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CHAPTER 4

Poisson’s Equation

LetΩ⊆Rn be open. Poisson’s equation is the PDE

−∆u = f

where u :Ω→R is the unknown and f :Ω→R is given.

DEFINITION 4.1 (Linear, second-order, elliptic PDEs). Let Ω ⊆ Rn be open and ai j ,b j ,c :
Ω→ R for i , j ∈ {1, . . . ,n}. Let A be the matrix–valued function defined by [A(x)]i j = ai j (x), and
let b be the vector–valued function defined by [b(x)] j = b j (x). Define the linear, second-order
differential operator L by

Lu =−
n∑

i , j=1
ai j uxi x j +

n∑
j=1

b j ux j + cu =−A : D2u +b ·∇u + cu,

for u :Ω→ R. We say that L is elliptic if A is symmetric and uniformly positive definite, which
means that ai j (x) = a j i (x) for all x ∈Ω and that there exists a constantα> 0 such that y T A(x)y ≥
α|y |2 for all y ∈Rn , x ∈Ω. PDEs of the form Lu(x) = f (x) are called elliptic PDEs.

For example, for Poisson’s equation L =−∆, A = I , b = 0, c = 0, and α= 1.

4.1. Poisson’s Equation in [a,b]

In one dimension ∆u = u′′ and Poisson’s equation has the form

−u′′ = f

In the case where we consider Dirichlet boundary conditions, i.e. u(a) = u(b) = 0 you have
shown that the solution to the equation is given by

u(x) =
∫ x

a

(y −a)(b −x)

b −a
f (y)d y +

∫ b

x

(x −a)(b − y)

b −a
f (y)d y.

which can be written as

u(x) =
∫ b

a
G(x, y) f (y)d y

3



4.1. POISSON’S EQUATION IN [a,b] 4

where

G(x, y) =


(y −a)(b −x)

b −a
if y ≤ x,

(x −a)(b − y)

b −a
if y ≥ x.

G a called the Green’s function and is an important tool in the study of linear PDEs.

Properties of the Green function for the Dirichlet problem on [a,b]:

• G is symmetric, i.e. G
(
x, y

)=G
(
y, x

)
.

• G is continuous.
• We have that

Gy (x, y) =


b −x

b −a
if y < x,

−x −a

b −a
if y > x.

showing that Gy is discontinuous on y = x. The same holds for Gx(x, y).
• Outside of the diagonal y = x we have that

Gxx(x, y) =Gy y (x, y) = 0.

REMARK 4.2 (Green’s functions). Let Ω ⊆ Rn be open and bounded with smooth boundary.
It can be shown that if u ∈ C 2(Ω) satisfies −∆u = f in Ω and u = g on ∂Ω, where f and g are
continuous, then there exists a Green’s function G such that

(4.1) u(x) =
∫
Ω

G(x , y) f (y)d y −
∫
∂Ω

∇yG(x , y) ·n(y) g (y)dS(y).

See Evans (2010, Section 2.2.4). As above, the Green’s function is symmetric and satisfies Laplace’s
equation in x and y away from the diagonal y = x .
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4.2. Poisson equation in Rn , n ≥ 2



4.2. POISSON EQUATION IN Rn , n ≥ 2 6



4.2. POISSON EQUATION IN Rn , n ≥ 2 7



4.2. POISSON EQUATION IN Rn , n ≥ 2 8

DEFINITION 4.3 (Fundamental solution). Let n ≥ 2. The fundamental solution of Poisson’s
equation in Rn is the mapΦ :Rn \ {0} →R defined by

Φ(x) =


− 1

2π
log |x | if n = 2

1

n(n −2)α(n)

1

|x |n−2
if n ≥ 3

where

α(n) = πn/2

Γ
(n

2 +1
)

and where Γ : (0,∞) →R is the Gamma function, which is defined by

Γ(s) =
∫ ∞

0
xs−1e−x d x.

REMARK 4.4 (Facts about Γ and α).

• Γ can be considered an extension of the factorial. Using integration by parts one can
show that for any s > 0

Γ(s +1) = sΓ(s).

One can also show that Γ(1) = 1 and as such

Γ(n) = (n −1)!

for any n ∈N. One can also show that Γ
(1

2

)=p
π.

• It can be shown that α(n) is the volume of the unit ball B1(0) in Rn :

α(n) =
∫

B1(0)
1d x .
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As a consequence one can show that for any R > 0 and x ∈Rn

|BR (x)| =α(n)Rn .

Moreover, the surface area of BR (x) is given by

|∂BR (x)| = nα(n)Rn−1.

LEMMA 4.5 (Properties of the fundamental solution).

(i) ∆Φ(x) = 0 for x ̸= 0.
(ii) Φ(x) →∞ as x → 0.

(iii) Φ has an integrable singularity at the origin: For any R > 0,∫
BR (0)

|Φ(x)|d x <∞.

(iv) ∇Φ also has an integrable singularity at the origin: For any R > 0,∫
BR (0)

|∇Φ(x)|d x <∞.

PROOF.

□
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DEFINITION 4.6 (The function spaces L1
loc and C k

c ).

(i) We define the the space of locally integrable functions on Rn to be

L1
loc(Rn) :=

{
ϕ :Rn →R :

∫
K
|ϕ(x)|d x <∞ for any compact set K ⊂Rn

}
.

(ii) Let k be a nonnegative integer. We let

C k
c (Rn) = { f :Rn →R : f ∈C k (Rn), supp( f ) is compact}

denote the set of k–times continuously differentiable functions on Rn with compact
support. For the case k = 0 we also use the notation Cc (Rn) to denote C 0

c (Rn).

Similarly, for any 1 ≤ p <∞ one can define

Lp (Rn) :=
{
ϕ :Rn →R :

∫
Rn

|ϕ(x)|p d x <∞
}

,

and
L∞(Rn) := {

ϕ :Rn →R : esssupx∈Rn

∣∣ϕ(x)
∣∣<∞}

as well as local versions of these spaces. The notion of essential supremum (esssup) pertains for
measure theory. When a given function is continuous, which is what we will mostly deal with,
this is nothing but the normal supremum.

LEMMA 4.7 (Cc (Rn) ⊂ L∞(Rn)). Let f ∈Cc (Rn). Then f ∈ L∞(Rn).

PROOF.
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□

DEFINITION 4.8 (Convolution). Let ϕ ∈ L1
loc(Rn) and f ∈Cc (Rn). The convolution of ϕ and f

is the function ϕ∗ f :Rn →R defined by

(ϕ∗ f )(x) =
∫
Rn
ϕ(x − y) f (y)d y .

LEMMA 4.9 (Properties of the convolution). Let ϕ ∈ L1
loc(Rn) and f ∈Cc (Rn).

(i) The assumptions on ϕ and f ensure that the convolution is well-defined, i.e.,

|(ϕ∗ f )(x)| <∞ ∀x ∈Rn .

(ii) The convolution is commutative:

ϕ∗ f = f ∗ϕ.

(iii) If ϕ ∈ L1(Rn), then ϕ∗ f ∈ L∞(Rn).
(iv) More generally, if ϕ ∈ Lp (Rn), f ∈ Lq (Rn) with p, q ∈ [1,∞], then ϕ∗ f ∈ Lr (Rn) where

1+ 1
r = 1

p + 1
q . Also

∥ϕ∗ f ∥Lr (Rn ) ≤ ∥ϕ∥Lp (Rn )∥ f ∥Lq (Rn ).

PROOF.

□

THEOREM 4.10 (Solution of Poisson’s equation in Rn). Let f ∈ C 2
c (Rn) be twice continuously

differentiable with compact support. Define

u :=Φ∗ f .
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Then u ∈C 2(R) and u satisfies
−∆u(x) = f (x), x ∈Rn .

PROOF.
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□
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LEMMA 4.11 (Average of a function over the surface of a ball). Let g : Rn → R be continuous.
Let x0 ∈Rn . Then

−
∫
∂Bε(x0)

g (z)dS(z) → g (x0) as ε→ 0.

PROOF.

□
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4.2.1. Fundamental Solution in R.

THEOREM 4.12 (Solution of Poisson’s equation in R). Let f ∈ C 2
c (R) be twice continuously

differentiable with compact support. Define

(4.2) Φ(x) :=
{

x if x ≤ 0,
0 if x ≥ 0.

Define u :=Φ∗ f . Then u ∈C 2(R) and u satisfies

(4.3) −u′′(x) = f (x), x ∈R.

We callΦ the fundamental solution of Poisson’s equation in R.

PROOF.

□
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4.3. The Poincaré Inequality

THEOREM 4.13 (Poincaré inequality). There exists a constant C > 0 such that∫ b

a
| f (x)− f |2 d x ≤C 2

∫ b

a
| f ′(x)|2 d x

for all f ∈C 1([a,b]), where f denotes the average of f over [a,b]:

f = 1

b −a

∫ b

a
f (x)d x.

We can write the Poincaré inequality in terms of L2–norms as

(4.4) ∥ f − f ∥L2([a,b]) ≤C ∥ f ′∥L2([a,b]).

PROOF OF POINCARE’S INEQUALITY ON [a,b].
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□

THEOREM 4.14 (Poincaré inequality for functions that vanish on the boundary).
There exists a constant C > 0 such that∫ b

a
| f (x)|2 d x ≤C 2

∫ b

a
| f ′(x)|2 d x

for all f ∈C 1([a,b]) satisfying f (a) = f (b) = 0. We can write this in terms of L2–norms as

∥ f ∥L2([a,b]) ≤C ∥ f ′∥L2([a,b]).

PROOF.

□
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THEOREM 4.15 (The Poincaré inequality in higher dimensions). Let Ω ⊂ Rn be open and
bounded. There exists a constant C > 0 such that

∥ f ∥L2(Ω) ≤C ∥∇ f ∥L2(Ω)

for all f ∈C 1(Ω) satisfying f = 0 on ∂Ω.

PROOF.
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□
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4.4. Poisson’s Equation inΩ⊂Rn

4.4.1. Existence.

THEOREM 4.16 (Existence for Poisson’s equation in general domains). Let Ω ⊂ Rn be open,
bounded, and connected with smooth boundary. Let f ∈C 1(Ω) be bounded and g ∈C (∂Ω). Then
there exists at least one solution u ∈C 2(Ω)∩C (Ω) of the Dirichlet problem

−∆u = f inΩ,

u = g on ∂Ω.

PROOF.

□

4.4.2. Energy Method: Uniqueness and Continuous Dependence.
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THEOREM 4.17 (Uniqueness for Poisson’s equation). Let Ω ⊂ Rn be open, bounded and con-
nected with smooth boundary. There exists at most one solution u ∈C 2(Ω) of the Dirichlet prob-
lem

−∆u = f inΩ,

u = g on ∂Ω,

where f ∈C (Ω), g ∈C (∂Ω).

PROOF.
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□
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DEFINITION 4.18 (H 1
0 and H 1 norms). LetΩ⊂Rn be open and bounded and let f ∈C 1(Ω).

(i) The H 1
0 –norm of f is defined by

∥ f ∥H 1
0 (Ω) := ∥∇ f ∥L2(Ω) =

(∫
Ω
|∇ f (x)|2 d x

)1/2

.

It can be shown that ∥ ·∥H 1
0 (Ω) is a norm on { f ∈C 1(Ω) : f = 0 on ∂Ω}.

(ii) The H 1–norm of f is defined by

∥ f ∥H 1(Ω) :=
(
∥ f ∥2

L2(Ω) +∥∇ f ∥2
L2(Ω)

)1/2

=
(∫
Ω
| f (x)|2 d x +

∫
Ω
|∇ f (x)|2 d x

)1/2

.

It can be shown that ∥ ·∥H 1(Ω) is a norm on C 1(Ω).
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THEOREM 4.19 (Continuous dependence on data for Poisson’s equation). LetΩ⊂Rn be open
and bounded with smooth boundary. Let f1, f2 ∈C (Ω). Let u1 ∈C 2(Ω) satisfy

−∆u1 = f1 inΩ,

u1 = 0 on ∂Ω,

and u2 ∈C 2(Ω) satisfy

−∆u2 = f2 inΩ,

u2 = 0 on ∂Ω.

Then there exists a constant C > 0 such that

∥u1 −u2∥H 1
0 (Ω) ≤C∥ f1 − f2∥L2(Ω).

In simpler terms, this theorem says that if f1 is close to f2 (in the L2–norm), then u1 is close to u2

(in the H 1
0 –norm).

PROOF.
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□
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4.5. Variational Formulation of Poisson’s Equation

DEFINITION 4.20 (Weak solutions of Poisson’s equation). We say that u ∈V is a weak solution
of Poisson’s equation

(4.5)
−∆u = f inΩ,

u = 0 on ∂Ω,

with f ∈C (Ω) if

(4.6)
∫
Ω
∇u(x) ·∇ϕ(x)d x =

∫
Ω

f (x)ϕ(x)d x for all ϕ ∈V.

The functions ϕ are called test functions.
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THEOREM 4.21 (Relation between the weak and classical formulations).

(i) If u ∈C 2(Ω) is a classical solution of Poisson’s equation (4.5), then it is a weak solution.
(ii) If u is a weak solution of Poisson’s equation (4.5) and if in addition u ∈C 2(Ω), then it is a

classical solution.

classical formulation =⇒ weak formulation
weak formulation+ regularity =⇒ classical formulation

PROOF OF THE RELATIONSHIP BETWEEN THE WEAK AND CLASSICAL FORMULATIONS.
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□
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DEFINITION 4.22 (Dirichlet energy). The Dirichlet energy is the function E : V → R defined
by

E [v] = 1

2

∫
Ω
|∇v(x)|2 d x −

∫
Ω

f (x)v(x)d x .

E is a function of a function and we also refer to it as a functional or an energy functional or
simply an energy.

THEOREM 4.23 (Dirichlet’s principle: Minimising E is equivalent to solving Poisson’s equa-
tion). Let u ∈V . The following are equivalent:

(i) u is a minimiser of E, i.e.,
E [u] = min

v∈V
E [v].

(ii) u is a weak solution of Poisson’s equation (4.5), i.e.,

(4.7)
∫
Ω
∇u(x) ·∇ϕ(x)d x =

∫
Ω

f (x)ϕ(x)d x for all ϕ ∈V.
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PROOF.
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□
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COROLLARY 4.24 (C 2 minimisers of E satisfy Poisson’s equation). If u ∈ C 2(Ω)∩V is a min-
imiser of E, then u is a classical solution of Poisson’s equation (4.5).



CHAPTER 5

Laplace’s Equation

39
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5.1. Mean-Value Formulas

THEOREM 5.1 (Mean-Value Formulas). Let Ω ⊂ Rn be open. If u ∈ C 2(Ω) is harmonic in Ω,
then

u(x) =−
∫
∂Br (x)

u(y)dS(y) =−
∫

Br (x)
u(y)d y

for each ball Br (x) ⊂Ω. Therefore u(x) equals the average of u over any sphere and over any ball
inΩ centred at x .

PROOF.
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□
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THEOREM 5.2 (Mean-Value Formula =⇒ Harmonic). LetΩ⊂Rn be open. If u ∈C 2(Ω) satis-
fies

u(x) =−
∫
∂Br (x)

u(y)dS(y) =−
∫

Br (x)
u(y)d y

for each ball Br (x) ⊂Ω, then u is harmonic inΩ.

PROOF.

□

5.2. Maximum Principles

DEFINITION 5.3 (Open and closed subsets). LetΩ⊆Rn . We say that U ⊆Ω is an open subset
of Ω (or is relatively open in Ω) if U =Ω∩O for some open set O ⊆ Rn . A set V ⊆Ω is a closed
subset of Ω (or is relatively closed inΩ) if V =Ω∩C for some closed set C ⊆Rn .
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DEFINITION 5.4 (Connected sets). A set Ω ⊆ Rn is disconnected if it can be written as the
union of two disjoint nonempty open subsets ofΩ. Otherwise it is connected.

LEMMA 5.5 (Subsets of connected sets). LetΩ⊆Rn . The following are equivalent:

(i) Ω is connected.
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(ii) The only subsets ofΩ that are both open and closed subsets areΩ and the empty set.

PROOF.

□
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THEOREM 5.6 (Maximum Principles). Let Ω ⊂ Rn be open, bounded and connected. Let u :
Ω→R, u ∈C 2(Ω)∩C (Ω) be harmonic inΩ.

(i) Weak maximum principle: u attains its maximum on the boundary ofΩ, i.e.,

max
Ω

u = max
∂Ω

u.

(ii) Strong maximum principle: If u attains its maximum in Ω, then u is constant, i.e., if
there exists x0 ∈Ω such that

u(x0) = max
Ω

u

then u is constant.

PROOF.
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□
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REMARK 5.7 (Minimum Principles). Harmonic functions also satisfy minimum principles in
open sets, i.e., if u is harmonic then it attains its minimum on the boundary ofΩ,

min
Ω

u = min
∂Ω

u,

and if it also attains its minimum inΩ, then u is constant.

PROOF.

□

THEOREM 5.8 (Uniqueness for Poisson’s equation). Let Ω ⊂ Rn be open, bounded and con-
nected. There exists at most one solution u ∈C 2(Ω)∩C (Ω) of the Dirichlet problem

−∆u = f inΩ,

u = g on ∂Ω,

where f ∈C (Ω), g ∈C (∂Ω).

PROOF.

□
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5.3. Maximum Principles for General Elliptic PDEs

DEFINITION 5.9 (Subharmonic and superharmonic functions). Let Ω⊆ Rn be open. We say
that u ∈C 2(Ω) is subharmonic inΩ if −∆u(x) ≤ 0 for all x ∈Ω. We say that u ∈C 2(Ω) is superhar-
monic inΩ if −∆u(x) ≥ 0 for all x ∈Ω.
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THEOREM 5.10 (Weak maximum principle for subharmonic functions). LetΩ⊂ Rn be open,
bounded and connected and let u ∈C 2(Ω)∩C (Ω).

(i) If u is subharmonic, then it satisfies the weak maximum principle

max
Ω

u = max
∂Ω

u.

(ii) If u is superharmonic, then it satisfies the weak minimum principle

min
Ω

u = min
∂Ω

u.

Moreover, subharmonic functions satisfy the strong maximum principle and superharmonic func-
tions satisfy the strong minimum principle.

PROOF.

□

THEOREM 5.11 (Maximum principles for general elliptic PDEs with c = 0). Let Ω ⊂ Rn be
open, bounded and connected and let f ∈C (Ω). Let u ∈C 2(Ω)∩C (Ω) satisfy Lu = f , where L is a
linear second-order elliptic operator of the form

Lu =−
n∑

i , j=1
ai j uxi x j +

n∑
j=1

b j ux j =−A : D2u +b ·∇u

where ai j and b j are continuous functions onΩ, and A is symmetric and uniformly positive def-
inite, which means that ai j (x) = a j i (x) for all x ∈Ω and that there exists a constant α > 0 such
that y T A(x)y ≥α|y |2 for all y ∈Rn , x ∈Ω. Assume that f ≤ 0.

(i) Weak maximum principle: u attains its maximum on the boundary ofΩ, i.e.,

max
Ω

u = max
∂Ω

u.

(ii) Strong maximum principle: If u attains its maximum in Ω, then u is constant, i.e., if
there exists x0 ∈Ω such that

u(x0) = max
Ω

u

then u is constant inΩ.
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Similarly, if f ≥ 0, then u satisfies weak and strong minimum principles. In particular, if f = 0,
then u satisfies weak and strong maximum and minimum principles.

5.4. Regularity of Harmonic Functions

THEOREM 5.12 (Regularity of Harmonic Functions). Let Ω ⊆ Rn be open and u ∈ C 2(Ω) be
harmonic. Then

(i) u ∈C∞(Ω),
(ii) u is analytic in Ω, which means that u is infinitely differentiable and, for all x0 ∈Ω, the

Taylor series of u about x0 converges to u in some neighbourhood of x0.

PROOF OF THE REGULARITY OF HARMONIC FUNCTIONS.
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□
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THEOREM 5.13 (Liouville’s Theorem). Let u : Rn → R be a bounded harmonic function. Then
u is constant.

PROOF.

□



CHAPTER 6

The Heat Equation

DEFINITION 6.1 (Linear, second-order, parabolic PDEs). Let Ω ⊆ Rn be open, T > 0, and
ai j ,b j ,c : Ω× (0,T ) → R for i , j ∈ {1, . . . ,n}. Let A be the matrix–valued function defined by
[A(x , t )]i j = ai j (x , t ) and b be the vector–valued function defined by [b(x , t )] j = b j (x , t ). Define
the linear, second-order differential operator L by

Lu =−
n∑

i , j=1
ai j uxi x j +

n∑
j=1

b j ux j + cu =−A : D2u +b ·∇u + cu,

for u :Ω× (0,T ) → R. PDEs of the form ut (x , t )+Lu(x , t ) = f (x , t ) are called parabolic if A(x , t )
is symmetric and uniformly positive definite, which means that ai j (x , t ) = a j i (x , t ) for all x ∈Ω,
t ∈ (0,T ) and that there exists a constant α> 0 such that y T A(x , t )y ≥α|y |2 for all y ∈Rn , x ∈Ω,
t ∈ (0,T ). In particular, for fixed t , L is an elliptic operator.
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6.1. Fourier Series and the Heat Equation in R/2πZ
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THEOREM 6.2 (Fourier series). Let L > 0 and v ∈ L2([0,L]). Define vN ∈ L2([0,L]) by

vN (x) =
N∑

n=−N
v̂ne i 2πn

L x

where the Fourier coefficients v̂n are defined by

(6.1) v̂n = 1

L

∫ L

0
v(x)e−i 2πn

L x d x.

Then vN converges to v as N →∞ in the L2–norm, i.e.,

lim
N→∞

∥v − vN∥L2([0,L]) = 0.
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We write

(6.2) v(x) =
∞∑

n=−∞
v̂ne i 2πn

L x

and call the right-hand side the Fourier series of v.
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6.2. Fourier Transform and the Heat Equation in Rn

6.2.1. The Fourier Transform.

DEFINITION 6.3 (The Fourier Transform). Let v ∈ L1(Rn). We define its Fourier transform
v̂ :Rn →C by

(6.3) v̂(ξ) = 1

(2π)n/2

∫
Rn

v(x)e−iξ·x d x
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and its inverse Fourier transform v̌ :Rn →C by

(6.4) v̌(x) = 1

(2π)n/2

∫
Rn

v(ξ)e iξ·x dξ.

THEOREM 6.4 (Properties of the Fourier transform (extended)).

(i) v̂ ∈ L∞ (Rn). Moreover,
∥v̂∥L∞(Rn ) ≤ ∥v∥L1(Rn ) .

(ii) v̂(ξ) is uniformly continuous on Rn .
(iii) F : L1 (Rn) → L∞ (Rn) is linear, i.e. for any u, v ∈ L1 (Rn) and any α,β ∈Cwe have thatá(

αu +βv
)

(ξ) =F
(
αu +βv

)
(ξ) =αF(u) (ξ)+βF(v) (ξ) =αû (ξ)+βv̂ (ξ) .

(iv) For a fixed a ∈Rn and u ∈ L1 (Rn) we have that ua (x) = u(x −a) is a function in L1 (Rn) and

ûa (ξ) = û (ξ)e−iξ·a .

(v) For a fixed λ> 0 and u ∈ L1 (Rn) we have that uλ(x) = λnu (λx) is a function in L1 (Rn) such
that ∥u∥L1(Rn ) = ∥uλ∥L1(Rn ) and

ûλ (ξ) = û

(
ξ

λ

)
.

(vi) For a given multi-index
α= (α1, . . . ,αn) ∈ (N∪ {0})n

we denote by |α| = ∑n
j=1α j . If u and ∂|β|u

∂x
β1
1 ...∂x

βn
n

∈ L1 (Rn) for any multi-index β with
∣∣β∣∣ ≤α

then

F

(
∂|α|u

∂xα1
1 . . .∂xαn

n

)
(ξ) = i |α|ξα1

1 . . .ξαn
n û (ξ) .

(vii) For a given multi-index
α= (α1, . . . ,αn) ∈ (N∪ {0})n

we have that if u and xβ1
1 . . . xβn

n u (x) ∈ L1 (Rn) for any multi-index β with
∣∣β∣∣≤α then

F
(
xα1

1 . . . xαn
n u (x)

)
(ξ) = ∂|α|û (ξ)

∂ξ
α1
1 . . .∂ξαn

n
.

(viii) The notion of convolution: For any u, v ∈ L1(Rn) we can define

u ∗ v (x) =
∫
Rn

u(x − y)v(y)d y =
∫
Rn

u(y)v(x − y)d y .
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(ix) The inversion formula: If u and û belong to L1 (Rn) then

u(x) = 1

(2π)
n
2

∫
Rn

û (ξ)e iξ·x dξ.

Denoting by

ǔ (ξ) = 1

(2π)
n
2

∫
Rn

u (x)e iξ·x d x

the inversion formula can be written as

u = ˇ̂u.

(x) The Fourier transform can be extended to a linear operator

F : Lp (
Rn)→ Lq (

Rn)
where p ∈ [1,2] and q is its Hölder conjugate, i.e.

1

p
+ 1

q
= 1

(in particular q ∈ [2,∞]). When p = q = 2 we find that

F : L2 (
Rn)→ L2 (

Rn)
.

(xi) Plancherel’s identity: For any u ∈ L2 (Rn) we have that û ∈ L2 (Rn) and

∥u∥L2(Rn ) = ∥û∥L2(Rn ) .

Moreover, if u, v ∈ L2 (Rn) then∫
Rn

u (x) v (x)d x =
∫
Rn

û (ξ) v̂ (ξ)dξ.

(xii) The Fourier transform is unique: If u, v ∈ Lp (Rn) with p ∈ [1,2] are such that û(ξ) = v̂(ξ) for
all ξ ∈Rn then u ≡ v.
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6.2.2. The Fundamental Solution of the Heat Equation.
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DEFINITION 6.5 (Fundamental solution of the heat equation). The Fundamental solution of
the heat equation in Rn is the functionΦ :Rn × (0,∞) →R defined by

Φ(x , t ) = 1

(4πkt )
n
2

e− |x |2
4kt .

THEOREM 6.6 (Solution of the heat equation in Rn). Let k > 0 and g ∈ C (Rn) be bounded.
Define u :Rn × (0,∞) →R by

(6.5) u(x , t ) := 1

(4πkt )
n
2

∫
Rn

e− |x−y |2
4kt g (y)d y =Φ∗ g

whereΦ is the fundamental solution of the heat equation in Rn . Then

(i) u is infinitely differentiable: u ∈C∞(Rn × (0,∞));
(ii) u satisfies the heat equation: ut = k∆u in Rn × (0,∞);

(iii) u has initial value g : For each point x0 ∈Rn

lim
(x ,t )→(x0,0)

x∈Rn , t>0

u(x , t ) = g (x0).

PROOF.
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□
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REMARK 6.7 (Solution formula for the heat equation with source term). Consider the heat
equation on Rn with a source term:

ut −k∆u = f in Rn × (0,∞),

u = g for t = 0.

This is satisfied by

u(x , t ) =
∫
Rn
Φ(x − y)g (y)d y +

∫ t

0

∫
Rn
Φ(x − y , t − s) f (y , s)d y d s.
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6.3. The Energy Method

THEOREM 6.8 (Uniqueness for the heat equation). Let Ω ⊂ Rn be open, bounded and con-
nected with smooth boundary. Let k > 0, T > 0. There exists at most one smooth solution u :
Ω× [0,T ] →R of the heat equation

ut −k∆u = f in Ω× (0,T ],

u = g on ∂Ω× [0,T ],

u = u0 on Ω× {0}.

PROOF.
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□
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LEMMA 6.9 (The Grönwall inequality). Let E : [0,∞) → R be a continuously differentiable
function satisfying E ′ ≤−λE for some constant λ ∈R. Then E(t ) ≤ e−λt E(0) for all t ≥ 0.

PROOF.

□

THEOREM 6.10 (Sobolev Embedding Theorem). Let f ∈C 1([a,b]).

(i) For all x, y ∈ [a,b],

| f (y)− f (x)| ≤ ∥ f ′∥L2([a,b]) |y −x| 1
2 .

In other words, f is Hölder continuous with exponent 1/2.
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(ii) Sobolev inequality: There exists a constant C > 0 such that

∥ f ∥L∞([a,b]) ≤C∥ f ∥H 1([a,b])

where ∥ f ∥H 1([a,b]) =
(
∥ f ∥2

L2([a,b])
+∥ f ′∥2

L2([a,b])

) 1
2

.

THEOREM 6.11 (Asymptotic behaviour of the heat equation with periodic BCs).
Let u : R× [0,∞) → R be smooth and 2π–periodic in x, i.e., u(x + 2π, t ) = u(x, t ) for all (x, t ) ∈
R× [0,∞). Let u satisfy

ut −kuxx = 0 for (x, t ) ∈ (0,2π)× (0,∞),

u(x,0) = u0(x) for x ∈ (0,2π),

where u0 : R→ R is a smooth 2π–periodic function. Let u0 = 1
2π

∫ 2π
0 u0(x)d x denote the average

value of u0. Then u → u0 in L∞([0,2π]) as t →∞:

lim
t→∞∥u(·, t )−u0∥L∞([0,2π]) = 0.

In other words, the temperature converges uniformly to the average initial temperature as t →∞.

PROOF.
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□

THEOREM 6.12 (Asymptotic behaviour of the heat equation with time independent data).
Let Ω ⊂ Rn be open, bounded and connected with smooth boundary. Let u :Ω× [0,∞) → R be a
smooth function satisfying

ut (x , t )−k∆u(x , t ) = f (x) for (x , t ) ∈Ω× (0,∞),

u(x , t ) = g (x) for (x , t ) ∈ ∂Ω× [0,∞),

u(x ,0) = u0(x) for x ∈Ω,

where f , g , u0 are given smooth functions. Let v :Ω→R be a smooth, time independent solution
of the same equation:

−k∆v(x) = f (x) for x ∈Ω,

v(x) = g (x) for x ∈ ∂Ω.

Then
lim

t→∞∥u − v∥L2(Ω) = 0.

In other words, if the source term f and boundary data g are independent of time, then the solu-
tion of the heat equation converges in the L2–norm to the solution of Poisson’s equation as t →∞.
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6.4. Maximum Principles

DEFINITION 6.13 (Parabolic domain and parabolic boundary). We define

ΩT =Ω× (0,T ]

and we refer to ΩT as a cylinder. Note that ΩT includes the top of the cylinder Ω× {t = T } but
not the bottomΩ× {t = 0}. The parabolic boundary ofΩT is defined by

ΓT =ΩT \ΩT = (Ω× {0}) ∪ (∂Ω× [0,T ]),

which is the bottom and sides of the cylinderΩT but not the interior or the top.

DEFINITION 6.14 (The function space C 2
1 ). Define C 2

1 (ΩT ) to be the space of functions on
ΩT that are once continuously-differentiable in time and twice continuously-differentiable in
space:

C 2
1 (ΩT ) = {

u :ΩT →R : u,ut ,uxi ,uxi x j ∈C (ΩT ) ∀ i , j ∈ {1, . . . ,n}
}
.

Recall the following facts:

• A matrix A ∈Rm×m is negative semi-definite if

y · Ay ≤ 0 ∀ y ∈Rm .

• Let U ⊆Rm be open and let g ∈C 2(U ). Suppose that y0 ∈U is a local maximum point of
g . Then

∇g (y0) = 0, D2g (y0) is negative semi-definite

where D2g is the matrix of second partial derivatives of g , which has components [D2g ]i j =
g yi y j , i , j ∈ {1, . . . ,m}.
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THEOREM 6.15 (Weak maximum principle for the heat equation). Let k > 0 and letΩ⊂Rn be
open and bounded. Let u : ΩT →R, u ∈C 2

1 (ΩT )∩C (ΩT ).

(i) If
ut −k∆u ≤ 0 inΩT ,

then
max
ΩT

u = max
ΓT

u.

In other words, if u is a solution of the heat equation ut −k∆u = f inΩT with f ≤ 0, then
u attains its maximum on the parabolic boundary ΓT .

(ii) If
ut −k∆u ≥ 0 inΩT ,

then
min
ΩT

u = min
ΓT

u.

In other words, if u is a solution of the heat equation ut −k∆u = f inΩT with f ≥ 0, then
u attains its minimum on the parabolic boundary ΓT .

(iii) If
ut −k∆u = 0 inΩT ,

then
max
ΩT

u = max
ΓT

u, min
ΩT

u = min
ΓT

u.

PROOF.
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□
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THEOREM 6.16 (Strong maximum principle). LetΩ⊂Rn be open and bounded. Let u : ΩT →
R, u ∈C 2

1 (ΩT )∩C (ΩT ). Assume additionally thatΩ is connected.

(i) If ut −k∆u ≤ 0 inΩT , and if u attains its maximum over ΩT at a point (x0, t0) ∈ΩT , then
u is constant inΩt0 =Ω× (0, t0].

(ii) If ut −k∆u ≥ 0 inΩT , and if u attains its minimum over ΩT at a point (x0, t0) ∈ΩT , then
u is constant inΩt0 =Ω× (0, t0].
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CHAPTER 7

The Wave Equation

DEFINITION 7.1 (Linear, second-order, hyperbolic PDEs). Let Ω ⊆ Rn be open, T > 0, and
ai j ,b j ,d : Ω× (0,T ) → R for i , j ∈ {1, . . . ,n}. Let A be the matrix–valued function defined by
[A(x , t )]i j = ai j (x , t ) and b be the vector–valued function defined by [b(x , t )] j = b j (x , t ). Define
the linear, second-order differential operator L by

Lu =−
n∑

i , j=1
ai j uxi x j +

n∑
j=1

b j ux j +du =−A : D2u +b ·∇u +du,

for u :Ω× (0,T ) →R. PDEs of the form ut t (x , t )+Lu(x , t ) = f (x , t ) are called hyperbolic if A(x , t )
is symmetric and uniformly positive definite, which means that ai j (x , t ) = a j i (x , t ) for all x ∈Ω,
t ∈ (0,T ) and that there exists a constant α> 0 such that y T A(x , t )y ≥α|y |2 for all y ∈Rn , x ∈Ω,
t ∈ (0,T ). In particular, for fixed t , L is an elliptic operator.

81
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7.1. The Wave Equation in R

7.1.1. D’Alembert’s Solution.
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REMARK 7.2 (The non-homogeneous wave equation). Duhamel’s principle can be used to
show that the non-homogeneous wave equation

ut t (x, t )− c2uxx(x, t ) = f (x, t ) for (x, t ) ∈R× (0,∞),

u(x,0) = g (x) for x ∈R,

ut (x,0) = h(x) for x ∈R,

is satisfied by

u(x, t ) = 1

2

[
g (x + ct )+ g (x − ct )

]+ 1

2c

∫ x+ct

x−ct
h(y)d y + 1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)
f (y, s)d yd s.
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7.2. The Energy Method

THEOREM 7.3 (Conservation of energy). LetΩ⊂Rn be open and bounded with smooth bound-
ary. Let T > 0. Suppose that u ∈C 2(Ω× [0,T ]) satisfies the following wave equation:

ut t − c2∆u = 0 inΩ× (0,T ],

u = 0 on ∂Ω× [0,T ],

u = g onΩ× {0},

ut = h onΩ× {0},

where g ,h :Ω→R. Define the energy

E(t ) = 1

2

∫
Ω

u2
t (x , t )d x + 1

2
c2

∫
Ω
|∇u(x , t )|2 d x .

Then energy is conserved:
dE

d t
= 0.

In other words, E(t ) = E(0) for all t ≥ 0. If we regardΩ as an elastic body, then E can be interpreted
as the sum of its kinetic energy and its elastic potential energy.

PROOF.
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□
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COROLLARY 7.4 (Uniqueness of C 2
(
Ω× [0,T ]

)
solutions). Let Ω ⊂ Rn be open and bounded

with smooth boundary. Let T > 0. Consider the following wave equation:

ut t − c2∆u = 0 inΩ× (0,T ],

u = 0 on ∂Ω× [0,T ],

u = g onΩ× {0},

ut = h onΩ× {0},

where g ,h :Ω→R. Then there exists at most one C 2
(
Ω× [0,T ]

)
solution to the above equation.

PROOF.
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□

THEOREM 7.5 (Finite speed of propagation). Let u ∈C 2(R× [0,∞)) satisfy

ut t = c2uxx in R× (0,∞).

Fix x0 ∈R, t0 > 0. Define

T= {(x, t ) ∈R× [0, t0] : −c(t0 − t ) ≤ x −x0 ≤ c(t0 − t )}.

This is the triangle in the (x, t )–plane with tip (x0, t0) and base [x0 −ct0, x0 +ct0]× {0}. If u(x,0) =
ut (x,0) = 0 for x ∈ [x0 − ct0, x0 + ct0], then u = 0 in T.

x axis

t axis

x0 − ct0 x0 + ct0

t0

x0

t
x0 − c (t0 − t ) ≤ x ≤ x0 + c (t0 − t )

T= {(x, t ) ∈R× [0, t0] : −c(t0 − t ) ≤ x −x0 ≤ c(t0 − t )}
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