Partial Differential Equations III & V, Exercise Sheet 4: Solutions
Lecturer: Amit Einav

  1. Green’s functions. By the Fundamental Theorem of Calculus, integrating \(u''(y)=f(y)\) over \([0,z]\), for any \(z \in [0,1]\), gives \[\int_0^z u''(y) \, dy = - \int_0^z f(y) \, dy \quad \Longleftrightarrow %\quad %u'(z) - u'(a) = - \int_a^z f(y) \, dy %\quad %\Longleftrightarrow \quad u'(z) = u'(0) - \int_0^z f(y) \, dy =- \int_0^z f(y) \, dy,\] where we have used the boundary condition \(u'(0)=0\). Integrating again, this time over \([0,x]\), gives \[\begin{aligned} \int_0^x u'(z) \, dz = - \int_0^x \int_0^z f(y) \, dy \, dz \quad \Longleftrightarrow \quad u(x) = u(0) - \int_0^x \int_0^z f(y) \, dy dz. \end{aligned}\] Taking \(x=1\) and using the boundary condition \(u(1)=0\) yields \[0 = u(0) - \int_0^1 \int_0^z f(y) \, dy dz \quad \Longleftrightarrow \quad u(0) = \int_0^1 \int_0^z f(y) \, dy dz.\] Therefore \[u(x) = \int_0^1 \int_0^z f(y) \, dydz - \int_0^x \int_0^z f(y) \, dy dz.\] By interchanging the order of integration we can write this as \[\begin{aligned} u(x) & = \int_0^1 \int_y^1 f(y) \, dz dy - \int_0^x \int_y^x f(y) \, dz dy \\ & = \int_0^1 (1-y) f(y) \, dy - \int_0^x (x-y) f(y) \, dy \\ & = \int_0^x (1-y) f(y) \, dy + \int_x^1 (1-y) f(y) \, dy - \int_0^x (x-y) f(y) \, dy \\ & = \int_0^x (1-x) f(y) \, dy + \int_x^1 (1-y) f(y) \, dy. \end{aligned}\] Therefore \[u(x) = \int_0^1 G(x,y) f(y) \, dy\] with \[\boxed{ G(x,y) = \left\{ \begin{array}{cl} 1-x & \textrm{if } y \le x, \medskip \\ 1-y & \textrm{if } y \ge x. \end{array} \right. }\]

  2. Homogenization.

  3. Radial symmetry of Laplace’s equation on \(\mathbb{R}^n\). Let \(v:\mathbb{R}^n \to \mathbb{R}\) be a harmonic function. Let \(R \in O(n,\mathbb{R})\) and define \(w:\mathbb{R}^n \to \mathbb{R}\) by \(w(\boldsymbol{x}):=v(R \boldsymbol{x})\). Then \[\begin{aligned} w_{x_i} & = \sum_{j=1}^n \frac{\partial v}{\partial x_j} \frac{\partial (R \boldsymbol{x})_j}{\partial x_i} = \sum_{j=1}^n \frac{\partial v}{\partial x_j} \frac{\partial}{\partial x_i} \sum_{k=1}^n R_{jk} x_k \\ & = \sum_{j=1}^n \frac{\partial v}{\partial x_j} \sum_{k=1}^n R_{jk} \frac{\partial x_k}{\partial x_i} = \sum_{j=1}^n \frac{\partial v}{\partial x_j} \sum_{k=1}^n R_{jk} \delta_{ki} \\ & = \sum_{j=1}^n \frac{\partial v}{\partial x_j} R_{ji}. \end{aligned}\] To be precise \[w_{x_i}(\boldsymbol{x}) = \sum_{j=1}^n v_{x_j}(R \boldsymbol{x}) R_{ji}.\] (This can also be written as \(\nabla w (\boldsymbol{x}) = R^T \nabla v(R \boldsymbol{x})\).) Now we compute the second partial derivatives: \[\begin{aligned} w_{x_i x_i} & = \frac{\partial}{\partial x_i} \sum_{j=1}^n v_{x_j}(R \boldsymbol{x}) R_{ji} \\ & = \sum_{j=1}^n \sum_{k=1}^n \frac{\partial v_{x_j}}{\partial x_k} \frac{\partial (R \boldsymbol{x})_k}{\partial x_i} R_{ji} \\ & = \sum_{j=1}^n \sum_{k=1}^n v_{x_j x_k} R_{ji} \frac{\partial}{\partial x_i} \sum_{l=1}^n R_{kl} x_l \\ & = \sum_{j=1}^n \sum_{k=1}^n v_{x_j x_k} R_{ji} \sum_{l=1}^n R_{kl} \frac{\partial x_l}{\partial x_i} \\ & = \sum_{j=1}^n \sum_{k=1}^n v_{x_j x_k} R_{ji} \sum_{l=1}^n R_{kl} \delta_{il} \\ & = \sum_{j=1}^n \sum_{k=1}^n v_{x_j x_k} R_{ji} R_{ki}. \end{aligned}\] Therefore \[\begin{align} \nonumber \Delta w & = \sum_{i=1}^n w_{x_i x_i} \\ \nonumber & = \sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n v_{x_j x_k} R_{ji} R_{ki} \\ \nonumber & = \sum_{j=1}^n \sum_{k=1}^n v_{x_j x_k} \sum_{i=1}^n R_{ji} R_{ki} \\ \nonumber & = \sum_{j=1}^n \sum_{k=1}^n v_{x_j x_k} \sum_{i=1}^n R_{ji} (R^T)_{ik} \\ \nonumber & = \sum_{j=1}^n \sum_{k=1}^n v_{x_j x_k} (R R^T)_{jk} \\ \label{Q2:1} & = \sum_{j=1}^n \sum_{k=1}^n v_{x_j x_k} I_{jk} \end{align}\] since \(R\) is an orthogonal matrix. There are two ways to conclude from here: If are are familiar with the matrix inner product, then \(\eqref{Q2:1}\) gives \[\Delta w = D^2v : I = \mathrm{trace} (D^2 v) = \Delta v = 0\] since \(v\) is harmonc. Otherwise we can continue from \(\eqref{Q2:1}\) using indices: \[\Delta w = \sum_{j=1}^n \sum_{k=1}^n v_{x_j x_k} I_{jk} = \sum_{j=1}^n \sum_{k=1}^n v_{x_j x_k} \delta_{jk} = \sum_{j=1}^n v_{x_j x_j} = \Delta v = 0,\] as required.

  4. Fundamental solution of Poisson’s equation in 3D.

  5. Fundamental solution of Poisson’s equation in 1D. We compute \[\begin{aligned} u''(x) & = (\Phi*f)''(x) \\ & = (f*\Phi)''(x) \quad & \textrm{(symmetry of convolution)} \\ & = \frac{d^2}{dx^2} \int_{- \infty}^\infty \Phi(y) f(x-y) \, dy \\ & = \int_{-\infty}^\infty \Phi(y) \, \frac{d^2}{dx^2} f(x-y) \, dy \\ & = \int_{-\infty}^0 y \, \frac{d^2}{dx^2} f(x-y) \, dy \\ & = \int_{-\infty}^0 y \, \frac{d^2}{dy^2} f(x-y) \, dy \\ & = y \, \frac{d}{dy} f(x-y) \Big|_{-\infty}^{0} - \int_{-\infty}^0 \frac{d}{dy} f(x-y) \, dy \quad & \textrm{(integration by parts)} \\ & = - f(x) \quad & \textrm{(Fundamental Theorem of Calculus)} \end{aligned}\] as required.

  6. The function spaces \(L^1\) and \(L^1_{\mathrm{loc}}\). Let \(f:\mathbb{R} \to \mathbb{R}\), \(f(x)=|x|^k\), \(k \in \mathbb{R}\). By integrating we see that

  7. Properties of the convolution.

  8. The Poincaré inequality for functions that vanish on the boundary. Let \(f \in C^1([a,b])\) satisfy \(f(a)=f(b)=0\). Then \[f(x) = f(a) + \int_a^x f'(y) \, d y = \int_a^x f'(y) \, dy\] since \(f(a)=0\). Therefore \[\begin{aligned} | f(x) | & = \left| \int_a^x f'(y) \, dy \right| \\ & = \left| \int_a^x 1 \cdot f'(y) \, dy \right| \\ & \le \left| \int_a^x 1^2 \, d y \right|^{1/2} \left| \int_a^x |f'(y)|^2 \, dy \right|^{1/2} \; \; & \textrm{(Cauchy-Schwarz)} \\ & \le (x-a)^{1/2} \left( \int_a^b |f'(y)|^2 \, dy \right)^{1/2}. \end{aligned}\] Squaring and integrating gives \[\begin{aligned} \int_a^b | f(x) |^2 \, dx & \le \int_a^b (x-a) \int_a^b |f'(y)|^2 \, dy \, dx \\ & = \int_a^b (x-a) \, dx \, \int_a^b |f'(y)|^2 \, dy \\ & = \frac12 (x-a)^2 \Big|_a^b \int_a^b |f'(y)|^2 \, dy \\ & = \frac12 (b-a)^2 \int_a^b |f'(y)|^2 \, dy. \end{aligned}\] This is the Poincaré inequality with \(C = \frac12 (b-a)^2\).

  9. The Poincaré inequality on unbounded domains.

  10. The Poincaré constant depends on the domain. There exits \(C_1 > 0\) such that \[\begin{equation} \label{eq:Q9} \int_0^1 |f(x)|^2 \, d x \le C_1 \int_0^1 |f'(x)|^2 \, d x \end{equation}\] for all \(f \in C^1([0,1])\) with \(f(0)=f(1)=0\). Let \(g \in C^1([0,L])\) with \(g(0)=g(L)=0\). Then \[\begin{align} %\label{eq:Q92} \int_0^L |g(x)|^2 \, d x & = \int_0^1 |g(Ly)|^2 L \, dy & (y=x/L) \\ & = L \int_0^1 |f(y)|^2 \, dy & (f(y):=g(Ly)) \\ & \le L C_1 \int_0^1 |f'(y)|^2 \, d y & (\textrm{equation } \eqref{eq:Q9}) \\ & = L C_1 \int_0^1 |L g'(Ly)|^2 \, d y & (f'(y)=L g'(Ly)) \\ & = L^3 C_1 \int_0^1 |g'(Ly)|^2 \, d y \\ & = L^2 C_1 \int_0^L |g'(x)|^2 \, dx & (y=x/L) \\ & = C_L \int_0^L |g'(x)|^2 \, d x \end{align}\] with \(C_L = L^2 C_1\), as desired.

  11. Eigenvalues of \(-\Delta\): Can you hear the shape of a drum? Multiply the PDE \(-\Delta u = \lambda u\) by \(\overline{u}\) (the complex conjugate of \(u\)) and integrate over \(\Omega\): \[\begin{aligned} - \int_{\Omega} \overline{u} \, \Delta u \, d \boldsymbol{x}= \lambda \int_{\Omega} \overline{u} u \, d \boldsymbol{x} \quad \Longleftrightarrow \quad & -\int_{\partial \Omega} \overline{u} \, \nabla u \cdot \boldsymbol{n}\, dL + \int_\Omega \nabla \overline{u} \cdot \nabla u \, d \boldsymbol{x} = \lambda \int_{\Omega} |u|^2 \, d \boldsymbol{x}. \end{aligned}\] The boundary condition \(u=0\) on \(\partial \Omega\) implies that \(\overline{u}=0\) on \(\partial \Omega\) and so \[\begin{aligned} \int_\Omega \overline{\nabla u} \cdot \nabla u \, d \boldsymbol{x} = \lambda \int_{\Omega} |u|^2 \, d \boldsymbol{x} \quad & \Longleftrightarrow \quad \int_\Omega |\nabla u|^2 \, d \boldsymbol{x} = \lambda \int_{\Omega} |u|^2 \, d \boldsymbol{x} \\ & \Longleftrightarrow \quad \lambda = \frac{\displaystyle \int_\Omega |\nabla u|^2 \, d \boldsymbol{x}}{\displaystyle \int_{\Omega} |u|^2 \, d \boldsymbol{x}} \; > \; 0 \end{aligned}\] as required.

  12. The optimal Poincaré constant and eigenvalues of \(-\Delta\).

  13. Uniqueness for Poisson’s equation with Robin boundary conditions. Let \(u_1\) and \(u_2\) be solutions of \[\begin{aligned} - \Delta u = f \quad & \textrm{in } \Omega, \\ \nabla u \cdot \boldsymbol{n}+ \alpha u = g \quad & \textrm{on } \partial \Omega. \end{aligned}\] Let \(w=u_1 - u_2\). Since the PDE is linear, subtracting the equations satisfied by \(u_1\) and \(u_2\) gives \[\begin{aligned} - \Delta w = 0 \quad & \textrm{in } \Omega, \\ \nabla w \cdot \boldsymbol{n}+ \alpha w = 0 \quad & \textrm{on } \partial \Omega. \end{aligned}\] Multiply \(-\Delta w = 0\) by \(w\) and integrate by parts over \(\Omega\): \[\begin{aligned} -\int_\Omega w \Delta w \, d \boldsymbol{x}= 0 \quad & \Longleftrightarrow \quad - \int_{\partial \Omega} w \, \nabla w \cdot \boldsymbol{n}\, d S + \int_\Omega | \nabla w |^2 \, d \boldsymbol{x}= 0 \\ & \Longleftrightarrow \quad \alpha \int_{\partial \Omega} w^2 \, dS + \int_\Omega | \nabla w |^2 \, d \boldsymbol{x}= 0 \end{aligned}\] since \(\nabla w \cdot \boldsymbol{n}= - \alpha w\) on \(\partial \Omega\). But \(\alpha > 0\). Therefore \[\int_{\partial \Omega} w^2 \, dS = 0, \qquad \int_\Omega | \nabla w |^2 \, d \boldsymbol{x}= 0.\] The second equation implies that \(\nabla w = \textbf{0}\) and hence \(w=\) constant (or at least constant on each connected component of \(\Omega\)). The first equation implies that this constant must be zero. Therefore \(w=0\) and \(u_1 = u_2\), as required.

  14. Uniqueness for a more general elliptic problem. Consider the linear, second-order, elliptic PDE \[\label{Q9} \begin{align} - \mathrm{div} (A \, \nabla u) + \boldsymbol{b}\cdot \nabla u + c u = f \quad & \textrm{in } \Omega, \\ u = g \quad & \textrm{on } \partial \Omega. \end{align}\] (i) Suppose that \(u_1,u_2 \in C^2(\overline{\Omega})\) satisfy \(\eqref{Q9}\). Let \(w=u_1 - u_2\). Since the PDE is linear, subtracting the equations satisfied by \(u_1\) and \(u_2\) gives \[\label{Q9:2} \begin{align} - \mathrm{div} (A \, \nabla w) + \boldsymbol{b}\cdot \nabla w + c w = 0 \quad & \textrm{in } \Omega, \\ w = 0 \quad & \textrm{on } \partial \Omega. \end{align}\] Clearly \(w=0\) satisfies \(\eqref{Q9:2}\). We want to show that it is the only solution. Multiply the PDE for \(w\) by \(w\) and integrate over \(\Omega\): \[\begin{align} \nonumber 0 & = \int_{\Omega} w (- \mathrm{div} (A \, \nabla w) + \boldsymbol{b}\cdot \nabla w + c w) \, d \boldsymbol{x} \\ \nonumber & = - \int_{\Omega} w \, \mathrm{div} (A \, \nabla w) \, d \boldsymbol{x}+ \int_{\Omega} w \, \boldsymbol{b}\cdot \nabla w \, d \boldsymbol{x}+ \int_{\Omega} c w^2 \, d \boldsymbol{x} \\ \nonumber & = - \int_{\partial \Omega} w (A \, \nabla w) \cdot \boldsymbol{n}\, dS + \int_{\Omega} \nabla w \cdot (A \, \nabla w) \, d \boldsymbol{x} + \int_{\Omega} w \, \boldsymbol{b}\cdot \nabla w \, d \boldsymbol{x}+ \int_{\Omega} c w^2 \, d \boldsymbol{x} \\ \label{Q9:3} & = \int_{\Omega} \nabla w \cdot (A \, \nabla w) \, d \boldsymbol{x} + \int_{\Omega} w \, \boldsymbol{b}\cdot \nabla w \, d \boldsymbol{x}+ \int_{\Omega} c w^2 \, d \boldsymbol{x} \end{align}\] since \(w=0\) on \(\partial \Omega\). Observe that \[\begin{equation} \label{Q9:4} \int_{\Omega} \nabla w \cdot (A \, \nabla w) \, d \boldsymbol{x}= \int_{\Omega} (\nabla w)^{\mathrm{T}} A \, \nabla w \, d \boldsymbol{x}\ge \alpha \int_{\Omega} | \nabla w |^2 \, d \boldsymbol{x} \end{equation}\] by the assumption that \(A\) is uniformly positive definite (take \(\boldsymbol{y}= \nabla w\) in \(\boldsymbol{y}^{\mathrm{T}} A(\boldsymbol{x}) \boldsymbol{y}\ge \alpha |\boldsymbol{y}|^2\)). Integrating by parts gives \[\begin{aligned} \int_{\Omega} w \, \boldsymbol{b}\cdot \nabla w \, d \boldsymbol{x}& = \int_{\partial \Omega} w^2 \, \boldsymbol{b}\cdot \boldsymbol{n}\, dS - \int_{\Omega} w \, \mathrm{div} (w \boldsymbol{b}) \, d \boldsymbol{x} \\ & = - \int_{\Omega} w \, \mathrm{div} (w \boldsymbol{b}) \, d \boldsymbol{x} & (w=0 \textrm{ on } \partial \Omega) \\ & = - \int_{\Omega} w \, (\nabla w \cdot \boldsymbol{b}+ w \, \mathrm{div} \boldsymbol{b}) \, d \boldsymbol{x} & \textrm{(product rule)} \\ & = - \int_{\Omega} w \, \boldsymbol{b}\cdot \nabla w \, d \boldsymbol{x} \end{aligned}\] by the assumption that \(\mathrm{div} \, \boldsymbol{b}= 0\). Therefore \[\begin{equation} \label{Q9:5} \int_{\Omega} w \, \boldsymbol{b}\cdot \nabla w \, d \boldsymbol{x}= - \int_{\Omega} w \, \boldsymbol{b}\cdot \nabla w \, d \boldsymbol{x} \quad \Longleftrightarrow \quad \int_{\Omega} w \, \boldsymbol{b}\cdot \nabla w \, d \boldsymbol{x}= 0. \end{equation}\] Combining \(\eqref{Q9:3}\), \(\eqref{Q9:4}\), \(\eqref{Q9:5}\) yields \[\alpha \int_{\Omega} | \nabla w |^2 \, d \boldsymbol{x}+ \int_{\Omega} c w^2 \, d \boldsymbol{x} \le 0.\] But \(c \ge 0\) by assumption. Therefore \[\alpha \int_{\Omega} | \nabla w |^2 \, d \boldsymbol{x}= 0\] and so \(\nabla w = \mathbf{0}\) in \(\Omega\). Hence \(w\) is constant (or at least constant on each connected component of \(\Omega\)). But \(w=0\) on \(\partial \Omega\). Therefore \(w=0\), as required.

    (ii) The idea is the same as for (i). Let \(u_n\) be the unique solution to the PDE with \(A_n\) and let \(u\) be the unique solution to the PDE with the matrix \(A\). Define \(w_n:=u_n-u\). We need to show that \(\nabla w_n\to 0\) in \(L^2(\Omega)\) as \(n\to+\infty\). Taking the two PDEs, subtracting them and multiplying the resulting PDE by \(w_n\), we obtain \[\begin{align} \label{eq:stability} 0 & = \int_{\Omega} w_n (- \mathrm{div} (A_n \, \nabla u_n) + \mathrm{div} (A \, \nabla u) + \boldsymbol{b}\cdot \nabla w_n + c w_n) \, d \boldsymbol{x}. \end{align}\] Proceeding exactly as in (i), we find \[\int_{\Omega} w_n \boldsymbol{b}\cdot \nabla w_n\, d \boldsymbol{x}=0.\] Moreover, we compute (using integration by parts, since \(w_n=0\) on \(\partial\Omega\)) \[\begin{aligned} &\int_{\Omega} w_n [- \mathrm{div} (A_n \, \nabla u_n) + \mathrm{div} (A \, \nabla u)] \, d \boldsymbol{x}\\ &= \int_{\Omega} w_n [- \mathrm{div} (A_n \, \nabla u_n) + \mathrm{div} (A_n \, \nabla u) - \mathrm{div} (A_n \, \nabla u) + \mathrm{div} (A \, \nabla u)] \, d \boldsymbol{x}\\ &= \int_{\Omega} w_n [- \mathrm{div} (A_n \, (\nabla u_n-\nabla u)) - \mathrm{div} ((A_n-A) \, \nabla u) ] \, d \boldsymbol{x}\\ &=\int_{\Omega} [ \nabla w_n \cdot (A_n \, \nabla w_n) + \nabla w_n\cdot((A_n-A) \, \nabla u) ] \, d \boldsymbol{x}\\ &\ge \int_{\Omega}[ \alpha |\nabla w_n|^2 + \nabla w_n\cdot((A_n-A) \, \nabla u) ] \, d \boldsymbol{x} \end{aligned}\] So, all these arguments yield \[\int_{\Omega}[ \alpha |\nabla w_n|^2 + \nabla w_n\cdot((A_n-A) \, \nabla u) + c w_n^2 ] \, d \boldsymbol{x}\le 0.\] Now, for any \(\varepsilon>0\), Young’s inequality yields \[\int_{\Omega}\nabla w_n\cdot((A_n-A) \, \nabla u)\, d \boldsymbol{x}= -\frac{\varepsilon}{2}\int_\Omega|\nabla w_n|^2 \, d \boldsymbol{x}-\int_\Omega\frac{1}{2\varepsilon}|A_n-A|^2|\nabla u|^2\, d \boldsymbol{x}.\] By setting \(\varepsilon:=\alpha\), the previous two identities imply \[\int_{\Omega}\left[ \frac{\alpha}{2} |\nabla w_n|^2 + c w_n^2 \right] \, d \boldsymbol{x}\le \frac{1}{2\alpha}\|A_n-A\|^2_{L^\infty}\int_{\Omega}|\nabla u|^2\,d\boldsymbol{x}.\] And by the non-negative property of \(c\), one has \[\int_{\Omega}\frac{\alpha}{2} |\nabla w_n|^2 \, d \boldsymbol{x}\le \frac{1}{2\alpha}\|A_n-A\|^2_{L^\infty}\int_{\Omega}|\nabla u|^2\,d\boldsymbol{x}.\] We conclude by the facts that \(\int_{\Omega}|\nabla u|^2\,d\boldsymbol{x}\) is bounded and \(\|A_n-A\|_{L^\infty}\to 0\), as \(n\to+\infty\).

  15. Uniqueness for a degenerate diffusion equation. Clearly \(u = \pi\) satisfies \[\begin{aligned} \Delta u^m = 0 \quad & \textrm{in } \Omega, \\ u = \pi \quad & \textrm{on } \partial \Omega. \end{aligned}\] We use the energy method to show that it is the only positive solution. Let \(v\) be any positive solution. Subtracting the PDE for \(u\) from the PDE for \(v\) and multiplying by \((v-u)\) gives \[0 = (v-u)(\Delta v^m - \Delta u^m) = (v - \pi)(\Delta v^m - \Delta \pi^m) = (v- \pi) \Delta v^m.\] Now integrate over \(\Omega\): \[\begin{aligned} 0 & = \int_\Omega (v- \pi) \Delta v^m \, d \boldsymbol{x} \\ & = \int_{\Omega} (v - \pi) \, \mathrm{div} \nabla (v^m) \, d \boldsymbol{x} & (\Delta = \mathrm{div} \nabla) \\ & = \int_{\Omega} (v - \pi) \, \mathrm{div} (m v^{m-1} \nabla v) \, d \boldsymbol{x} & \textrm{(Chain Rule)} \\ & = \int_{\partial \Omega} \underbrace{(v - \pi)}_{=0} \, m \, v^{m-1} \nabla v \cdot \boldsymbol{n}\, dS - \int_{\Omega} \underbrace{\nabla(v - \pi)}_{=\nabla v} \cdot \, m v^{m-1} \nabla v \, d \boldsymbol{x}& \textrm{(Integration by parts)} \\ & = - \int_{\Omega} m v^{m-1} |\nabla v|^2 \, d \boldsymbol{x}. \end{aligned}\] Therefore \[\int_{\Omega} m v^{m-1} |\nabla v|^2 \, d \boldsymbol{x}= 0.\] But \(v > 0\), by assumption. Hence \(\nabla v= \mathbf{0}\) in \(\Omega\) and so \(v\) is constant in \(\Omega\). Since \(v=\pi\) on \(\partial \Omega\), we conclude that \(v=\pi\) everywhere, as required.

  16. The \(H_0^1\) and \(H^1\) norms.

  17. Continuous dependence. Let \(u \in C^2(\overline{\Omega})\) satisfy \[\begin{aligned} - \mathrm{div} (A \, \nabla u) + c u = f \quad & \textrm{in } \Omega, \\ u = 0 \quad & \textrm{on } \partial \Omega. \end{aligned}\] Multiplying the PDE by \(u\) and integrating over \(\Omega\) gives \[\begin{aligned} \int_{\Omega} fu \, d \boldsymbol{x}& = \int_{\Omega} u \, ( - \mathrm{div} (A \, \nabla u) +c u ) \, d \boldsymbol{x} \\ & = - \int_{\Omega} u \, \mathrm{div} (A \, \nabla u) \, d \boldsymbol{x}+c \int_{\Omega} u^2 \, d \boldsymbol{x} \\ & = - \int_{\partial \Omega} u \, (A \, \nabla u) \cdot \boldsymbol{n}\, d S + \int_{\Omega} \nabla u \cdot (A \, \nabla u) \, d \boldsymbol{x} +c \int_{\Omega} u^2 \, d \boldsymbol{x} \\ & = \int_{\Omega} (\nabla u)^\mathrm{T} A \, \nabla u \, d \boldsymbol{x} +c \int_{\Omega} u^2 \, d \boldsymbol{x}& (u=0 \textrm{ on } \partial \Omega) \\ & \ge \alpha \int_{\Omega} |\nabla u|^2 \, d \boldsymbol{x}+c \int_{\Omega} u^2 \, d \boldsymbol{x} & (A \textrm{ is uniformly positive definite)} \\ & \ge \min \{ \alpha , c \} \left( \int_{\Omega} |\nabla u|^2 \, d \boldsymbol{x}+ \int_{\Omega} u^2 \, d \boldsymbol{x}\right) \\ & = \min \{ \alpha , c \} \, \| u \|^2_{H^1(\Omega)} \end{aligned}\] by definition of the \(H^1\)–norm. Therefore \[\min \{ \alpha , c \} \, \| u \|^2_{H^1(\Omega)} \le \int_{\Omega} fu \, d \boldsymbol{x} \le \| f \|_{L^2(\Omega)} \| u \|_{L^2(\Omega)} \le \| f \|_{L^2(\Omega)} \| u \|_{H^1(\Omega)}\] where we have used the Cauchy-Schwarz inequality and the fact that \(\| v \|_{L^2(\Omega)} \le \| v \|_{H^1(\Omega)}\) for all \(v \in C^1(\overline{\Omega})\). Cancelling one power of \(\| u \|_{H^1(\Omega)}\) from both sides gives the desired result: \[\| u \|_{H^1(\Omega)} \le C \| f \|_{L^2(\Omega)}\] with \(C = 1/ \min \{ \alpha , c \}\).

    Remark: Note that this estimate degenerates as \(c\) tends to \(0\) (\(C \to +\infty\) as \(c \to 0\)). If \(c=0\) or \(c\) is small then a better estimate can be obtained using the Poincaré inequality: As above \[\int_{\Omega} fu \, d \boldsymbol{x}\ge \alpha \int_{\Omega} |\nabla u|^2 \, d \boldsymbol{x}+c \int_{\Omega} u^2 \, d \boldsymbol{x}\ge \alpha \int_{\Omega} |\nabla u|^2 \, d \boldsymbol{x} = \alpha \| u \|^2_{H_0^1(\Omega)} .\] Therefore \[\alpha \| u \|^2_{H_0^1(\Omega)} \le \int_{\Omega} fu \, d \boldsymbol{x} \le \| f \|_{L^2(\Omega)} \| u \|_{L^2(\Omega)} \le C_{\mathrm{P}} \| f \|_{L^2(\Omega)} \| \nabla u \|_{L^2(\Omega)} = C_{\mathrm{P}} \| f \|_{L^2(\Omega)} \| u \|_{H_0^1(\Omega)}\] where \(C_{\mathrm{P}}(\Omega)\) is the Poincaré constant. Cancelling one power of \(\| u \|_{H_0^1(\Omega)}\) from both sides gives \[\| u \|_{H_0^1(\Omega)} \le C \| f \|_{L^2(\Omega)}\] with \(C = C_{\mathrm{P}}/\alpha\).

  18. Continuous dependence with a first-order term.

  19. Neumann boundary conditions for variational problems.

  20. The \(p\)–Laplacian operator.

  21. The minimal surface equation: PDEs and soap films. Let \(u \in C^2(\overline{\Omega}) \cap V\) be a minimiser of \(A\). Let \(\varepsilon \in \mathbb{R}\) and \(\varphi \in C^1(\overline{\Omega})\) with \(\varphi=0\) on \(\partial \Omega\). Define \(u_{\varepsilon} = u + \varepsilon \varphi\). Then \(u_\varepsilon \in V\) since the sum of continuously differential functions is continuously differentiable and, if \(\boldsymbol{x}\in \partial \Omega\), then \[u_{\varepsilon}(\boldsymbol{x}) = u(\boldsymbol{x}) + \varepsilon \varphi(\boldsymbol{x}) = g(\boldsymbol{x}) + \varepsilon \cdot 0 = g(\boldsymbol{x})\] as required. Define \(h:\mathbb{R} \to \mathbb{R}\) by \(h(\varepsilon)=A[u_{\varepsilon}]\). Then \(h(0)=A[u]\) and so \(0\) is a minimum point of \(h\) since \(u\) is a minimum point of \(A\). Therefore \[\begin{aligned} 0 & = h'(0) \\ & = \left. \frac{d}{d \varepsilon} \right|_{\varepsilon=0} A[u_\varepsilon] \phantom{\Bigg|} \\ & = \left. \frac{d}{d \varepsilon} \right|_{\varepsilon=0} \int_\Omega \sqrt{1+|\nabla u_{\varepsilon}|^2} \, d \boldsymbol{x}\phantom{\Bigg|} \\ & = \int_\Omega \left. \frac{d}{d \varepsilon} \right|_{\varepsilon=0} \sqrt{1+|\nabla u + \varepsilon \nabla \varphi|^2} \, d \boldsymbol{x}\phantom{\Bigg|} \\ & = \int_\Omega \left. \tfrac{1}{2} (1+|\nabla u + \varepsilon \nabla \varphi|^2)^{-1/2} \, 2 |\nabla u + \varepsilon \nabla \varphi| \, \frac{\nabla u + \varepsilon \nabla \varphi}{|\nabla u + \varepsilon \nabla \varphi|} \cdot \nabla \varphi \right|_{\varepsilon=0} \, d \boldsymbol{x}\phantom{\Bigg|} \\ & = \int_\Omega \frac{\nabla u}{\sqrt{1+|\nabla u|^2}} \cdot \nabla \varphi \, d \boldsymbol{x}.% \phantom{\Bigg|} \end{aligned}\] This means that \(u\) is a weak solution of the minimal surface equation. Since \(u \in C^2(\overline{\Omega})\), then we can integrate by parts to obtain \[\begin{aligned} 0 & = \int_\Omega \frac{\nabla u}{\sqrt{1+|\nabla u|^2}} \cdot \nabla \varphi \, d \boldsymbol{x} \\ & = \int_{\partial \Omega} \varphi \, \frac{\nabla u}{\sqrt{1+|\nabla u|^2}} \cdot \boldsymbol{n}\, dS - \int_\Omega \mathrm{div} \left( \frac{\nabla u}{\sqrt{1+|\nabla u|^2}} \right) \varphi \, d \boldsymbol{x} \\ & = - \int_\Omega \mathrm{div} \left( \frac{\nabla u}{\sqrt{1+|\nabla u|^2}} \right) \varphi \, d \boldsymbol{x} \end{aligned}\] since \(\varphi = 0\) on \(\partial \Omega\). This holds for all \(\varphi \in C^1(\overline{\Omega})\) with \(\varphi=0\). Therefore \(u\) satisfies the minimal surface equation \[\mathrm{div} \left( \frac{\nabla u}{\sqrt{1+|\nabla u |^2}} \right) = 0 \quad \textrm{in } \Omega.\] by the Fundamental Lemma of the Calculus of Variations (Lemma 3.20).

  22. Homogenization and the calculus of variations.