Partial Differential Equations III & V, Exercise Sheet 4: Solutions
Lecturer: Amit Einav

1. Green’s functions. By the Fundamental Theorem of Calculus, integrating u”(y) = f(y) over [0, 2],
for any z € [0, 1], gives

/Ozu”(y)dyz—/ozf(y)dy — u’(z)zu’(o)—/Ozf(y)dy:—/ozf(y)d%

where we have used the boundary condition u/(0) = 0. Integrating again, this time over [0, z], gives

Weyd=— [ [ fwayde = w@ =uw0) - [ [ 1) dydz.
0 0 0 0 0

Taking = 1 and using the boundary condition u(1) = 0 yields

[ [rwaes = wo= [ [ s
=/Ol/ozf(y)dydz—/Oz/ozf(y)dyd&

By interchanging the order of integration we can write this as

:/Ol/ylf(y)dzdy—/Ox/yxf(y)dzdy

1 X
_ / (1= ) f (o) dy — / (z — y)f(y) dy
0 0

—/Ox(l—y)f(y)der/ (1—y)f(y)dy—/oz(w—y)f(y)dy
- [a-aswar+ [ a-nsw.

1
- / G(x,y) /() dy

o 1—2 ify<ux,
T,y) =
(.9) 1—y ify>ux.

Therefore

Therefore

with

2. Homogenization.
(i) Integrate (a-(y)u:(y)) = —f(y) over y € [0, z]:

/Oz(aa / fly)dy aa(z)u;(z)_%(o)ué(o):_/Ozf(y)dy

ag(O)u’E(O)_ 1 z
0-(2) aa(Z)/o f(y) dy.

= uz) =




Now integrate over z € [0, z]:

[oos- [0t el o

We determine u.(0) by evaluating this expression at z = 1:

, 1 1 1 1 z
%%g — a.(0)u(0) /0 e /0 - /0 F)dyds

=(0)ue(0) = (/01 ey dz>_1 /01 o ), Fw e

Substituting this into (1) gives

uel) = </01a:(z)dz>‘l/ola:(z)/Ozf@dydz/om%l(z)dz_/ox%l(z)/Ozf(y)dydz

as required.

Taking € = ¢, = % gives

ten(2) = (/0 mew dz) i /0 o, T [ ooaz= [ [iwaes

We are told in the hint to use the Riemann-Lebesgue Lemma, which states that if g € L*°(R)
is 1-periodic, then for any interval [c,d] C R,

d d
lim [ g(nz)h(z)dz = / gh(z)dz YV heL'Y(R)nCYR) (2)

n—o0 c

Applying (2) with ¢ =0, d =1, g(z) = 1/a(z), and h(z) =1 on [c,d] gives

1 1
1 1 1
lim ——dz = / <> dz = <>
n—oo Jo a(nz) 0 \a a
(Technical remark: We cannot take h(z) = 1 for all z € R, else h ¢ L'(R). But we can take

h to be any function in L*(R) N C'(R) such that h = 1 on [¢,d]. The choice of h outside [c, d]
does not matter since it does not affect the integrals in (2).)

Applying (2) with ¢ = 0, d = z, g(2) = 1/a(z) (since a is periodic and bounded below by a
positive constant, g is periodic and bounded), and h(z) =1 on [c, d] gives

lim 1dz:/ <1> dz:x(1>.
n—oo Jo a(nz) 0 \a a
Applying (2) with ¢ =0, d =1, g(z) = 1/a(z), and h(z) = [; f(y) dy on [c,d] gives

Jim 01 aéz) /Ozf(y) dydz = (i) /01 /Ozf(y) dydz.




Finally, applying (2) with ¢ =0, d = x, g(z) = 1/a(z), and h(z fo y) dy on [c,d] gives

y)dydzz®/om/ozf(y)dydz.
Tim u., () = up(a) ( )/ [ sways - (i) | [ rwae=|

(iii) This is simply a matter of interchanging the order of integration:

- <i> /l/zf(y)dydz—<i /Ox/ozf(y)dydz

Q)L [ [ [

x< >/0 (1—y)fly )dy< /:(xy)f(y)dy
)

<61L /Ox[:c(l—y) - (x—y)]f(y)der/zlx(l — ) f(y) dy}

( ) {/oxy(l_m)f(y)d?”/:x(l —u)fy) dy}
G

(z,9)f(y) dy

Il
S
Q|

—N—

1
a

1

S—

with

@y(l —z) ify<u,
<a1>1‘(1 —y) ify >

(iv) Clearly ug satisfies the boundary conditions. By the Fundamental Theorem of Calculus, dif-
ferentiating equation (3) gives

:@/Ol/ozf(y)dydz—w/ozf(y)dy

Differentiating again gives

Therefore

as required.

w



(v)

(vi)

By definition,

On the other hand,

e ([ o) = ([ 2w [1a) = ()

2

N |
o
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\

p—

N—

L
Il

VR

DO o

N———

L
Il
Wl o

Therefore ag # @. In fact the Cauchy-Schwarz inequality can be used to show that
ag < a

for any choice of a.

Without loss of generality we can assume that ¢ > 0. Using the hint and integration by parts

/Cdg(nz)h(z) dz = /Cd (:L /Onz q(y) dy)lh(z) d
- :L/Om (y) dy h(z / / y) dy (=) dz. @

Let z € [¢,d],n € N and let |nz| € (nz — 1,nz] denote floor(nz), which is the largest integer
less than or equal to nz. Since a is 1-periodic,

nz [nz] nz 1 nz
/O 9(y) dy—/o 9(y) der/LmJ 9(y) dy = WJ/O 9(y) cler/WJ 9(y) dy. (5)

Observe that

gives

1 nz—1 [nz|] nz
zZ—— = < < — =z
n n n n

Therefore by the Pinching Lemma (Squeezing Lemma)

lim ne] _ z. (6)
n—oco M
Also
1/m () dy| < E(nz — nz))lall =@ < > ol
" WJQ y)ay| = n gllL>=R) = n gllL>(R)
Therefore | e
Jim /WJ g(y)dy = 0. (7)

By combining equations (5), (6), (7) we find that

) 1 nz B 1
nlg"rolon/o 9(y)dy = Z/o 9(y) dy. (8)

Therefore the limit of the first term on the right-hand side of equation (4) is

d d

' 1 nz - 1
fim [ awayn)| == [ gt dvhie)

n—oo n

c c



Now we find the limit of the second term on the right-hand side of (4). By the computations

above
y) dy b/ (2) dz—/ / y)dy h'(2)
_/c n/o oty = [ o)
S/Cd U;ZJ /Olg(y)dy+Tll/L:Jg(y)dy—z/olg(y)dy

< /d( U:J /Olg(y) dy—Z/Olg(y) dy‘ +71”‘/L:J !g(y)!dy> |1'(2)| dz

N nz| —nz [! 1
< [ [t ao| s+ 1 ol 11

dq rt 1
< / 1 / 9| dy 1)) dz + - gl e IF 121 oty
c M Jo n

|1 (2)| dz

|1 (2)| dz

2
< gl @ 1Pl ey = 0 as n = oo,

li_}rn / / y)dy h'(2)dz = / / y) dy h'(z (10)

Combining (4), (9), (10) and then integrating by parts yields

[ Lo

Therefore

d 1
ILm g(nz)h(z)dz = z/ g(y) dy h(z

L Lo

as required.

. Radial symmetry of Laplace’s equation on R™. Let v : R” — R be a harmonic function. Let
R € O(n,R) and define w : R” — R by w(x) := v(Rx). Then

O0v O(Rx); "
Wa, = st G:U Ox; ZOI‘J 8xiZRjkxk
—z o R = S
i T3 k=1
" v
=3 LR
=1 8a:j J

To be precise

(This can also be written as Vw(z) = RT Vu(Rz).)



Now we compute the second partial derivatives:

a n
Wz = (“)7301 Z ve; (Rx) Rj;

- Jzn;é ?;Z; oz, LR,
- ; kzl O R Z Ryaz1
= Z} kzl Vo R zn: Rt axl
j
- ]Zl kzl Vo Rii Z Rudi
= ; ; Uy Ryi R

Therefore

n
Aw = waiwi
i=1
n n n
= Z Z Z Vgjzy, R]szz

i*ljflk—l

= Z Z Vg jzy, Z Rjszz

jlk;l

= szx]xk ZR]’L i

]lkl

— Z Z Vi, (RRT)jk

j=1 k=1

j=1k=1

since R is an orthogonal matrix. There are two ways to conclude from here: If are are familiar with
the matrix inner product, then (11) gives

Aw = D?*v : I = trace(D?v) = Av =0
since v is harmonc. Otherwise we can continue from (11) using indices:

Aw-zszawk jk _szx]xk ik _Zv%xa = Av =0,

j=1k=1 j=1 k=1

as required.



4. Fundamental solution of Poisson’s equation in 3D.

(i) One way of computing ||®||;1(p,(0)) is using spherical polar coordinates:

102t (o)) = / ()| dee
Br(0)
1 1

= — —dx
am BR(O el

/ / = r2sin 0 drdfdgo
6=0Jr=0"T

271'
i 1d<;5/ Sln9d9/ rdr
47

R2
2

Another way of computing [|®||z1(p,(0)) is as follows:

10 11 o)) = / B(x)| da
Br(0)
R
- / / B(y)| dS(y) | dr
0 9B,(0)
1 1
— ~dS(y) | dr
</5)Br(0)47fly\ ())

Lot / Lis) ) d
= — - r
47 Jo 9B.(0) T

_ % OR <area(aBT(0)) 1) dr

r
1 R

= — <47rr ) dr
47T 0

(ii) Let K C R?® be compact. Since K is bounded, there exists R > 0 such that K C Bg(0).

Therefore )
/ B ()| dz < / 1B ()| do = 2 < oc.
K Br(0) 2

Therefore ® € L{ (R3).

(iii) By part (i),

loc

. i R2
A 1@l = Jim 5 = oo

Therefore ® ¢ L'(R3).



(iv) By the Chain Rule

1 1 1 1 x 1 =
(I) = — _— = — _— _—= ——
ve@) M(\W)W“ M(\W)W I [

Let K C R3 be compact. Since K is bounded, there exists R > 0 such that K C Bg(0).
Therefore

/ Vfb(m)|dm§/ VO (x)|dx
K Br(0)
RV
Bg(0) 47 ||
1 2 T R 1 )
= — / / — r”sinfdrdfde
AT Jp=0 Jo=0 Jr=0 T

1 2 I R
= — ldgb/ sin9d9/ 1dr
A Jo 0 0

=R

< oQ.

Therefore V® € LL (R3).

loc

5. Fundamental solution of Poisson’s equation in 1D. We compute

u'(z) = (@ f)'(z)

= (f*®)"(x) (symmetry of convolution)

2 00
— 5 | e vy

—00

] 2
— [ o) Lz -y

—00

0 d2
=/ y@f(x—y)dy

—00

0 d2
=/ ydT/Qf(w—y)dy

d 0 0 q
=y ny(g; - y)’_oo - /Oo d—yf(a: —y)dy (integration by parts)
= —f(x) (Fundamental Theorem of Calculus)

as required.

6. The function spaces L' and Ll . Let f:R — R, f(z) = |z|*, k € R. By integrating we see that

(i) f € LY((-R, R)) for k > —1,

(i) f € L'((R,)) for k < —1,

(iii) f € LL.(R) for k> —1,

(iv) f ¢ LY(R) for any k (by parts (i),(ii)).

7. Properties of the convolution.

(i) Let ¢ € L{ (R), f € Cc(R) and let K = supp(f). Choose R > 0 such that K C [-R, R]. In
particular, f = 0 outside the interval [—R, R]. Therefore



s D@l =| [~ ole=nsway

| fe-om

s/ o — )I1F (v)] dy
max |f|/ y)| dy

[RR

= max |f|/ z)| dz
[~ R,R]

< o0

since ¢ € L] (R) and [—-R — z, R — 2] is compact.
(i) Now assume that ¢ € L'(R). By Lemma 4.12, f € L°(R). Therefore

I(w*f)(:v)lé/ool (& — )| f )| dy
< sup | f(y \/ )| dy

yER

T
yEeR

= [ fllLe@llell 1 w)

)| dz

Therefore
e * flleom) = sup (e * ) (@) < N fllpeemylellLrm)y < 00
TE

and so ¢ x f € L>(R), as required.

(iii) The convolution is commutative since

(ox 1) = [ " @ — )i (y) dy

-/ o) - 2)(~1)dz (c=z—1)
- [ e
— (f0)()

as required.

8. The Poincaré inequality for functions that vanish on the boundary. Let f € C'([a,b]) satisfy f(a) =

f(b) = 0. Then N i
4 / 1) dy = / 1) dy

since f(a) = 0. Therefore



uwzjfwﬂ
—/1¢wm4
T 1/2 T
/12dy /!f’(y)lzdy
b 1/2
a>1/2(/ |f'<y>|2dy> .
Squaring and integrating gives
b b b
/\fwn%mf;/<x—a{/|f@n%wdx
a ab a b
=/kx—wdx/|fwﬁdy
b
2wy
b
—50-a? [ IF )P

This is the Poincaré inequality with C = (b — a)?.

1/2

IN

(Cauchy-Schwarz)

IN

25(.1'—&

9. The Poincaré inequality on unbounded domains.

(i) For n € N, define f,, : R — R by

0 if x € (o0, —n — 1],
(x—(—n—1)%(x - (—n+1))? ifzxc[-n—1,-n],
fu(z) = 1 if x € [-n,n],
(x—(n+1)2%(x—-(n-1)% ifzenn+1],
0 ifxen+1,00).

(Exercise: Sketch f, to get a better understanding of the example.) Observe that

fn(_n_ 1) fn(n+ 1)
fa(=n) = fa(n) =1,
fal=n=1) = fi(=n) = fr(n) = fr(n+1) = 0.

Therefore f,, € C*(R). We also have f,, € L*(R) since

oo n+1
Il = [ i@ dr< [ vdo=200+1).

—n—1

We compute

10



A - / (@) d
2

n+1
2[; LZ&F{n+UP@—{n—DV da

n+1 )
2 [ ol (ot D)~ 0~ D 42— (04 1P (0= 1) e

1
:2/0 [Q(y—1)(y+1)2—|—2(y—1)2(y—|—1)]2dy (y=x—n)

which is independent of n. But

Hh%w—/ W@WM>1LM@MLJW

Therefore
n—oo
Hf1/1||L2(R) = constant, | fullL2@) — o0

as required. This means that, given any C' > 0, we can choose N large enough so that

/_ n(@)Pde>C / i) de,

which means that the Poincaré inequality on R does not hold. We constructed this counter
example using spreading; the support of f, spreads as n — oo without changing the L?-norm

of f].
(ii) Let Q = (a,b) x (—o0,00). Let f € CY(Q) N L3(Q) with Vf € L?(Q) and with f(a,y) =
f(b,y) =0 for all y € R. Then

S k 2 )
Lis@raz= [~ ([ sk i)
00 b
S/ (C/ \fx(x,y)2dx> dy (Poincaré inequality in x)
00 b
<c [ [Urn)P + 15l dody

= :I:2£13
—C/Q\Vf( )2 d

as required.

10. The Poincaré constant depends on the domain. There exits C1 > 0 such that

/\f r2dx<c/ (@) do (12)

for all f € C*(]0,1]) with £(0) = f(1) = 0. Let g € C([0, L]) with g(0) = g(L) = 0. Then

11



L 1
/ g(0)? do = / 9(Ly)PLdy (y = /L)
0 0

1
:L/|ﬂwF@ (f(y) == g(Ly))
0
1
e /0 ()2 dy (equation (12))
1
:LC{A|LjQdey (f'(y) = Lg'(Ly))

1
— 130, /0 19/ (Ly)[? dy

L
— 120, / 1§/ (0)? do (y= /L)

0
L
e / ¢/ (@)? da
0

with Cp, = L?C}, as desired.

11. Eigenvalues of —A: Can you hear the shape of a drum? Multiply the PDE —Au = Au by @ (the
complex conjugate of u) and integrate over 2:

—/uAuda::)\/uuda: = - uVu'ndL—i—/Vu'Vuda::)\/\u|2dw.
Q Q o0N Q Q

The boundary condition u = 0 on 0f2 implies that w = 0 on 92 and so

/W-Vudm— /|u|2d:c = /|Vu]2d:c— /|u|2daz
Q
/\Vu]Qd:c
>0
/\u]Qd:c
Q

as required.
12. The optimal Poincaré constant and eigenvalues of —/\.

(i) Multiply the PDE —Aw = Au by u and integrate over €

—/uAudw:)\/uzdw = /\Vu]zdw:)\/uzdaz
Q Q Q Q

since © = 0 on 0f). Rearranging gives
l/]Vude

/ lu|? dx

12



(ii) Let u € C%(Q) NV minimise E. Let ¢ € V. Define u. = u+ p € V and define g(¢) = Elu.],
€ € R. Since F is minimised by u, then g is minimised by 0. It follows that

0=yg'(0)
d
da

e= O ]

/Vug\dec
de le=o /\uEQdaz
/Vu Vgoda:/ |u|? a:—2/ |Vu|2d:c/u<pdac
</ |u|2da:>

The numerator must be zero. Rearranging gives

/|Vu|2d:1:
/Vu-Vgodm: CLS I /uapd:c.
Q /|u|2da: Q

Q

Integrating by parts gives

/|Vu|2dm
—/Aug@da:: e /wpdm.
Q /’u|2d$ Q
Q

Since this holds for all ¢ € V, the Fundamental Lemma of the Calculus of Variations implies

that
/\Vu|2da:
—Ay = u in .
/\u|2daz
If we define
/yvu|2dm
/u|2dw
then

—Au =M u in .

In other words, u is an eigenfunction of —A. By definition

/ \vu|2dm
/ \u|2dm

Since u minimises ¥, then A must be the smallest eigenvalue of —A on V', i.e., A = A1, otherwise
we obtain a contradiction. Therefore E[u] = A1, as required.

13



(iii) Let C' > 0 satisfy
1fllz2) < ClIV L2
for all f € C*(Q) with f =0 on 9. Then

1 _ VIl
C = fllee)
for all f € V and so
Vv
1 IV iz

C = rev Il
The smallest value of C' satisfying this inequality is C = Cp where

1 IVEllee
- = lnf —_— .
Cp  rev |[fllz2e)

(iv) Combining parts (ii) and (iii) gives

L i IVl _ inf E[v]'/? = <inf E[v]>1/2 = VAL
Cp  rev |fllp2)  fev fev
Therefore 1
C -
Vo
as desired.

(v) If Q= (0,27), then the corresponding eigenvalue problem is

—u" = Au in (0,27), u(0) = u(27) = 0.

The eigenfunctions are up(z) = sin (%) (see Exercise Sheet 5, Q16) and the corresponding

eigenvalues are \, = n?/4, n € N. Therefore \; = 1/4 and Cp = 1/4/1/4 = 2. In Q8 we
obtained the Poincaré constant (b — a)/v/2 = /27, which is obviously much bigger than the
optimal constant Cp = 2.

13. Uniqueness for Poisson’s equation with Robin boundary conditions. Let u; and uo be solutions of

—Au=f in,
Vu-n+au=g on 2

Let w = u; — us. Since the PDE is linear, subtracting the equations satisfied by u; and uo gives

—Aw =0 in ),
Vw-n+aoaw=0 on 0.

Multiply —Aw = 0 by w and integrate by parts over §2:

/wAwdac:O = - wVw~ndS+/|Vw|2dm:O
Q Q

o0
= a/ w2dS+/|Vw\2da::0
o0 Q

since Vw - n = —aw on 0X). But o« > 0. Therefore

14



/ w?dS =0, /|Vw|2dm:0.
o0 Q

The second equation implies that Vw = 0 and hence w = constant (or at least constant on each
connected component of §2). The first equation implies that this constant must be zero. Therefore
w = 0 and u; = ue9, as required.

14. Uniqueness for a more general elliptic problem. Consider the linear, second-order, elliptic PDE

—div(AVu)+b-Vu+cu=f inQ,

13
u=g on Jf. (13)

(i) Suppose that uy,us € C?(Q) satisfy (13). Let w = uy — ug. Since the PDE is linear, subtracting
the equations satisfied by u; and usy gives
—div(AVw) +b-Vw+cw =0 1in Q,

14
w=0 on N (14)

Clearly w = 0 satisfies (14). We want to show that it is the only solution. Multiply the PDE for w
by w and integrate over €Q:

0= / w(—div(AVw) +b- Vw + cw) de
Q
:—/wdiV(AVw)da:—l—/wb-deac—l—/cw2d:B
Q Q Q
:—/ w(AVw)~ndS+/Vw-(AVw)d:c+/wb-de:c+/cw2d:B
09 Q Q

Q
—/Vw‘(AVw)d:c—l—/wb-desc+/cw2da: (15)
Q Q Q
since w = 0 on Jf2. Observe that
/ Vw - (AVw)dx = /(Vw)TAVw dx > a/ \Vw|? dx (16)
0 Q Q

by the assumption that A is uniformly positive definite (take y = Vw in yTA(x)y > o|y|?).
Integrating by parts gives

/wb~dea::/ w2b~ndS—/wdiv(wb)dm
Q o0 Q

= —/ wdiv(wb) dx (w =10 on 09)
Q

= — / w (Vw - b+ wdivb) de (product rule)
Q

= —/ wb - Vwdx
Q

by the assumption that divb = 0. Therefore

/wb-de:n:—/wb-dem = /wb-deac:(). (17)
Q Q Q

15



Combining (15), (16), (17) yields

a/ ]Vw|2dw+/cw2dw§0.
) Q

But ¢ > 0 by assumption. Therefore

a/ |Vw|? dz = 0
Q

and so Vw = 0 in . Hence w is constant (or at least constant on each connected component of

Q). But w = 0 on 99Q. Therefore w = 0, as required.

(ii) The idea is the same as for (i). Let u, be the unique solution to the PDE with A, and let u
be the unique solution to the PDE with the matrix A. Define w, := u, — u. We need to show
that Vw, — 0 in L?(Q) as n — +oo. Taking the two PDEs, subtracting them and multiplying the

resulting PDE by w,,, we obtain
0= /an(—div(An Vuy) 4+ div(AVu) + b - Vw, + cwy,) de.
Proceeding exactly as in (i), we find
/ wpb - Vw, dx = 0.
Q

Moreover, we compute (using integration by parts, since w, = 0 on 0)

/Q wn|—div(An V) + div(A V) da

= /an[—div(An Vuy) + div(A, Vu) — div(A,, Vu) + div(A Vu)| de

= /an[—div(An (Vuy, — Vu)) —div((A, — A) Vu)] dx

- /Q (Vi - (An Vi) + Vioy - (An — A) Var)] da

> /Q[a|an|2 + Vwy, - (A, — A) Vu)] de
So, all these arguments yield

/Q[a]an\Q + Vwy, - (A, — A) Vu) + cw?] de < 0.

Now, for any € > 0, Young’s inequality yields

[ (A= Ay V)i == [ (Vo — [ 5ja,— APV de

By setting € := «, the previous two identities imply
o 2 2 1 2 2
[—|an| +cwn} de < = ||An — Al2w | |Vul? da.
Q 2 20 Q
And by the non-negative property of ¢, one has

o 1
/92]an\2 dx < zaHAn—AHQLDO/QVuFdx.

We conclude by the facts that [, [Vu|? dz is bounded and [|4, — Al[z~ — 0, as n — +o0.

16
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15. Uniqueness for a degenerate diffusion equation. Clearly u = 7 satisfies

Au™ =0 in Q,

u=m on 0.

We use the energy method to show that it is the only positive solution. Let v be any positive
solution. Subtracting the PDE for u from the PDE for v and multiplying by (v — u) gives

0=(v—u)(Av™ — Au™) = (v — 1) (Av™ — An™) = (v — 7) Av™.

Now integrate over €Q:

0= /(U —7m)Av" dx
Q

= /(U —m)divV(v™) dx (A =divV)
Q

= /(v — ) div(mv™ V) da (Chain Rule)
Q

= / (v—7) mv™ 'Wo-ndS— | V(v—7) - mv™ 'Vodx (Integration by parts)

:—/mvm_1Vv]2dzc.
Q

Therefore
/ mv™ Vol de = 0.
Q

But v > 0, by assumption. Hence Vv = 0 in 2 and so v is constant in €. Since v = 7 on 012, we
conclude that v = 7 everywhere, as required.

16. The H& and H' norms.

(i) We need to check that || - [|z2(jq)) satisfies the three properties of a norm: positivity, 1-
homogeneity, and the triangle inequality. First we prove positivity. Let f € C([a,b]). Clearly
£l z2([a,p)) = 0. Suppose that || f||z2(jap) = 0 and assume for contradiction that f # 0. Since
f is continuous, then there exists zy € (a,b), h > 0 and € > 0 such that |f(x)| > € for all
x € (o — h,zo + h). Therefore

191 uan = [

zro—h

xo+h
|f(2))? dz > / e?dr = 2he? > 0,

xo—h

zo+h

which is a contradiction. Second we check that || -|[12(jq,)) is 1-homogeneous. Let A € R. Then
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(i)

(iii)

1/2

1/2
vamw=</uﬂ)> M(/U‘P) = A 2o

as required. Finally, we prove the triangle inequality. Let f,g € C([a,b]). Then

b
nf+mﬁamm——/kf<>+g<»%m

/f da:—|—2/f dx—l—/abg( )2 dx
/f dx+2</f dx>1/2</abg(x)2d:c>

(by the Cauchy-Schwarz inequality)

1/2

+ /abg(x)2 dx

= 1 F 122 apy + 217 22 oty 19112y + 90122 (pap)
2
= (12 o) + N9l 22 (ap)” -

Taking the square root gives the triangle inequality.
Remark: An alternative proof is to prove that the function (-,-) : C([a,b]) x C([a,b]) — R

- [ @) as

is an inner product on C([a, b]). It then follows that || f|| := \/(f, f) is a norm on C([a, b]) (the
norm induced by the inner product; see Definition A.16 in the lecture notes). But this is just
the L*-norm || - || 12((qp))-
Remark: The Cauchy-Schwarz inequality can be proved by considering the quadratic polyno-
mial

t=p(t) = |If + tg”%?([a,b])'
Since p is non-negative, then it must have non-positive discriminant, i.e., if p(t) = at? + Bt +7,
then %2 — 4ay < 0. It is easy to check that this condition is exactly the Cauchy-Schwarz
inequality.
We will prove that the function (-,-)g1 : C1([a,b]) x C*(]a,b]) — R defined by

fMﬂF/f M+/f

is an inner product on C([a, b]). It then follows that

| fll 1 (ap)) = V (fs )

is a norm on C'([a,b]) (see Definition A.16 in the lecture notes). It is clear that (-,-)y1 is
symmetric and bilinear and that (f, f)z1 > 0 for all f € C'([a,b]). Suppose that (f, f)1 = 0.
Then || f||f1(fa,p)) = 0 and in particular || f||z2((qp)) = 0. Therefore f = 0 by part (i).

This is similar to part (ii). We will prove that the function (-, ')H& : V. xV — R defined by

b
9y = [ @) da

is an inner product on V. It is clear that (-, -) 1 is symmetric and bilinear and that (f, f) g1 > 0
for all f € V. Suppose that (f, f)z1 = 0. Then || f|[f71(4,)) = 0 and in particular 1N 22 (a5 =
0. Therefore f' = 0 by part (i) and so f is a constant function. But f(a) = f(b) = 0 and hence
f =0, as required.
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(iv) We need to find constants ¢, C' > 0 such that

g o)y < 1oy < ClflEgapy Y FEV
Let f € V. We have

/ 2 1112 1/2
1A 222 oy = 1 N 22(fap)) < <||f||L2([a,b]) + [ f ||L2([a,b])) = lf e (fa,))-
Therefore ¢ = 1. On the other hand,
LA gy = 1122 qaey + 1 W22any < CRIF N 20y + 11220 m)
where Cp is the Poincaré constant. Therefore we can take C' = (O3 + 1)/2.

17. Continuous dependence. Let u € C?(Q) satisfy

—div(AVu) +cu=f inQ,
u=0 on 0.

Multiplying the PDE by w and integrating over ) gives
/ fudx = / u (—div(A Vu) + cu) do
Q Q
= —/ udiv(A Vu) de + c/ u? dx
Q Q
= —/ u (A Vu) -ndS+/ Vu - (AVu)d:B—i—c/ u? dx
a0 Q Q

:/(Vu)TAVudm+c/u2dm (u=10 on 09)

Q Q

>« / |Vul|? d + ¢ / u® dx (A is uniformly positive definite)
Q Q

> min{a, ¢} </ \Vu|2d:c+/ u? dac)
Q Q

= min{e, ¢} ||u”§{1(9)

by definition of the H'-norm. Therefore

min{a, c} [[u]|F g < /QfUde <[ fllzz@llullz2@) < 12 llull g @)

where we have used the Cauchy-Schwarz inequality and the fact that [|v][z2(q) < [|v][g1(q) for all
v € C1(Q). Cancelling one power of ||u| m1(0) from both sides gives the desired result:

lullgr o) < Clfllzz@)
with C' = 1/ min{e, c}.

Remark: Note that this estimate degenerates as ¢ tends to 0 (C' — 400 as ¢ = 0). If c=0 or ¢ is
small then a better estimate can be obtained using the Poincaré inequality: As above

/fudacZa/ Vu|2dm+c/u2dm2a/ \Vu|2dm:a||u|]§{é(ﬂ).
Q Q Q Q

Therefore
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04”“”%;3(9) < /Qfwa < 2@ llullzz) < Cpllfllz@)IVullz2@) = Cell fllzz@) vl 1 o)
where Cp(€2) is the Poincaré constant. Cancelling one power of ||ul| (o) from both sides gives
lull 1) < ClFlz2@)
with C = Cp/Oé.

18. Continuous dependence with a first-order term.

(a) Let u € C?(Q) satisfy
—kAu+b-Vu+cu=f inQ,

19
=0 on JN. (19)

Multiply the PDE by u and integrate over 2:

—k:/uAudac—l—/ub-Vudm—l—/chda::/fudac

Q Q Q Q

= -k [/ uVu-ndS—/|Vu|2daz] +/ub-Vudaz+/cu2dm:/fudaz
a0 Q Q Q Q

= bVl + /Q (b- V) uda + cllulsq) = /Q fude < ||l

by the Cauchy-Schwarz inequality.
(b) Let £ > 0. Then

< [1bl o /Q Yl |u] d

/Q(b-Vu)udx

< 16l Lo () I Vull 2@ llull L2 () (Cauchy-Schwarz)
1
~ bll~i0y (V2= I 9ull0)) < el

1
< B0y (<1 Vullo) + 5ol )

by the Young inequality.
(¢) Combining parts (a) and (b) gives

[ fllz2@llull L2y = kHVUH%?(Q) + /Q(b -Vu) ude + C||UHQL2(Q)

> K|Vl — \ [ vuyude| + e

1
> K|Vl 3y — I8ll o) (snwnim) + 4€||u||%2(m) +clfulZeqq

B 9 16| o< () 2
= (k= el IVl + (= ) ulE
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(d) Let e > 0 satisty k — ¢[|b]| () > 0, i.e., let

k
0<e< —m. 20
Tollimen (20)

Let
o — 16/l o< ()
0 4e
If ¢ > ¢, then
b||
o Bl )
de
Therefore if ¢ > ¢y and e satisfies (20), then

> 0.

bl| 7
. 16| oo (02)

0
4e -

k —el|bl| Lo () > 0,
and so by part (c)
Il 2wl mr ) = 1 F 2 llvll L2 @)

: 6]l L= () 2 2
> min {k — €||bHLoo(Q), Cc— 45} (HVUHLQ(Q) + HUHLZ(Q))

: 1B]] Lo 0
:mln{k—E”bHLoo(Q),C— T HUH%{1(Q)

Therefore if ¢ > ¢y and ¢ satisfies (20), then

Jull @) < M| fll 2

with
M= 1
. E—cllb _IBllzeeoy |
min ell HLOO(Q)aC =
For example, if we choose
1 k
€= —7i—,
2 16| o (o)
then 1]
Lo () 1 2 1
“ 2k 7 min {k/2,¢c — co} maX{k’c—CO

(e) Let v € C?(Q) satisfy (19). Then w = u — v satisfies (19) with f = 0. Therefore by part (d)
|wll i) <0
and so w = 0 and u = v, as required.

19. Neumann boundary conditions for variational problems.

(i) Let u € C1(Q) be a minimiser of E. For any ¢ € V, ¢ € R, define u. = u+e¢. Then u. € C1(Q)
since the sum of C! functions is C'. Let g(¢) = E[uc]. Note that u. = u when ¢ = 0. Therefore
¢ is minimised by € = 0 since F is minimised by u. Hence
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E[UE]

O[ /\Vus\gda:—/fusd:c]

da
d 1
= — [ / (Vu+eVy) - (Vu+eVp)dr — / flu+ep) dac]
de e=0 2 Q Q
1 d d
=— | — [(Vu+eVy) - (Vu+eVp)lde — | f— (u+ep)de
2 Q de e=0 Q d e=0
1
= /[V«p (Vu+eVy)+ (Vu+eVy) - Vyl dx — / fodx
=0 Q
= / Vu-Veodr — / fedx.
Therefore
/Vu-Vgoda::/ fodx for all p € CH(Q) (21)
Q Q

as required.

(ii) First choose a test function ¢ € C'(Q) such that ¢ = 0 on 9. Since u € C?(Q), we can
integrate by parts in (21) to obtain

Vucp-ndS—/divVu wdw:/fgpdw = / —Au— flode =0
/an o o Q Q( )

because ¢ = 0 on d§2. Since this holds for all test functions ¢ € C''(Q) such that ¢ = 0 on 99,
the Fundamental Lemma of the Calculus of Variations implies that

—Au—f=0 inQ (22)

as required. We still need to show that u satisfies the Neumann boundary condition. Now take
any test function ¢ € C*(Q) in (21) and integrate by parts as before to obtain

/ Vucp-ndS—/Aucpdm:/fcpdm = Vucp-ndS+/(—Au—f)g0dm:0
o Q Q o0 QW

— Vu-npdS =0.
o0

Since this holds for all ¢ € C*(Q), then Vu -n = 0 on 952, as required.
20. The p—Laplacian operator.

(i) Let u € C%(Q) NV minimise E,. For any ¢ € V, ¢ € R, define u. = u + ep. Observe that u.
vanishes on the boundary of €2 since both u and ¢ vanish there. Also u. € C(€) since the
sum of C! functions is C!. Hence u. € V. Define g(¢) = E,[u.]. Now us = u when ¢ = 0.
Therefore ¢ is minimised by € = 0 since E,, is minimised by u. We have reduced the problem of
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minimising the functional E, to minimising the function of one variable g. Since g is minimised
at e =0,

0=4'(0)
d
= — E,lug]
de e=0 .
1
_ 4 [/ |Vu5|pdm—/fugdac]
de|._o LP Jo Q
1 d
:/ — |Vu+6Vgo|pdm/ (u+ep)dx
pJa de|._ Q e=0
1/ 1 Vu+eVp
=— [ plVu+eVplP"l'ie—©co—-Vp| dx— | fedx
pJo | | [Vu + eV =0 0
:/ |Vu|p_2Vu-V<pdm—/f<pdm (23)
Q Q

where the differentiation was performed using the Chain Rule and the fact that

d
—(Vu+eVp) = V.

d Yy
7xp :pxpia v Y =

dx

Recall the integration by parts formula

/g-Vhda::/ gh~ndS—/hdivgdm.
Q onN Q

By applying this with h = ¢, g = |Vu[P"2Vu, we can rewrite equation (23) as
0= / IVulP2Vup-ndS — / @ div(|VulP~2Vu) dz — / fodx.
o0 Q Q
But ¢ = 0 on 02 since ¢ € V. Therefore
0= / [div(|VuP~2Vu) + flpdx for all p € V.
Q

Since ¢ is arbitrary, the Fundamental Lemma of the Calculus of Variations gives
div(|Vu[P™2Vu) + f =0 in Q.
Therefore
—div(|Vu[P™2Vu) = f in Q
=Apu
as required. Note that u = 0 on 92 by definition of V.
(i) Multiply the PDE —div(|Vu|P~2Vu) = f by u and integrate by parts over ) to obtain

—/udiv(|Vu|p_2Vu)da::/fud:c
Q

= - u(|VulP~2Vu) - ndS—l—/ |Vu|P2Vu - Vudaz—/fud:z:

= /]Vu\pdx—/fud:c (24)
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since v = 0 on J2. Therefore

Ep[u]—;/ﬂ|Vupda:—/qudw

1
= / |Vul? de — / |Vul|P de (by equation (24))
pJo Q
1—
— P / Vul? da
p Q
1-p .
=— [ fudx (by equation (24))
p Q

as required.

21. The minimal surface equation: PDEs and soap films. Let u € C2(Q) NV be a minimiser of A. Let
e € Rand p € CHQ) with ¢ = 0 on 9Q. Define u. = u + ep. Then u. € V since the sum of
continuously differential functions is continuously differentiable and, if @ € 9€2, then

ue(x) = u(x) +ep(x) = g(x) + -0 =g(x)

as required. Define h : R — R by h(e) = AJu.]. Then h(0) = Afu| and so 0 is a minimum point of
h since u is a minimum point of A. Therefore

0= 1(0)
d
== A4
de|._g ]
d ——
e=0JQ

V14 |[Vu+eVe2de
0

=

/
q de
Vu+ eV

= [ 1a 2122 : d
/92( + [Vu+eVpl|9) |[Vu+ eV Vut eVl apEZO T

/ Vu Vo da
a1+ |Vul?

This means that u is a weak solution of the minimal surface equation. Since u € C?(2), then we
can integrate by parts to obtain

Vu
0:/ — . Vydz
a1+ |Vul?
w)m

Vu
= @-ndS—/diV
0 /14 |Vul? Q V14 |Vul?
/di _Vu pdx
=— v
Q V1+|Vul?

since ¢ = 0 on 9S. This holds for all ¢ € C1(Q) with ¢ = 0. Therefore u satisfies the minimal
surface equation

v L =0 in{
V14 |Vul? '

by the Fundamental Lemma of the Calculus of Variations (Lemma 3.20).
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22. Homogenization and the calculus of variations.

(i) Let w € C?([0,1]) NV minimise E. For any ¢ € R and any ¢ € C*(]0,1]) such that (0) =
©(1) =0, define u. = u + ep. Then

ue(0) = u(0) +ep(0) =1l+ec-0=1

and similarly u.(1) = r. Therefore u. € V. Define F(¢) = Elus]. Now u; = u when ¢ = 0.
Therefore the minimum of F' is attained at 0 since the minimum of E is attained at u. We
have reduced the problem of minimising the functional F to minimising the function of one
variable F'. Since F' is minimised at 0,

0= F'(0)

=4 B
de e=0

- B [; / @)l () d / ' f(uela) dx]

_ ;66:0 B/Ola(x)( @) + e (@ dm—/ F@) (u(@) + el ))d:c]

1 1
_ / a(2)d () (z) d — / F@)p(x) da. (25)
0 0

Since u € C2([0,1]), we can use integration by parts to rewrite equation (25) as

1 1 1
0= ale)u(W)ela)] - [ e @) @ di= [ @@ dr = = [ el @) +r@)eta) da.

But this holds for all ¢ € C1([0,1]) such that ¢(0) = (1) = 0. Therefore by the Fundamental
Lemma of the Calculus of Variations

(a(x)u/(z)) + f(z) =0, x€(0,1),

as required. Note that u satisfies the Dirichlet boundary conditions by definition of V.
(ii) Recall from Q2(ii) that if g € L>°(R) is 1-periodic, then for any interval [c,d] C R,

d d
lim g(nz)h(z)dx = / gh(z)dz vV h e LY(R). (26)

n—oo c

Applying (26) with ¢ = 0, d = 1, g(z) = a(z), h(z) = $[v/(z)|* on [0,1], gives the desired

result:
lim E,[v] = / alv'(z |2d1:/ f(@)v(x)dx =: Exlv].

n—o0

(iii) Observe that Ew is just the one-dimensional Dirichlet energy with an additional constant @ in
the first term. It follows from Dirichlet’s Principle (see the lecture notes) that u, satisfies the
Poisson equation

—aul,(v) = f(z), z€(0,1),
Uoo(0) = ux(1) = 0.

In Q2 we showed that lim,, oo un(x) = ug(x), where ug satisfies
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_aOug(x) =f $)> T e (Oa 1)7

where

Since ag # @ in general, it follows that ug # us and hence

nh_)rrolo U () = up(x) # oo (),

as required.
In fact it can be shown that ag < @ as follows:

1:[/01\/@\/;7)@] g[(/Ola(:c)dx>l/2</01a(1x)dx>1/2] :a®:aa01

where we have used the Cauchy-Schwarz inequality. It follows that the I'-limit Fj is less than
or equal to the pointwise limit F...
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