Partial Differential Equations III & V, Exercise Sheet 1: Solutions
Lecturer: Alpár R. Mészáros

  1. Examples of PDEs.

  2. Characterisation of PDEs.

  3. The transport equation: Derivation of the travelling wave solution.

  4. The transport equation on \(\mathbb{R}^n\). The function \[u(\boldsymbol{x},t) = g(\boldsymbol{x}- \boldsymbol{c}t)\] satisfies the transport equation \[\begin{aligned} u_t + \boldsymbol{c}\cdot \nabla u = 0 \quad & \textrm{for } (\boldsymbol{x},t) \in \mathbb{R}^n \times (0,\infty), \\ u(\boldsymbol{x},0) = g(\boldsymbol{x}) \quad & \textrm{for } x \in \mathbb{R}. \end{aligned}\]

  5. The transport equation with boundary conditions.

  6. The heat equation on the real line. Define \(u:\mathbb{R} \times (0,\infty) \to \mathbb{R}\) by \[u(x,t) = \frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{- \frac{(x-y)^2}{4kt}} g(y) \, dy.\]

  7. Revision of vector calculus and integration by parts in many variables.

  8. Poisson’s equation with Neumann boundary conditions. Consider Poisson’s equation with Neumann boundary conditions: \[\begin{align} \label{eq:PDE} - \Delta u = f \quad & \textrm{in } \Omega, \\ \label{eq:BC} \nabla u \cdot \boldsymbol{n}= g \quad & \textrm{on } \partial \Omega. \end{align}\]

  9. Implicit form of Burger’s equation. Clearly \[\begin{equation} \label{eq:u} u(x,t) = u_0(x-u(x,t)t) \end{equation}\] satisfies the initial condition \(u(x,0) = u_0(x)\) for all \(x \in \mathbb{R}\). We need to show that \(u_t + u u_x = 0\) for all \((x,t) \in \mathbb{R} \times (0,t_{\mathrm{c}})\). Differentiating equation \(\eqref{eq:u}\) yields \[\begin{align} \label{eq:ut} u_t & = -u_0'(u_t t + u), \\ \label{eq:ux} u_x & = \phantom{-} u_0'(1 - u_x t), \end{align}\] where we have omitted the argument \(x-u(x,t)t\) of \(u_0\). Therefore \[u_t + u u_x = -u_0'(u_t t + u) + u u_0'(1 - u_x t) = - u_0' t (u_t + u u_x).\] Rearranging gives \[\begin{equation} \label{eq:B} (u_t + u u_x)(1 + u_0' t) = 0. \end{equation}\] Either \(u_0'(x-u(x,t)t) \ge 0\), in which case \(1+u_0'(x-u(x,t)t)t \ge 1\) (since \(t>0\)). Or \(u_0'(x-u(x,t)t) < 0\), in which case \[1 + u_0'(x-u(x,t)t) t > 1 + u_0'(x-u(x,t)t) t_{\mathrm{c}} \ge 1 + u_0'(x-u(x,t)t) \frac{-1}{u_0'(x-u(x,t)t)} = 0\] by definition of \(t_{\mathrm{c}}\). In either case, \(1 + u_0' t > 0\), and hence equation \(\eqref{eq:B}\) implies that \(u_t + uu_x = 0\), as required.