2, % be Banach spaces.

(a) Define what it means for a linear operator T: £ — % to be compact.

(b) Let f: 2 — C be an unbounded linear functional (where we assume
that such a functional exists). Forafixed0#Zxoe L let T : X — X be
defined by Tx = f(x)xo. Show that T has finite rank (i.e. dim(R (7)) <
oo) but is not compact.

Solution. (a) T is compact if it maps bounded sets to pre-compact sets.
Equivalently, T is compact if for every bounded sequence {x,},en ©
Z the sequence {T x,},en € % has a convergent subsequence.
(b) Since R(T) = span{xy} has dimension 1 < oo, T has finite rank. Since
f is unbounded, we can find a sequence {x;},eny € X with [lx,] =1
and | f(x,)| — oo as n — oco. If T were compact, {Tx,},en © 2 would
have a convergent subsequence, but since || Tx, |l = || f(x,) xoll = | f (x )|l x0ll —
oo, this cannot be true. Thus T is not compact.
]

Exercise 4. Let u: R — R be defined by u(x) = (1+ lx)~L.

(@) Forwhichl<p<ooisue WLP(R)? (note the change here from Wol’p
in the original exam).
(b) Give an explicit f € H}(R) such that f(u) = 1.

Solution. (a) The function u is continuous on R and differentiable at all
x #0, with
u'(x) = —sgn(x) (1 +|x|) 2.

From this we see that u is Lipschitz and hence from the lectures we
know that it is weakly differentiable.

Thus u € WHP(R) if and only if u,u’ € LP(R). Since u is even, this is
equivalent to proving that u, u’ € LP([0,00)). For p = oo this is obvi-
ously true. Now let 1 < p < oco. We have

1 —p+1jx=00 1
* o - 1+ x)~P* ==, >1,
f |u|pdx:f (l-l—x)_pdx: P—l( )_ |x—0 p—1 p

0 0 log(1 + x)|525° = oo, p=1.



Thus u € LP(R) for p > 1 but not for p = 1. Note that since |u'| = lul?,
we have u' € LP(R) if and only if u € L2P(R), which is true for all p>
1/2. Thus u€ WY P(R) for all 1 < p < co but not for p = 1.

(b) H™'(R) is the dual space of H'(R). We can take any g € H!(R) with
g(u) # 0 and then define

f(v):= @, ve H'R).

g(u)
We know that (from Riesz’s Representation Theorem) any g € H ()
is of the form g(v) = (v, h)p for fixed h € H'(R). We can take for
example h = u, since then g(u) = | uIIiI1 > | ulli2 > 0. Thus

fw) = , u>2H1.
T

Exercise 5. Consider the subset # c ¢; given by

5‘€:{a€£2| Yy nzlan|2<oo}.

neN

(a) Is #€ closed with respect to the norm of ¢,? Prove your claim.
(b) Let B be the set

B:{ae%’l Z nzlanlzs l}célé’.
neN
Show that for any a € B we have that
1
Z |an|2 =—
n=N N2
and then prove that if {a,},,cn IS @ sequence in B such that
(an)j n?o)oaj’ VjEN
for some a € B (component-wise convergence) then

a,—a — 0.
la,~als, —

Solution. (a) # is not closed. Indeed, the sequence {a,},\ defined by

11 1

a,=1,-,-,...,—,0,0,...
" 2’3 n

belongs to # since

> j* || =n
JEN
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and it converges to a = {%}neN (this follows from the fact that {e;},,en
is a Schauder basis for ¢5). This sequence is not in # since
Y nflagl=) 1=oc0.
neN neN
(b) For any a € B we find that

n2

2 2
2 5 2neN N7 lapl 1
Z |an| = Z mlanl S—Nz Sﬁ.
n=N n=N
Assume now that {a,},cn € B converges component wise to a € B.
Then forany NeN
, U 2 X 2
la,—al® =) |@a);—aj|"+ Y. |(an);-aj|
j=1 j=N+1

N 2 s 2 2
<Y l@n;-aif+2 Y (J@w*+|ajl’)
j:l j:N+1

N 2
=) [anj—aj|"+
j=1

(N+1)2
Thus, due to the component convergence, we find that forany Ne N
2 N 2 4
limsup|la, — al” <limsu (ay);i—a;|” + = .
il ey ;' ;= 4l (N+1)?  (N+1)?

As N € N is arbitrary we can take it to infinity and conclude that
lim [la,—al®=0.
n—oo
O

Exercise 6. Let 2 and % be normed spaces and let E be a given subset of
X.LetT: X — % be a given bounded linear operator.
(@) Show thatif T'|g =0 then T| 4 = 0 where .# = spankE.
(b) Let{Ey},en beagiven sequence of subsets of 2. Show thatif {T},},en €
B(Z,¥) satisty
TnlEjZO’ Vl’le,
then if {Ty},en converges to T € B(2',%) in the operator norm we
have that
T|

spanupenEn =0.

Solution. (a) Let x € spanE. Then there exist n € N, x1,...,x, € E and
scalars a1, ..., a, such that

n
xX=) aix;.
i=1



(b)

Since T|g =0 and T is a linear operator we see that

n n
Tx=) a;Tx;=) a;0=0.
i=1 i=1
Thus we find that T'|spang = 0. Next, given x € ./ we know that we can
find a sequence {x,},cn from spanE that converges to x.
Since T is bounded (and as such continuous) we have that
Tx=1lm Tx, = lim 0=0.
n—oo Tlspang=0 n—00
As x was arbitrary we conclude that 7| 4 = 0.
Using 6.1 we see that it is enough to show that Ty, g, = 0. Indeed,
let x € UpenEy. Then there exists ng € N such that x € Ej,,. Thus, for
any n = ny we have that T,,x = 0.
Since T, converges to T in the operator norm we see that for any
n=ny
ITxIl =1Tx—Tpxll < I T — Thll llxIl

As the above holds for any such n we can take 7 to infinity and con-
clude that | Tx|| =0, i.e. Tx =0. Since x was arbitrary we find that
Ty, enE, = 0 which completes the proof.

U

Exercise 7. Consider T : ¢, — ¢, defined by

(@
(b)

T(X1,X2,X3,X4,X5,XG,...) = (O,X1,0,X3,0, X5,...).

Compute T2,
Find p(T), o(T), 0(T), 0.(T) and o,(T).

Solution. (a) Let x € ¢,. Then T?x = T(0,x1,0,x3,0,xs,...) = (0,0,0,...).

(b)

Hence T? =01in ¢5.
The point A = 0 is an eigenvalue because for example Te; = 0.

Quick way: The spectral mapping theorem for polynomials implies
o(T?) = {A?: A € o(T)}. Since o(T?) = 0(0) = 0, the spectrum o (7T)
contains only A € C such that A? = 0, whose only solution is A = 0.
Thus o (T) = {0}, p(T) = C\{0}.

Longer way to prove C\{0} c p(T): If A # 0, then T — A is injective
because (T—1)x = 0 means (consider separately odd and even indices
n):

—/1)62]'_1 =0, X2j-1 —ﬂij =0, for ] e N.

The first equation implies that x,, = 0 forall odd n =2j—1, and insert-
ing this into the second equation implies x, = 0 for all even n = 2j.
Thus x =0.



To prove surjectivity, let (T — A)x = y. This means
—AX2j-1=Y2j-1, X2j-1—AX2j=y2j, forjeN.
Thus X2j-1= —/1_1)/2]_1 and X2j = A_l(Jng_l—ygj) = —A_Zygj_l—/l_lygj.
This x belongs to ¢, because
Z Z (2P +1x2j2) = Y (1= A7 g1 P+ 1= A2y 521 = A7 y41%)
n=1 j=1 j=1
<2172y + 2141 I ylI? < oo,

where we have used ||u + v||? < 2(|ull? + || v]?).
Altogether,

op(T)=0(T)=1{0}, p(T)=C\{0}, o (T)=0,(T)=0
O
Exercise 8. Let T = id% in the Hilbert space L2([0,1]) with

D(T) = {f € I2([0,1]) : f absolutely continuous on [0, 1], f' € L2([0,1]), f(0) = if(l)}.

(a) Show that T is densely defined.

(b) Show that T is symmetric.

(c) Show that T is selfadjoint. You may use without proof that the general
solution of f' — uf = g (for given u € C and g € L?([0,1])) is

X
f(x) =exp(ux) (C+[O exp(—ur)g(rde],
for a constant C € C.

Solution. (a) We know that C3°((0,1)) isdense in L2(]0,1]). Since Cyo(0,1)
D(T) < L*([0,1]), the closure of D(T) is also L*([0, 1]).

(b) From the lectures we know that it suffices to prove that (T f, f) € R for
all f €D (T). Indeed, integration by parts yields

2
(Tf, f)_lf f(x)f(x)dx—1|f( )I

f (x) f'(x)dx

- A f(x)if’(x)dx: (Tf, ),

where we have used If(x)lzljﬁi(l) = |f(1)|2 |f(0)|2 0 by the assump-
tion f(0) =if(1). Since a complex number is equal to its complex
conjugate if and only if it is real, we get (T f, f) € R.

(c) Once we know that an operator is symmetric (we know it from (b)),
we know from the lectures that it suffices to prove R (T +i) = L>([0, 1]).
[Instead of +i, one can take two different points, one in the upper and
one in the lower complex half-plane.]



Letge L2([0,1]). The equation (T —A) f =if’ — Af = g has the gen-
eral solution (using a variation of constants method — see hint)
Ay * oAy
fx)=ei C+f e i g(ndel.
0
Now we choose the constant C such that f satisfies the boundary

condition f(0) =if(1). This means

C=f(O)=if(1) =ie (c+f
0

1 _Ay
e i g(t)dt),

hence, if 1 — ie% #0,

Co ief L e tlg(nde

. A
1—iei
Note that for A = +i we have 1 — ie% =1—-ie*! #0, so C is well-defined.

The corresponding f is in ©(T), which implies R(T + i) = L2([0,1]).
O



