
PARTIAL DIFFERENTIAL EQUATIONS III & V
REVISION CLASS

Question 1 (Q2 – May 2024 exam). We consider the following Cauchy problem for the scalar
unknown function u that we aim to solve by the method of characteristics.

(1)

{
5−x2

1∂x2 u(x1, x2) = 0, (x1, x2) ∈R2,
u(x1,0) = 3, x1 ∈R.

a) Determine the leading vector field, the Cauchy datum and the Cauchy curve associated to
this problem.

b) Find all the points on the Cauchy curve which are noncharacteristic.
c) Write down the ODE system for the characteristics and for the solution along the character-

istics. Then solve this system.
d) Sketch a few characteristic curves.
e) Find the solution u to (1). Determine its maximal domain of definition.

Question 2 (Q3 – May 2024 exam). Let Ω ⊂ Rd be a bounded open set with smooth boundary,
and suppose that d ≥ 2.

a) Suppose that u, v ∈C 2(Ω). Show that the following formula holdsˆ
Ω

v∆ud x⃗ +
ˆ
Ω

∇v ·∇ud x⃗ =
ˆ
∂Ω

v∂nudS,

where ∇ stands for the gradient, ∆ stands for the Laplace operator and we used the notation
∂nu =∇u · n⃗, with n⃗ being the outward pointing unit normal vector to ∂Ω.

b) Suppose that u :Ω→R is harmonic and u ∈C 2(Ω). Show thatˆ
∂Ω

∂nudS = 0.

c) Suppose that u :Ω→R is harmonic and u ∈C 2(Ω). Show that
´
∂Ωu∂nudS is nonnegative.

d) Suppose that u, v :Ω→R are both harmonic and u, v ∈C 2(Ω). Show thatˆ
∂Ω

(u∂n v − v∂nu)dS = 0.

Question 3 (Q5 – May 2024 exam). Let α ∈ R and set Aα = (aαi j )2
i , j=1 ∈ R2×2 to be the matrix

Aα :=
(

1 α

α 1

)
. For a given open setΩ⊆R2 and u ∈C 2(Ω), we define the differential operator

(Lαu)(⃗x) :=−Aα : D2u (⃗x) =−
2∑

i , j=1
aαi j∂xi∂x j u (⃗x),

where D2u stands for the Hessian matrix of u.

a) Show that the matrix Aα is positive semi-definite if and only if |α| ≤ 1. Show that Aα is posi-
tive definite if and only if |α| < 1.
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b) Let Ω be open, bounded and connected with smooth boundary. Suppose that |α| < 1 and
u :Ω→R is a classical solution to

(Lαu)(⃗x) = 0, x⃗ ∈Ω.

Explain why u attains both its minimum and maximum on ∂Ω.
c) Now we set α = 1. Find all those real numbers c1,c2 ∈ R for which the function u : R2 → R

defined as
u(x1, x2) = c1(x2

1 +x2
2)− c2x1x2

is a solution to L1u = 0.
d) Suppose that we are in the setting of the previous point (c). Show that u fails to satisfy ei-

ther the strong minimum or the strong maximum principle (one of the two). [Hint: choose
c1,c2 such that u(x1, x2) ≥ 0 for all (x1, x2) ∈R2. Find a particular bounded connected domain
Ω⊂R2, which is a sublevel set of u, i.e. Ω := {(x1, x2) ∈R2 : u(x1, x2) < r }, for some r > 0. De-
duce the failure of the strong minimum principle in this domain.
Remark: This is a corrected version of the problem which asked about the weak minimum/maximum
principle.]

Question 4 (Q6 – May 2024 exam). Let f :R→Rof class C 2 be given. Suppose that this is strongly
convex, i.e. there exists c0 > 0 such that f ′′(x) ≥ c0 for all x ∈ R. Consider the following Cauchy
problem for the unknown u :R× (0,+∞) →R

(2)

{
∂t u(x, t )+∂x( f (u(x, t ))) = 0, (x, t ) ∈R× (0,+∞),
u(x,0) = u0(x), x ∈R.

For ε> 0 we consider the following approximation of (2)

(3)

{
∂t uε(x, t )+∂x( f (uε(x, t )))−ε∂2

xxuε(x, t ) = 0, (x, t ) ∈R× (0,+∞),
uε(x,0) = u0(x), x ∈R.

a) State Lax’s entropy condition for weak solutions to the Cauchy problem (2).
b) We look for a solution to (3) in the form

(4) uε(x, t ) := v

(
x −αt

ε

)
,

for a given constant α ∈ R and some given smooth enough function v : R→ R. Find the sec-
ond order ODE that v needs to satisfy in order for the formula (4) to give a classical solution
to (3).

c) Let uℓ,ur ∈ R be given, and we are looking for a solution to the ODE for v found in (b) with
the additional assumptions

lim
s→−∞v(s) = uℓ; lim

s→+∞v(s) = ur ; lim
s→±∞v ′(s) = 0.

Suppose that we find such a solution v . Compute the limit lim
ε→0

uε(x, t ), in the case when

x ̸=αt .
d) Suppose that we are in the setting of (c). Find an equation that α needs to satisfy, in terms of

f and uℓ,ur . [Hint: integrate the second oder ODE for v , then take limits s →±∞].

e) Suppose that u0(x) =
{

uℓ, x < 0,
ur , x > 0.

Suppose that ur < ul . Suppose that (3) has a classical

solution in the form of (4), and v and α satisfy all the previously set and obtained properties.
Conclude that uε(x, t ) → u(x, t ), as ε→ 0, almost everywhere, where u is the unique solution
to (2) which satisfies Lax’s entropy condition.



PARTIAL DIFFERENTIAL EQUATIONS III & V REVISION CLASS 3

Question 5 (Q7 – May 2024 exam). We consider the following Cauchy problem

(5)

{
∂t u(x, t )+u(x, t )∂xu(x, t ) = 0, (x, t ) ∈R× (0,+∞),
u(x,0) = u0(x), x ∈R.

We set

u0(x) =


0, x < 0,
1, 0 < x < 1,
2, 1 < x < 2,
x, 2 < x.

We aim to construct a unique entropy solution to this Cauchy problem.

a) Sketch the characteristic lines associated with the Cauchy problem and discuss about the
need of shock curves and/or rarefaction waves.

b) Introduce the corresponding shocks and/or rarefaction waves.
c) Write down the candidate for the weak entropy solutions to (5).
d) Show that this solution is continuous everywhere if t > 0.
e) Show that the solution satisfies Lax’s entropy condition.

Question 6 (Q8 – May 2024 exam). Let Ω ⊂ Rd be a bounded open set with smooth boundary.
Let F : R→ R be a given smooth function which is bounded above. We consider the energy
functional

E [u] :=
ˆ
Ω

1

2
(∆u (⃗x))2d x⃗ −

ˆ
Ω

F (u (⃗x))d x⃗,

which we define on the set of scalar functions which belong to

V := {u ∈C 2(Ω) : ∇u · n⃗ = 0 and u = 0 on ∂Ω}.

Here we denoted by ∆ the Laplace operator, by ∇ the gradient operator and by n⃗ the outward
pointing unit normal vector field to ∂Ω.

a) Show that there exists a constant c0 > 0 such that E [u] ≥−c0 for all u ∈V.
b) Suppose that u ∈ V is a minimiser of E . Write down the first order optimality condition,

i.e. the Euler–Lagrange equation satisfied by u [The first order optimality condition is the
condition we find by using the variational method, i.e. by considering uε = u +εϕ]

c) Suppose that u ∈ C 4(Ω) is a minimiser of E over V. Find the PDE and boundary conditions
satisfied by u.

d) Suppose that F is strictly concave. Deduce that if a minimiser of E over V exists, then it must
be unique. [We have not discussed this topic this year.]

e) Show the uniqueness of minimisers of E in V, if F is the constant zero function.


