PARTIAL DIFFERENTIAL EQUATIONS III & V REVISION CLASS

Question 1 (*Q2 – May 2024 exam*). We consider the following Cauchy problem for the scalar unknown function *u* that we aim to solve by the method of characteristics.

(1)
$$\begin{cases} 5 - x_1^2 \partial_{x_2} u(x_1, x_2) = 0, & (x_1, x_2) \in \mathbb{R}^2, \\ u(x_1, 0) = 3, & x_1 \in \mathbb{R}. \end{cases}$$

- a) Determine the leading vector field, the Cauchy datum and the Cauchy curve associated to this problem.
- b) Find all the points on the Cauchy curve which are noncharacteristic.
- c) Write down the ODE system for the characteristics and for the solution along the characteristics. Then solve this system.
- d) Sketch a few characteristic curves.
- e) Find the solution u to (1). Determine its maximal domain of definition.

Sol:
(a) The eq. reals as

$$\begin{cases} x_1^2 \partial_{x_2} u(x_1, x_2) = 5 \\ u(x_1, v) = 3 \\ x_1 \in \mathbb{R} \end{cases}$$

This implies that the leading vector
field is
 $\vec{u}(x_1, x_2) = (0, x_1^2)$
The Gruchy curve is
 $\vec{u}(x_1, x_2) = (0, x_1^2)$
The Gruchy curve is
 $\vec{u}(x_2) = (x_2) \quad x \in \mathbb{R} \quad (x_1 - \alpha x_1 \in \mathbb{R})$
The Gruchy dotum is
 $\int u(y(y_2) = u(y_2, v_2) = 3$
b) $f'(y_2) = (1, v_2) \quad (y_2, v_3) = 3$
b) $f'(y_2) = (1, v_3) \quad (y_2, v_3) = 3$
b) $f'(y_3) = (1, v_3) \quad (y_2, v_3) = 3$

$$0 \neq \overline{a}([ts]) \circ (o_{1}-1) = (o_{1}s^{2}) \circ (o_{1}-1) = -S^{2}$$

i.e S\$\phi(s,z) = 0
 $\partial_{z}x_{2}(s,z) = X_{1}(s,z)$
 $\partial_{z}x_{2}(s,z) = 5$
and
 $x_{1}(o,s) = S, \quad x_{2}(o_{1},s) = 0$, $2(s_{1},s) = U([ts]) = 3$
We find that
 $x_{1}(z,s) = x_{1}(o,s) = S$
 $Z(z,s) = 5Z + 2(o_{1}s) = 5Z + 3$
 $Also$
 $\partial_{z}x_{2}(z,z) = x_{1}^{2}(z,z) = s^{2}$
 $\Rightarrow x_{2}(z,s) = 5^{2}Z + x_{2}(o_{1},s) = S^{2}Z$
(d)
 x_{1}
(e) invert the map $zs \rightarrow x_{1}, x_{2}$ and
 $zher$ $u(x_{1},x_{2}) = 2(z(x_{1},x_{2}), S(x_{1},x_{2})).$
We have
 $x_{1} = S$

Question 2 (*Q*3 – *May 2024 exam*). Let $\Omega \subset \mathbb{R}^d$ be a bounded open set with smooth boundary, and suppose that $d \ge 2$.

a) Suppose that $u, v \in C^2(\overline{\Omega})$. Show that the following formula holds

$$\int_{\Omega} v \Delta u d\vec{x} + \int_{\Omega} \nabla v \cdot \nabla u d\vec{x} = \int_{\partial \Omega} v \partial_n u dS$$

where ∇ stands for the gradient, Δ stands for the Laplace operator and we used the notation $\partial_n u = \nabla u \cdot \vec{n}$, with \vec{n} being the outward pointing unit normal vector to $\partial \Omega$.

b) Suppose that $u: \Omega \to \mathbb{R}$ is harmonic and $u \in C^2(\overline{\Omega})$. Show that

$$\int_{\partial\Omega} \partial_n u dS = 0.$$

- c) Suppose that $u: \Omega \to \mathbb{R}$ is harmonic and $u \in C^2(\overline{\Omega})$. Show that $\int_{\partial \Omega} u \partial_n u dS$ is nonnegative.
- d) Suppose that $u, v : \Omega \to \mathbb{R}$ are both harmonic and $u, v \in C^2(\overline{\Omega})$. Show that

$$\int_{\partial\Omega} \left(u\partial_n v - v\partial_n u \right) dS = 0.$$

Suliator u, vec²(JZ)

Question 3 (Q5 – May 2024 exam). Let $\alpha \in \mathbb{R}$ and set $A^{\alpha} = (a_{ij}^{\alpha})_{i,j=1}^2 \in \mathbb{R}^{2\times 2}$ to be the matrix $A^{\alpha} := \begin{pmatrix} 1 & \alpha \\ \alpha & 1 \end{pmatrix}$. For a given open set $\Omega \subseteq \mathbb{R}^2$ and $u \in C^2(\Omega)$, we define the differential operator

$$(\mathcal{L}^{\alpha} u)(\vec{x}) := -A^{\alpha} : D^2 u(\vec{x}) = -\sum_{i,j=1}^2 a^{\alpha}_{ij} \partial_{x_i} \partial_{x_j} u(\vec{x})$$

where $D^2 u$ stands for the Hessian matrix of u.

- a) Show that the matrix A^{α} is positive semi-definite if and only if $|\alpha| \le 1$. Show that A^{α} is positive definite if and only if $|\alpha| < 1$.
- b) Let Ω be open, bounded and connected with smooth boundary. Suppose that $|\alpha| < 1$ and $u: \Omega \to \mathbb{R}$ is a classical solution to

$$(\mathcal{L}^{\alpha} u)(\vec{x}) = 0, \ \vec{x} \in \Omega.$$

Explain why *u* attains both its minimum and maximum on $\partial \Omega$.

c) Now we set $\alpha = 1$. Find all those real numbers $c_1, c_2 \in \mathbb{R}$ for which the function $u : \mathbb{R}^2 \to \mathbb{R}$ defined as

$$u(x_1, x_2) = c_1(x_1^2 + x_2^2) - c_2 x_1 x_2$$

is a solution to $\mathcal{L}^1 u = 0$.

d) Suppose that we are in the setting of the previous point (c). Show that *u* fails to satisfy either the strong minimum or the strong maximum principle (one of the two). [*Hint*: choose c_1, c_2 such that $u(x_1, x_2) \ge 0$ for all $(x_1, x_2) \in \mathbb{R}^2$. Find a particular bounded connected domain $\Omega \subset \mathbb{R}^2$, which is a sublevel set of *u*, i.e. $\Omega := \{(x_1, x_2) \in \mathbb{R}^2 : u(x_1, x_2) < r\}$, for some r > 0. Deduce the failure of the strong minimum principle in this domain.

Remark: This is a corrected version of the problem which asked about the weak minimum/maximum principle.]

Set:
(a) A symmetric matrix A is
positive semi-def if and only if its
eigenvalues
$$\pi_1, \pi_2$$
 one non-negative, and
is positive def. if $\pi_1, \pi_2 \approx 0$.
Recall that
der $A = \pi_1; \pi_2$ $tr(A) = \pi_1 \neq \pi_2$
A is positive def as der $A \approx 0$, $tr(A) \approx 0$
A is positive def as det $A \approx 0$, $tr(A) \approx 0$
In our case
 $der A^{\alpha} = 1 - \alpha^2 + tr(A^{\alpha}) = 0$

PARTIAL DIFFERENTIAL EQUATIONS III & V

REVISION CLASS $\rightarrow A^{x}$ is pos. def $\rightarrow 1^{-\alpha^{2} > 0}$ A^{x} is pos. semi def. $\rightarrow 1^{-\alpha^{2} > 0}$ (b) since la(<1, A° is positive def. and as such 19 is an oliptic operator. Consequently any u that salves 2 4=0 will satisfy the weak min and max principles. Careful ue ctr) ACTO).

(c)
$$L'u = -\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} : D^2 U$$

$$= \left(-\partial_{x_1x_1}^2 - \partial_{x_2x_2}^2 - 2\partial_{x_1x_2}^2\right) U$$

$$u(x_1, x_2) = C_1(x_1^2 + x_2^2) + C_2x_1x_2$$

$$\partial_{x_1x_1}^2 = QC_1 = \partial_{x_2x_2}^2 U$$

$$D_{x_1,x_2}^2 = C_2$$

 $L'u(x_1,x_2) = 0 \longrightarrow 0 = -2C_1 - 2C_1 - 2C_2$

$$\sum_{k=1}^{n} C_{2} = -2C_{1}$$

$$N_{2} = C_{1}(x_{1}^{2} + x_{2}^{2}) - 2C_{1} X_{1}$$

Question 4 (*Q*6 – *May 2024 exam*). Let $f : \mathbb{R} \to \mathbb{R}$ of class C^2 be given. Suppose that this is strongly convex, i.e. there exists $c_0 > 0$ such that $f''(x) \ge c_0$ for all $x \in \mathbb{R}$. Consider the following Cauchy problem for the unknown $u : \mathbb{R} \times (0, +\infty) \to \mathbb{R}$

(2)
$$\begin{cases} \partial_t u(x,t) + \partial_x (f(u(x,t))) = 0, & (x,t) \in \mathbb{R} \times (0,+\infty), \\ u(x,0) = u_0(x), & x \in \mathbb{R}. \end{cases}$$

For $\varepsilon > 0$ we consider the following approximation of (2)

(3)
$$\begin{cases} \partial_t u^{\varepsilon}(x,t) + \partial_x (f(u^{\varepsilon}(x,t))) - \varepsilon \partial^2_{xx} u^{\varepsilon}(x,t) = 0, & (x,t) \in \mathbb{R} \times (0,+\infty), \\ u^{\varepsilon}(x,0) = u_0(x), & x \in \mathbb{R}. \end{cases}$$

a) State Lax's entropy condition for weak solutions to the Cauchy problem (2).

b) We look for a solution to (3) in the form

(4)
$$u^{\varepsilon}(x,t) := v\left(\frac{x-\alpha t}{\varepsilon}\right)$$

for a given constant $\alpha \in \mathbb{R}$ and some given smooth enough function $v : \mathbb{R} \to \mathbb{R}$. Find the second order ODE that v needs to satisfy in order for the formula (4) to give a classical solution to (3).

c) Let $u_{\ell}, u_r \in \mathbb{R}$ be given, and we are looking for a solution to the ODE for *v* found in (b) with the additional assumptions

$$\lim_{s \to -\infty} v(s) = u_{\ell}; \quad \lim_{s \to +\infty} v(s) = u_r; \quad \lim_{s \to \pm \infty} v'(s) = 0.$$

Suppose that we find such a solution v. Compute the limit $\lim_{\varepsilon \to 0} u^{\varepsilon}(x, t)$, in the case when $x \neq \alpha t$.

- d) Suppose that we are in the setting of (c). Find an equation that α needs to satisfy, in terms of f and u_{ℓ}, u_r . [*Hint*: integrate the second oder ODE for v, then take limits $s \to \pm \infty$].
- e) Suppose that $u_0(x) = \begin{cases} u_\ell, & x < 0, \\ u_r, & x > 0. \end{cases}$ Suppose that $u_r < u_l$. Suppose that (3) has a classical solution in the form of (4), and v and α satisfy all the previously set and obtained properties. Conclude that $u^{\varepsilon}(x, t) \rightarrow u(x, t)$, as $\varepsilon \rightarrow 0$, almost everywhere, where u is the unique solution to (2) which satisfies Lax's entropy condition.

Sul:
(a) dox entropy and. Stortes that for any
shock curve of the sol. (6(0, t) we
have
$$f'(u_r) < d(t) < f'(u_l)$$

b) $\Im_t u^{\varepsilon}(x,t) = -\frac{\alpha}{\varepsilon} \sqrt{(\frac{x-\alpha}{\varepsilon})}$
 $\Im_x u^{\varepsilon}(x,t) = \frac{1}{\varepsilon} \sqrt{(\frac{x-\alpha}{\varepsilon})}$
 $\Im_x u^{\varepsilon}(x,t) = \frac{1}{\varepsilon} \sqrt{(\frac{x-\alpha}{\varepsilon})}$
Note: $\Im_x (f(u^{\varepsilon}(x,t)) = f'(u^{\varepsilon}(x,t)) \cdot \Im_x u^{\varepsilon}(x,t))$

REVISION CLASS

PARTIAL DIFFERENTIAL EQUATIONS III & V REVISION CLASS

defined

a.e.

Question 5 (Q7 - May 2024 exam). We consider the following Cauchy problem

(5)
$$\begin{cases} \partial_t u(x,t) + u(x,t)\partial_x u(x,t) = 0, & (x,t) \in \mathbb{R} \times (0,+\infty), \\ u(x,0) = u_0(x), & x \in \mathbb{R}. \end{cases}$$

We set

$$u_0(x) = \begin{cases} 0, & x < 0, \\ 1, & 0 < x < 1, \\ 2, & 1 < x < 2, \\ x, & 2 < x. \end{cases}$$

We aim to construct a unique entropy solution to this Cauchy problem.

- a) Sketch the characteristic lines associated with the Cauchy problem and discuss about the need of shock curves and/or rarefaction waves.
- b) Introduce the corresponding shocks and/or rarefaction waves.
- c) Write down the candidate for the weak entropy solutions to (5).
- d) Show that this solution is continuous everywhere if t > 0.
- e) Show that the solution satisfies Lax's entropy condition.

REVISION CLASS

12

(c) The condidate for the sol is: 13 ocxet rarefaction texeitt chan. s=x-t uo(s)=1 Htex<1+2t Cranefaction 1+2t<x<2+2t _____ chor. s=x-2t x>2+26 - char. x=s+st (d) Cont. fillows from checking the curves we stitch. For example The curve x=0 ling u(x,t) = lim 0 = 0 (x,t) - feft gene curve (in u(x,t) = lim X = 0 (as x=0) and the (x,t) = in X = 0 (as x=0) and two t=0 (e) As u is cont. there are no shocks and Lax's entropy cond. is satisfied.

Question 6 (*Q8* – *May 2024 exam*). Let $\Omega \subset \mathbb{R}^d$ be a bounded open set with smooth boundary. Let $F : \mathbb{R} \to \mathbb{R}$ be a given smooth function which is bounded above. We consider the energy functional

$$E[u] := \int_{\Omega} \frac{1}{2} (\Delta u(\vec{x}))^2 d\vec{x} - \int_{\Omega} F(u(\vec{x})) d\vec{x},$$

which we define on the set of scalar functions which belong to

 $\mathcal{V} := \{ u \in C^2(\overline{\Omega}) : \nabla u \cdot \vec{n} = 0 \text{ and } u = 0 \text{ on } \partial \Omega \}.$

Here we denoted by Δ the Laplace operator, by ∇ the gradient operator and by \vec{n} the outward pointing unit normal vector field to $\partial \Omega$.

- a) Show that there exists a constant $c_0 > 0$ such that $E[u] \ge -c_0$ for all $u \in \mathcal{V}$.
- b) Suppose that $u \in V$ is a minimiser of *E*. Write down the first order optimality condition, i.e. the Euler–Lagrange equation satisfied by *u* [*The first order optimality condition is the condition we find by using the variational method, i.e. by considering* $u_{\varepsilon} = u + \varepsilon \varphi$]
- c) Suppose that $u \in C^4(\overline{\Omega})$ is a minimiser of *E* over \mathcal{V} . Find the PDE and boundary conditions satisfied by *u*.
- d) Suppose that *F* is strictly concave. Deduce that if a minimiser of *E* over *V* exists, then it must be unique. [*We have not discussed this topic this year.*]
- e) Show the uniqueness of minimisers of *E* in \mathcal{V} , if *F* is the constant zero function.

PARTIAL DIFFERENTIAL EQUATIONS III & V

REVISION CLASS

15

If u is a minimizer then

$$EIu_{2}I \ge EIu_{3}$$
 Verk
 $u_{ers} = u = 3$ if $EIu_{3}I$ is diff with E
then
 $\int_{e} EIu_{2}I = -3$
 $EIu_{2}I = \frac{1}{2} \int (\Delta u \omega + E \Delta Q \omega)^{2} dx - \int F(u \omega + e Q \omega) dx$
 $u_{2}eeCD, F$ is smooth so we can diff.
under the integral
 $de EIu_{2}I = \int (\Delta u \omega + e \Delta Q \omega) \Delta Q \omega dx$
 $I = \int F'(u \omega + e \Delta Q \omega) \Delta Q \omega dx$
 $U = \int F'(u \omega + e \Delta Q \omega) \Delta Q \omega dx$
 $I = \int F'(u \omega + e \Delta Q \omega) \Delta Q \omega dx$
 $I = \int F'(u \omega + e \Delta Q \omega) \Delta Q \omega dx$
 $I = \int F'(u \omega + e \Delta Q \omega) \Delta Q \omega dx$
 $I = \int F'(u \omega + e \Delta Q \omega) \Delta Q \omega dx$
 $I = \int F'(u \omega + e \Delta Q \omega) \Delta Q \omega dx$
 $I = \int F'(u \omega + e \Delta Q \omega) \Delta Q \omega dx$
 $I = \int F'(u \omega + e \Delta Q \omega) dx$
 $I = \int F'(u \omega + e \Delta Q \omega) dx$
 $I = \int F'(u \omega + e \Delta Q \omega) dx$
 $I = \int F'(u \omega + e \Delta Q \omega) dx$
 $I = \int F'(u \omega + e \Delta Q \omega) dx$
 $I = \int F'(u \omega + e \Delta Q \omega) dx$
 $I = \int F'(u \omega + e \Delta Q \omega) dx$
 $I = \int F'(u \omega + e \Delta Q \omega) dx$
 $I = \int F'(u \omega + e \Delta Q \omega) dx$
 $I = \int F'(u \omega + e \Delta Q \omega) dx$
 $I = \int F'(u \omega + e \Delta Q \omega) dx$
 $I = \int F'(u \omega + e \Delta Q \omega) dx$
 $I = \int F'(u \omega + e \Delta Q \omega) dx$
 $I = \int F'(u \omega + e \Delta Q \omega) dx$
 $I = \int F'(u \omega + e \Delta Q \omega) dx$
 $I = \int F'(u \omega + e \Delta Q \omega) dx$
 $I = \int F'(u \omega + e \Delta Q \omega) dx$
 $I = \int F'(u \omega + e \Delta Q \omega) dx$
 $I = \int F'(u \omega + e \Delta Q \omega) dx$
 $I = \int F'(u \omega + e \Delta Q \omega) dx$
 $I = \int F'(u \omega + e \Delta Q \omega) dx$
 $I = \int F'(u \omega + e \Delta Q \omega) dx$
 $I = \int F'(u \omega + e \Delta Q \omega) dx$
 $I = \int F'(u \omega + e \Delta Q \omega) dx$
 $I = \int F'(u \omega + e \Delta Q \omega) dx$
 $I = \int F'(u \omega + e \Delta Q \omega) dx$
 $I = \int F'(u - e \Delta Q \omega) dx$
 $I = \int F'(u - e \Delta Q \omega) dx$
 $I = \int F'(u - e \Delta Q \omega) dx$
 $I = \int F'(u - e \Delta Q \omega) dx$
 $I = \int F'(u - e \Delta Q \omega) dx$
 $I = \int F'(u - e \Delta Q \omega) dx$
 $I = \int F'(u - e \Delta Q \omega) dx$
 $I = \int F'(u - e \Delta Q \omega) dx$
 $I = \int F'(u - e \Delta Q \omega) dx$
 $I = \int F'(u - e \Delta Q \omega) dx$
 $I = \int F'(u - e \Delta Q \omega) dx$
 $I = \int F'(u - e \Delta Q \omega) dx$
 $I = \int F'(u - e \Delta Q \omega) dx$
 $I = \int F'(u - e \Delta Q \omega) dx$
 $I = \int F'(u - e \Delta Q \omega) dx$
 $I = \int F'(u - e \Delta Q \omega) dx$
 $I = \int F'(u - e \Delta Q \omega) dx$
 $I = \int F'(u - e \Delta Q \omega) dx$
 $I = \int F'(u - e \Delta Q \omega) dx$
 $I = \int F'(u - e \Delta Q \omega) dx$
 $I = \int F'(u - e \Delta Q \omega) dx$
 $I = \int F'(u - e \Delta Q \omega) dx$
 $I = \int F'(u - e \Delta Q \omega) dx$
 $I = \int F'(u - e \Delta Q \omega)$

- div(e vou) - e div (vou) = div(Au Tre) - div(e v(Au)) + e div(Au) Using the divergence theorem we find that Jana Areadak = Jang Degonig daly - Second V(Du)(y) only) dS(y) + Se(x) D²UR) dx sure etanto (eeV) Using our optimality eq. we conclude that when $u \in C^4(\mathcal{F})$ is a minimiser 0= j'[A²u(x) - F'(u(x))]e(x) de This holds for all CEV. Noticing that C'(D)CV we use the fundamental lemma of Calculus of Variation to conclude that $\Delta^2 u(x) = F(u(x)) \times e \Delta^2$ The boundary conditions are given by

