Partial Differential Equations III & V, Exercise Sheet 3
Lecturer: Alpár R. Mészáros

  1. Existence of classical solutions. Consider the conservation law \[\begin{aligned} u_t + u^3 u_x = 0 \quad & \textrm{for } (x,t) \in \mathbb{R} \times (0,T), \\ u(x,0) = u_0(x) \quad & \textrm{for } x \in \mathbb{R}, \end{aligned}\] where \[u_0(x) = \left\{ \begin{array}{cl} 1 & x<0, \\ (1-x^2)^2 & 0 \le x \le 1, \\ 0 & x > 1. \end{array} \right.\] Find the largest value of \(T\) for which this conservation law has a classical solution \(u:\mathbb{R} \times [0,T) \to \mathbb{R}\).

  2. Breakdown of classical solutions. Consider the conservation law \[\begin{aligned} u_t + u u_x = 0 \quad & \textrm{for } (x,t) \in \mathbb{R} \times (0,\infty), \\ u(x,0) = \frac{1}{1+x^2} \quad & \textrm{for } x \in \mathbb{R}. \end{aligned}\]

  3. Geometric interpretation of \(t_{\mathrm{c}}\): crossing characteristics. Consider the conservation law \[\begin{aligned} u_t + c(u) u_x = 0 \quad & \textrm{for } (x,t) \in \mathbb{R} \times (0,\infty), \\ u(x,0) = u_0(x) \quad & \textrm{for } x \in \mathbb{R}, \end{aligned}\] where \(c\), \(u_0 \in C^1(\mathbb{R})\), \(u_0\) and \(u_0'\) are bounded. Assume that \[I = \{ s \in \mathbb{R} : c(u_0(s))_s < 0 \}\] is nonempty and suppose that there exists \(s_{\mathrm{c}}\in I\) such that \[t_c = \min_{s \in I} \frac{-1}{c(u_0(s))_s} = \min_{s \in I} \frac{-1}{c'(u_0(s))u_0'(s)} %\frac{-1}{c(u_0(s))_s}\bigg|_{s=s_{\mathrm{c}}} = \frac{-1}{c'(u_0(s_{\mathrm{c}}))u_0'(s_{\mathrm{c}})}.\]

  4. The Fundamental Lemma of the Calculus of Variations. Let \(g: \Omega \to \mathbb{R}\) be a continuous function on an open set \(\Omega \subseteq \mathbb{R}^n\). Prove that if \[\int_\Omega g(\boldsymbol{x}) \psi(\boldsymbol{x}) \, d \boldsymbol{x}= 0 \quad \textrm{for all } \, \psi \in C_c^\infty(\Omega),\] then \(g=0\). Hint: Assume for contradiction that \(g \ne 0\).

  5. Weak formulation of scalar conservation laws. State the weak formulation of the conservation law \[\begin{aligned} u_t + (\ln|u|+1) u_x = 0 \quad & \textrm{for } (x,t) \in \mathbb{R} \times (0,\infty), \\ u(x,0) = u_0(x) \quad & \textrm{for } x \in \mathbb{R}, \end{aligned}\] where \[u_0(x) = \left\{ \begin{array}{cl} 1 + \cos x & \textrm{if } |x| \le \pi, \\ 0 & \textrm{if } |x| > \pi. \end{array} \right.\] Hint: \[\int_0^u (\ln |s| + 1) \, ds = \int_0^u \left( \frac{ds}{ds} \ln |s| + 1 \right) \, ds.\]

  6. Weak formulation of scalar conservation laws in several spatial variables. Scalar conservation laws in several spatial variables take the form \[\label{eq:cl} \begin{align} u_t + \mathrm{div} \boldsymbol{f}(u) = 0 \quad & \textrm{for } (\boldsymbol{x},t) \in \mathbb{R}^n \times (0,\infty), \\ u(\boldsymbol{x},0) = u_0(\boldsymbol{x}) \quad & \textrm{for } \boldsymbol{x}\in \mathbb{R}^n, \end{align}\] where \(\boldsymbol{f}:\mathbb{R} \to \mathbb{R}^n\) and \(u_0:\mathbb{R}^n \to \mathbb{R}\) are prescribed, and \(u: \mathbb{R}^n \times [0,\infty) \to \mathbb{R}\) is the unknown. We assume that \(\boldsymbol{f}\in C^1(\mathbb{R};\mathbb{R}^n)\), \(u_0 \in L^1(\mathbb{R}^n)\). The weak formulation of \(\eqref{eq:cl}\) is the following: Find \(u \in L^\infty(\mathbb{R}^n \times (0,\infty))\) such that \[\begin{equation} \label{eq:w} \int_{0}^\infty \int_{\mathbb{R}^n} [u(\boldsymbol{x},t) \varphi_t(\boldsymbol{x},t) + \boldsymbol{f}(u(\boldsymbol{x},t)) \cdot \nabla \varphi(\boldsymbol{x},t)] \, d \boldsymbol{x}dt + \int_{\mathbb{R}^n} u_0(\boldsymbol{x}) \varphi(\boldsymbol{x},0) \, d \boldsymbol{x}= 0 \end{equation}\] for all \(\varphi \in C_c^\infty(\mathbb{R}^n \times [0,\infty))\).

  7. The Rankine-Hugoniot condition. Consider the initial value problem \[\begin{aligned} u_t + u u_x = 0 \quad & \textrm{for } (x,t) \in \mathbb{R} \times (0,\infty), \\ u(x,0) = u_0(x) \quad & \textrm{for } x \in \mathbb{R}, \end{aligned}\] where \[u_0(x) = \left\{ \begin{array}{cl} 2 & \textrm{if } x<0, \\ 1 & \textrm{if } 0<x<1, \\ 0 & \textrm{if } x>1. \end{array} \right.\]

  8. The Lax entropy condition. Find all values of the positive constants \(a\), \(b\), \(c\), \(d\) for which the function \[u(x,t) = \left\{ \begin{array}{ll} -a (t + \sqrt{bx+ct^2}) & \textrm{if } x > -dt^2, \\ 0 & \textrm{if } x < -dt^2, \end{array} \right.\] is an admissible weak solution of Burger’s equations for \(x \in \mathbb{R}\), \(t \in [0,\infty)\), where admissible means that it satisfies the Lax entropy condition. For these values of the parameters, is the weak solution an entropy solution? Justify your answer!

    Hint: The PDE and the Rankine-Hugoniot condition give three equations for \(a\), \(b\), \(c\), \(d\). This question is reproduced from Shearer & Levy (2015, page 212).

  9. The Lax entropy condition again. Consider the PDE \[u_t + \frac13 (u^3)_x = 0.\]

    This question is reproduced from Shearer & Levy (2015, page 212).

  10. Rarefaction waves and shocks. Consider the initial value problem \[\begin{aligned} u_t + u^4 u_x = 0 \quad & \textrm{for } (x,t) \in \mathbb{R} \times (0,\infty), \\ u(x,0) = u_0(x) \quad & \textrm{for } x \in \mathbb{R}, \end{aligned}\] where \[u_0(x) = \left\{ \begin{array}{cl} 0 & \textrm{if } x<0, \\ 1 & \textrm{if } 0<x<3, \\ 0 & \textrm{if } x>3. \end{array} \right.\]

  11. Watching paint dry. Consider the initial value problem \[\begin{aligned} u_t + u^2 u_x = 0 \quad & \textrm{for } (x,t) \in \mathbb{R} \times (0,\infty), \\ u(x,0) = u_0(x) \quad & \textrm{for } x \in \mathbb{R}, \end{aligned}\] where \[u_0(x) = \left\{ \begin{array}{cl} 0 & \textrm{if } x<0, \\ 1 & \textrm{if } 0<x<1, \\ 0 & \textrm{if } x>1. \end{array} \right.\] This PDE models paint flowing down a wall, where \(u(x,t)\) is the thickness of the paint at height \(x\) at time \(t\). The initial condition corresponds to applying a strip of paint at time \(t=0\). See J. Ockendon, S. Howison, A. Lacey & A. Movchan (2003) Applied Partial Differential Equations, Oxford, page 6.

  12. Traffic flow. Consider the traffic flow model \[\rho_t + v_m (1-2 \rho)\rho_x = 0\] where \(\rho(x,t) \in [0,1]\) is the traffic density and \(v_m\) is the speed limit. We saw this model in Example 2.1.

    This question is based on a traffic model proposed in the paper M.J. Lighthill & G.B. Whitham (1955) On Kinematic Waves. II. A Theory of Traffic Flow on Long Crowded Roads, Proc. R. Soc. Lond. A, 229, 317–345.

  13. Strong solutions. Show that if \(u\) is continuous and piecewise smooth and satisfies a scalar conservation law piecewise, then \(u\) is a weak solution of the conservation law. To be concrete, let \(g:[0,\infty) \to \mathbb{R}\) be continuously differentiable and let \(u: \mathbb{R} \times [0,\infty) \to \mathbb{R}\) be bounded and continuous, and be continuously differentiable on the sets \(V_l = \{ (x,t): t>0, \, x < g(t)\}\), \(V_r = \{ (x,t): t>0, \, x > g(t)\}\). Assume that \(u\) satisfies \(u_t + f(u)_x = 0\) in \(V_l\) and \(V_r\), in the classical sense, and satisfies \(u(x,0)=u_0(x)\), where \(u_0 \in C(\mathbb{R})\) and \(f \in C^1(\mathbb{R})\) are prescribed. Show that \(u\) is a weak solution of the scalar conservation law \[\begin{aligned} u_t + f(u)_x = 0 \quad & \textrm{for } (x,t) \in \mathbb{R} \times (0,\infty), \\ u(x,0) = u_0(x) \quad & \textrm{for } x \in \mathbb{R}. \end{aligned}\] Solutions of this form are called strong solutions. For those familiar with measure theory, \(u\) satisfies the classical form of the PDE almost everywhere.