
Partial Differential Equations III & V, Exercise Sheet 6

Lecturer: Amit Einav

1. The Fourier transform: The heat equation with source term.

(i) Verify that

x(t) = Geλt +

∫ t

0
eλ(t−s)F (s) ds

satisfies the ODE

ẋ(t) = λx(t) + F (t), x(0) = G.

This is an example of Duhamel’s principle, which is a method for obtaining a solution of
an inhomogeneous differential equation, in this case ẋ − λx = F , from the corresponding
homogeneous differential equation, in this case ẋ− λx = 0.

(ii) Consider the heat equation on R with source term f(x, t):

ut − kuxx = f in R× (0,∞),

u = g for t = 0.

Use the Fourier transform and part (i) to derive the solution

u(x, t) =

∫ ∞

−∞
Φ(x− y, t)g(y) dy +

∫ t

0

∫ ∞

−∞
Φ(x− y, t− s)f(y, s) dy ds

where Φ is the fundamental solution of the heat equation in R.

2. The Fourier transform: The transport equation.

(i) Let v ∈ L1(R) and define τav ∈ L1(R) by τav(x) = v(x − a), which is the translation of v by
a ∈ R. Use a change of variables to prove that

τ̂av(ξ) = e−iξav̂(ξ).

(ii) Use the Fourier transform and part (i) to derive the solution u(x, t) = g(x−ct) of the transport
equation

ut + cux = 0 for (x, t) ∈ R× (0,∞), u(x, 0) = g(x) for x ∈ R.

3. The Fourier transform: Schrödinger’s equation. Consider Schrödinger’s equation

iut + uxx = 0 for (x, t) ∈ R× (0,∞),

u(x, 0) = g(x) for x ∈ R,
(1)

where u and g are complex-valued.
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(i) Use the Fourier transform to derive the solution

u(x, t) =
1√
4πit

∫ ∞

−∞
e

i(x−y)2

4t g(y) dy.

(ii) Let u : R× [0,∞) → C satisfy (1). We write u(·, t) to denote the function x 7→ u(x, t) for fixed
t. Assume that g, u(·, t) ∈ L1(R) ∩ L2(R) and that ut(·, t), uxx(·, t) ∈ L1(R) for all t > 0. Use
the Fourier transform to prove that

∥u(·, t)∥L2(R) = ∥g∥L2(R) ∀ t > 0.

This can also be proved using the energy method.
Hint: Use the fact that the Fourier transform preserves the L2–norm: ∥ĝ∥L2(R) = ∥g∥L2(R) and
∥û(·, t)∥L2(R) = ∥u(·, t)∥L2(R) (you do not need to prove this).
Remark: This shows that the energy E(t) := ∥u(·, t)∥2L2(R) is constant. Recall that if u satisfies
the heat equation on R with diffusion constant k, then the energy decays:

d

dt
E(t) =

d

dt
∥u(·, t)∥2L2(R) = −2k∥ux(·, t)∥2L2(R) ≤ 0.

Schrödinger’s equation is an example of a dispersive equation, where energy is conserved,
whereas the heat equation is an example of a diffusion equation, where energy decays.

4. The Fourier transform: The wave equation. Use the Fourier transform to derive the solution

u(x, t) =
1

2
[g(x− ct) + g(x+ ct)]

of the wave equation

utt = c2uxx for (x, t) ∈ R× (0,∞),

u(x, 0) = g(x) for x ∈ R,
ut(x, 0) = 0 for x ∈ R,

where the constant c > 0 is the wave speed. This is known as D’Alembert’s solution.
Hint: Use Q2(i) and the fact that cos(cξt) = [exp(icξt) + exp(−icξt)]/2.

5. The Fourier transform of a derivative. Let u, u′ ∈ L1(R). Use integration by parts to prove that

û′(ξ) = iξû(ξ).

6. The Fourier transform of a convolution. Let u, v ∈ L1(R). Prove that

û ∗ v =
√
2π ûv̂.

Hint: By definition

û ∗ v(ξ) = 1√
2π

∫ ∞

−∞
(u ∗ v)(x)e−iξx dx =

1√
2π

∫ ∞

−∞

(∫ ∞

−∞
u(z)v(x− z) dz

)
e−iξx dx.

The trick is to write
e−iξx = e−iξze−iξ(x−z)

and then to interchange the order of integration.
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7. Proof of the Sobolev embedding using the Fourier transform. In this question we use the Fourier
transform to give an alternative proof of the Sobolev embedding ∥u∥L∞(I) ≤ C∥u∥H1(I) for the case
I = R. Assume that u ∈ C1(R) ∩ L1(R) ∩ L2(R), û ∈ L1(R), and u′ ∈ L1(R) ∩ L2(R). Recall that

∥u∥H1(R) =
(
∥u∥2L2(R) + ∥u′∥2L2(R)

)1/2
.

(i) Prove that

∥u∥2H1(R) =

∫ ∞

−∞
(1 + |ξ|2)|û(ξ)|2 dξ.

Hint: Use the fact that the Fourier transform preserves the L2–norm: ∥v̂∥L2(R) = ∥v∥L2(R) for
all v ∈ L1(R) ∩ L2(R) (you do not need to prove this).

(ii) Prove that there exists a constant C > 0 such that

∥û∥L1(R) ≤ C∥u∥H1(R).

Hint: Write

∥û∥L1(R) =

∫ ∞

−∞
|û(ξ)|dξ =

∫ ∞

−∞

1

(1 + |ξ|2)1/2
(1 + |ξ|2)1/2 |û(ξ)| dξ.

(iii) Use the Fourier Inversion Theorem to prove that

∥u∥L∞(R) ≤ C∥u∥H1(R).

8. Fundamental Solution of the Heat Equation. The Fundamental Solution of the Heat Equation in
Rn is

Φ(x, t) =
1

(4πkt)
n
2

e−
|x|2
4kt , x ∈ Rn, t > 0.

Verify that Φ satisfies the heat equation

Φt(x, t) = k∆Φ(x, t)

for all x ∈ Rn, t > 0.
Remark: It can be shown that Φ → δ as t → 0 in the sense of distributions.

9. Finite speed of propagation for a degenerate diffusion equation. Define Φ : R× (0,∞) → R by

Φ(x, t) = max

{
1

2

(
3

kπt

) 1
3

− 1

6k

x2

t
, 0

}
.

Let a(Φ) = kΦ, where k > 0 is a constant.

(i) Show that Φ satisfies the degenerate diffusion equation

Φt = (a(Φ)Φx)x

for all x ∈ R, t > 0, except for

|x| = 3
2
3k

1
3π− 1

6 t
1
3

where it is not differentiable. (It can also be shown that Φ satisfies the the degenerate diffusion
equation in all of R× (0,∞) in a suitable weak sense.)

(ii) Show that the map x 7→ Φ(x, t) has compact support for all t > 0. Therefore, unlike the
heat/diffusion equation, the degenerate diffusion equation has finite speed of propagation.
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Remark: Observe that the diffusion coefficient a vanishes when Φ = 0. Compare this to the case
of the heat equation, where a = k > 0 is strictly positive. For the 4H students: Just like for the
Fundamental Solution of the Heat Equation, it can be shown that Φ → δ as t → 0 in the sense of
distributions.

10. The mathematical equation that caused the banks to crash. The Black-Scholes PDE, or “the mathe-
matical equation that caused the banks to crash” (Ian Stewart, The Observer, 12 Feb 2012), is the
parabolic PDE

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

where V (S, t) is the price of a European option as a function of the stock price S at time t, r is the
risk-free interest rate, and σ is the volatility of the stock (see Wikipedia https://en.wikipedia.

org/wiki/Black-Scholes_equation). Consider the change of variables

τ = T − t, x = ln

(
S

K

)
+

(
r − 1

2
σ2

)
τ, u(x, τ) = CerτV (S(x, τ), t(x, τ)),

where T , C, K are constants. Show that the Black-Scholes PDE is the heat equation in disguise:

uτ =
1

2
σ2uxx.

So the heat equation is “the mathematical equation that caused the banks to crash”!
Remark: You can read Ian Stewart’s article here:
https://www.theguardian.com/science/2012/feb/12/black-scholes-equation-credit-crunch

11. The energy method: Uniqueness for the heat equation in a time dependent domain. Let k > 0, T > 0
be constants. Let a, b : [0, T ] → R be smooth functions with a(t) < b(t) for all t. Let U ⊂ R× (0, T ]
be the non-cylindrical domain

U = {(x, t) ∈ R× (0, T ] : a(t) < x < b(t)}.

Consider the heat equation

ut − kuxx = f(x, t) for (x, t) ∈ U,

u(a(t), t) = g1(t) for t ∈ [0, T ],

u(b(t), t) = g2(t) for t ∈ [0, T ],

u(x, 0) = u0(x) for x ∈ (a(0), b(0)).

Use the energy method to prove that this equation has at most one smooth solution.

12. The energy method: Uniqueness for a 4th-order heat equation. Let k > 0, T > 0. Prove that there
exists at most one smooth solution u : [a, b]× [0, T ] → R of the 4th-order heat equation

ut + kuxxxx = f for (x, t) ∈ (a, b)× (0, T ],

u(a, t) = u(b, t) = 0 for t ∈ [0, T ],

ux(a, t) = ux(b, t) = 0 for t ∈ [0, T ],

u(x, 0) = u0(x) for x ∈ (a, b).

Since the equation is 4th-order, we prescribe boundary conditions on both u and ux. Why do we
consider ut+kuxxxx = 0 to be the 4th-order version of the heat equation instead of ut−kuxxxx = 0,
which at first sight seems to be closer to the heat equation ut − kuxx = 0?
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13. Asymptotic behaviour of the heat equation with time independent data. Let Ω ⊂ Rn be open, bounded
and connected with smooth boundary. Let u : Ω× [0,∞) → R be a smooth function satisfying

ut(x, t)− k∆u(x, t) = f(x) for (x, t) ∈ Ω× (0,∞),

u(x, t) = g(x) for (x, t) ∈ ∂Ω× [0,∞),

u(x, 0) = u0(x) for x ∈ Ω,

where f , g, u0 are given smooth functions. Let v : Ω → R be a smooth, time independent solution
of the same equation:

−k∆v(x) = f(x) for x ∈ Ω,

v(x) = g(x) for x ∈ ∂Ω.

Define w(x, t) = u(x, t)− v(x). Use the energy method to prove that w → 0 in L2(Ω) as t → ∞. In
other words, if the source term f and boundary data g are independent of time, then the solution
u of the heat equation converges to the solution v of Poisson’s equation in the L2–norm as t → ∞.

14. Asymptotic behaviour of the heat equation with time independent data in the L∞–norm. Let k > 0
be a constant and let u : [a, b]× [0,∞) → R be a smooth function satisfying the heat equation

ut(x, t)− kuxx(x, t) = f(x) for (x, t) ∈ (a, b)× (0,∞),

u(x, 0) = u0(x) for x ∈ (a, b),

u(a, t) = u(b, t) = 0 for t ∈ [0,∞),

where u0 and f are smooth functions. Let v : [a, b] → R be the unique solution of

−kvxx(x) = f(x) for x ∈ (a, b),

v(a) = v(b) = 0.

Define w(x, t) = u(x, t)− v(x).

(i) Prove that w satisfies
d

dt

∫ b

a
w2(x, t) dx = −2k

∫ b

a
w2
x(x, t) dx.

(ii) Prove that w → 0 in L2([a, b]) as t → ∞.

(iii) Prove that wt → 0 in L2([a, b]) as t → ∞.
Hint: Show that wt satisfies a heat equation.

(iv) Prove that wx → 0 in L2([a, b]) as t → ∞.
Hint: By part (i), ∫ b

a
w2
x(x, t) dx = −1

k

∫ b

a
w(x, t)wt(x, t) dx.

(v) Conclude that w → 0 in L∞([a, b]) as t → ∞.

15. Applications of the maximum principle: Uniqueness and bounds on solutions. This question ap-
peared on the May 2012 exam, Q9(b),(c).
Given T > 0, let Ω := (a, b) with a < b and let ΩT := (a, b)× (0, T ].

(i) Show that in C2
1 (ΩT ) ∩ C(ΩT ) there exists at most one solution to the problem

ut − uxx = 1 on ΩT

with u = 0 on the parabolic boundary [a, b]× {0} ∪ {a, b} × [0, T ].
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(ii) Assume that u is a solution to the problem in (i). Show that we have

0 ≤ u(x, t) ≤ t

for (x, t) ∈ ΩT .

16. Application of the maximum principle: Comparison Principle. For i ∈ {1, 2}, let ui be a smooth
function satisfying

∂ui
∂t

(x, t)− k∆ui(x, t) = fi(x) for (x, t) ∈ Ω× (0, T ],

ui(x, t) = gi(x) for (x, t) ∈ ∂Ω× [0, T ],

ui(x, 0) = u0i (x) for x ∈ Ω,

where fi, gi, u
0
i are given smooth functions. Assume that f2 ≥ f1, g2 ≥ g1, and u02 ≥ u01. Prove that

u2 ≥ u1 in ΩT .

17. Eigenfunctions of the Laplacian and an application to the heat equation. Let (λn, un), n ∈ N, be
eigenvalue-eigenfunction pairs for −∆ on Ω with zero Dirichlet boundary conditions, which means
that un ̸= 0 and that (λn, un) satisfies

−∆un = λnun in Ω,

un = 0 on ∂Ω.

In Exercise Sheet 4 we used the energy method to show that λn ∈ R and λn > 0 for all n. By
relabelling if necessary, we can assume that 0 < λ1 ≤ λ2 ≤ · · · (in fact it can be shown that
λ1 < λ2). Let v satisfy the heat equation

vt(x, t)− k∆v(x, t) = 0 for (x, t) ∈ Ω× (0,∞),

v(x, t) = 0 for (x, t) ∈ ∂Ω× [0,∞),

v(x, 0) = g(x) for x ∈ Ω.

Roughly speaking, it can be shown that the set of eigenfunctions {un}n∈N forms a basis for the
vector space of smooth functions on Ω that vanish on ∂Ω. By writing v and g with respect to this
basis as

v(x, t) =
∞∑
n=1

cn(t)un(x), g(x) =
∞∑
n=1

gnun(x),

show formally that

v(x, t) =
∞∑
n=1

gne
−kλntun(x). (2)

Remark: From expression (2) we see that the rate of convergence of v to 0 as t → ∞ depends on
the smallest eigenvalue of −∆. This should not come as a surprise: When we proved that v → 0
as t → ∞ using the energy method, we saw that the rate of convergence depends on the Poincaré
constant (see Q13), and from Exercise Sheet 4, Q12 we know that the optimal Poincaré constant
depends on the smallest eigenvalue of −∆.
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