PARTIAL DIFFERENTIAL EQUATIONS III & V REVISION CLASS

Question 1 ($Q2 - May\ 2024\ exam$). We consider the following Cauchy problem for the scalar unknown function u that we aim to solve by the method of characteristics.

(1)
$$\begin{cases} 5 - x_1^2 \partial_{x_2} u(x_1, x_2) = 0, & (x_1, x_2) \in \mathbb{R}^2, \\ u(x_1, 0) = 3, & x_1 \in \mathbb{R}. \end{cases}$$

- a) Determine the leading vector field, the Cauchy datum and the Cauchy curve associated to this problem.
- b) Find all the points on the Cauchy curve which are noncharacteristic.
- c) Write down the ODE system for the characteristics and for the solution along the characteristics. Then solve this system.
- d) Sketch a few characteristic curves.
- e) Find the solution u to (1). Determine its maximal domain of definition.

Question 2 (Q3 – May 2024 exam). Let $\Omega \subset \mathbb{R}^d$ be a bounded open set with smooth boundary, and suppose that $d \ge 2$.

a) Suppose that $u, v \in C^2(\overline{\Omega})$. Show that the following formula holds

$$\int_{\Omega} v \Delta u d\vec{x} + \int_{\Omega} \nabla v \cdot \nabla u d\vec{x} = \int_{\partial \Omega} v \partial_n u dS,$$

where ∇ stands for the gradient, Δ stands for the Laplace operator and we used the notation $\partial_n u = \nabla u \cdot \vec{n}$, with \vec{n} being the outward pointing unit normal vector to $\partial \Omega$.

b) Suppose that $u: \Omega \to \mathbb{R}$ is harmonic and $u \in C^2(\overline{\Omega})$. Show that

$$\int_{\partial\Omega}\partial_n udS=0.$$

- c) Suppose that $u:\Omega\to\mathbb{R}$ is harmonic and $u\in C^2(\overline{\Omega})$. Show that $\int_{\partial\Omega}u\partial_nudS$ is nonnegative.
- d) Suppose that $u, v : \Omega \to \mathbb{R}$ are both harmonic and $u, v \in C^2(\overline{\Omega})$. Show that

$$\int_{\partial\Omega} (u\partial_n v - v\partial_n u) \, dS = 0.$$

Question 3 $(Q5 - May\ 2024\ exam)$. Let $\alpha \in \mathbb{R}$ and set $A^{\alpha} = (a_{ij}^{\alpha})_{i,j=1}^2 \in \mathbb{R}^{2\times 2}$ to be the matrix $A^{\alpha} := \begin{pmatrix} 1 & \alpha \\ \alpha & 1 \end{pmatrix}$. For a given open set $\Omega \subseteq \mathbb{R}^2$ and $u \in C^2(\Omega)$, we define the differential operator

$$(\mathcal{L}^{\alpha}u)(\vec{x}) := -A^{\alpha} : D^{2}u(\vec{x}) = -\sum_{i,j=1}^{2} a_{ij}^{\alpha} \partial_{x_{i}} \partial_{x_{j}} u(\vec{x}),$$

where D^2u stands for the Hessian matrix of u.

- a) Show that the matrix A^{α} is positive semi-definite if and only if $|\alpha| \le 1$. Show that A^{α} is positive definite if and only if $|\alpha| < 1$.
- b) Let Ω be open, bounded and connected with smooth boundary. Suppose that $|\alpha| < 1$ and $u: \Omega \to \mathbb{R}$ is a classical solution to

$$(\mathcal{L}^{\alpha}u)(\vec{x}) = 0, \ \vec{x} \in \Omega.$$

Explain why u attains both its minimum and maximum on $\partial\Omega$.

c) Now we set $\alpha = 1$. Find all those real numbers $c_1, c_2 \in \mathbb{R}$ for which the function $u : \mathbb{R}^2 \to \mathbb{R}$ defined as

$$u(x_1, x_2) = c_1(x_1^2 + x_2^2) - c_2x_1x_2$$

is a solution to $\mathcal{L}^1 u = 0$.

d) Suppose that we are in the setting of the previous point (c). Show that u fails to satisfy either the strong minimum or the strong maximum principle (one of the two). [*Hint*: choose c_1, c_2 such that $u(x_1, x_2) \ge 0$ for all $(x_1, x_2) \in \mathbb{R}^2$. Find a particular bounded connected domain $\Omega \subset \mathbb{R}^2$, which is a sublevel set of u, i.e. $\Omega := \{(x_1, x_2) \in \mathbb{R}^2 : u(x_1, x_2) < r\}$, for some r > 0. Deduce the failure of the strong minimum principle in this domain.

Remark: This is a corrected version of the problem which asked about the weak minimum/maximum principle.]

Question 4 (Q6 – May 2024 exam). Let $f : \mathbb{R} \to \mathbb{R}$ of class C^2 be given. Suppose that this is strongly convex, i.e. there exists $c_0 > 0$ such that $f''(x) \ge c_0$ for all $x \in \mathbb{R}$. Consider the following Cauchy problem for the unknown $u : \mathbb{R} \times (0, +\infty) \to \mathbb{R}$

(2)
$$\begin{cases} \partial_t u(x,t) + \partial_x (f(u(x,t))) = 0, & (x,t) \in \mathbb{R} \times (0,+\infty), \\ u(x,0) = u_0(x), & x \in \mathbb{R}. \end{cases}$$

For $\varepsilon > 0$ we consider the following approximation of (2)

(3)
$$\begin{cases} \partial_t u^{\varepsilon}(x,t) + \partial_x (f(u^{\varepsilon}(x,t))) - \varepsilon \partial_{xx}^2 u^{\varepsilon}(x,t) = 0, & (x,t) \in \mathbb{R} \times (0,+\infty), \\ u^{\varepsilon}(x,0) = u_0(x), & x \in \mathbb{R}. \end{cases}$$

- a) State Lax's entropy condition for weak solutions to the Cauchy problem (2).
- b) We look for a solution to (3) in the form

(4)
$$u^{\varepsilon}(x,t) := v\left(\frac{x - \alpha t}{\varepsilon}\right),$$

for a given constant $\alpha \in \mathbb{R}$ and some given smooth enough function $v : \mathbb{R} \to \mathbb{R}$. Find the second order ODE that v needs to satisfy in order for the formula (4) to give a classical solution to (3).

c) Let u_{ℓ} , $u_r \in \mathbb{R}$ be given, and we are looking for a solution to the ODE for v found in (b) with the additional assumptions

$$\lim_{s \to -\infty} v(s) = u_{\ell}; \quad \lim_{s \to +\infty} v(s) = u_r; \quad \lim_{s \to \pm \infty} v'(s) = 0.$$

Suppose that we find such a solution v. Compute the limit $\lim_{\varepsilon \to 0} u^{\varepsilon}(x, t)$, in the case when $x \neq \alpha t$.

- d) Suppose that we are in the setting of (c). Find an equation that α needs to satisfy, in terms of f and u_{ℓ}, u_{r} . [*Hint*: integrate the second oder ODE for v, then take limits $s \to \pm \infty$].
- e) Suppose that $u_0(x) = \begin{cases} u_\ell, & x < 0, \\ u_r, & x > 0. \end{cases}$ Suppose that $u_r < u_l$. Suppose that (3) has a classical solution in the form of (4), and v and α satisfy all the previously set and obtained properties. Conclude that $u^{\varepsilon}(x,t) \to u(x,t)$, as $\varepsilon \to 0$, almost everywhere, where u is the unique solution to (2) which satisfies Lax's entropy condition.

Question 5 (Q7 – May 2024 exam). We consider the following Cauchy problem

(5)
$$\begin{cases} \partial_t u(x,t) + u(x,t) \partial_x u(x,t) = 0, & (x,t) \in \mathbb{R} \times (0,+\infty), \\ u(x,0) = u_0(x), & x \in \mathbb{R}. \end{cases}$$

We set

$$u_0(x) = \begin{cases} 0, & x < 0, \\ 1, & 0 < x < 1, \\ 2, & 1 < x < 2, \\ x, & 2 < x. \end{cases}$$

We aim to construct a unique entropy solution to this Cauchy problem.

- a) Sketch the characteristic lines associated with the Cauchy problem and discuss about the need of shock curves and/or rarefaction waves.
- b) Introduce the corresponding shocks and/or rarefaction waves.
- c) Write down the candidate for the weak entropy solutions to (5).
- d) Show that this solution is continuous everywhere if t > 0.
- e) Show that the solution satisfies Lax's entropy condition.

Question 6 (Q8 – May 2024 exam). Let $\Omega \subset \mathbb{R}^d$ be a bounded open set with smooth boundary. Let $F : \mathbb{R} \to \mathbb{R}$ be a given smooth function which is bounded above. We consider the energy functional

$$E[u] := \int_{\Omega} \frac{1}{2} (\Delta u(\vec{x}))^2 d\vec{x} - \int_{\Omega} F(u(\vec{x})) d\vec{x},$$

which we define on the set of scalar functions which belong to

$$V := \{ u \in C^2(\overline{\Omega}) : \nabla u \cdot \vec{n} = 0 \text{ and } u = 0 \text{ on } \partial \Omega \}.$$

Here we denoted by Δ the Laplace operator, by ∇ the gradient operator and by \vec{n} the outward pointing unit normal vector field to $\partial\Omega$.

- a) Show that there exists a constant $c_0 > 0$ such that $E[u] \ge -c_0$ for all $u \in V$.
- b) Suppose that $u \in V$ is a minimiser of E. Write down the first order optimality condition, i.e. the Euler–Lagrange equation satisfied by u [The first order optimality condition is the condition we find by using the variational method, i.e. by considering $u_{\varepsilon} = u + \varepsilon \varphi$]
- c) Suppose that $u \in C^4(\overline{\Omega})$ is a minimiser of E over V. Find the PDE and boundary conditions satisfied by u.
- d) Suppose that F is strictly concave. Deduce that if a minimiser of E over V exists, then it must be unique. [We have not discussed this topic this year.]
- e) Show the uniqueness of minimisers of E in V, if F is the constant zero function.