Partial Differential Equations III & V, Exercise Sheet 6: Solutions
Lecturer: Amit Einav

1. The Fourier transform: The heat equation with source term.

/)\ets ds

= \GeM + F(t) + )\/ AN P(s) ds
0

(i) By the Fundamental Theorem of Calculus

z(t) = AGeMN + M)

= X\z(t) + F(t)
as claimed.
(ii) Taking the Fourier transform of u; = ku,, + f with respect to the x variable gives

U= klge + [ = W& t) = k(@)U t) + f(&,1) = —kE2a(&,t) + F(&,1).

Taking the Fourier transform of the initial condition u(z,0) = g(z) gives

a(€,0) = g(&).
We have reduced the PDE to a one-parameter family of uncoupled ODEs, indexed by &:

i = —ka+f, al€,0) = g(9).
Applying part (i) with z = @, A = —k&2, F = f, G =g gives

a@,>=g@k*ﬁ“+ﬂa’““*@ﬂa$ds

Therefore
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Since the product of Fourier transforms is the Fourier transform of a convolution, we obtain
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since @ = 4k Therefore

t*

F (a0 ) @) = =g v et =g = [ Se-ntedy @)

where ® is the fundamental solution of the heat equation in R. Similarly

FH (M g s)) (@) = zm&pﬂge“g”*f@$={[m@@y¢@ﬂ%$dy
3)

Combining equations (1), (2) and (3) yields
U(fc,t)Z/ Oz -y, 1) dy+/ / O(z —y,t —s)f(y,s) dy ds

as required.

2. The Fourier transform: The transport equation.

(i)

By definition

= z§x d
Tav(§) = 771_/ x
= —ﬁ / v(z —a)e " da
T J—0c0
= % / N v(y)e W dy (y==z—a)

1 .
— e Mo / v(y)e Y d
) ) y
= c75(¢)
as required.

Taking the Fourier transform of the transport equation u; + cu, = 0 gives
U +cy =0 <= @(&1)+cifa(é,t) =
and taking the Fourier transform of the initial condition u(z,0) = g(z) gives
(&, 0) = 9(8)-
We have reduced the PDE to a one-parameter family of uncoupled ODEs, indexed by &:
iy = —cigt,  a(§,0) = g(§).

Recall that the ODE & = Az has solution z(t) = x(0)e’. Applying this with z = @, A = —ci¢
yields

u(&,t) =1

where a = ct, by part (i). By taking the inverse Fourier transform we obtain

u(z,t) = Tag(z) = g(z — a) = g(x — ct)

as desired.



3. The Fourier transform: Schrodinger’s equation.
(i) Taking the Fourier transform of iu; = —u,, with respect to the z variable gives

By multiplying by —i we can rewrite this as @; = —i¢24. Taking the Fourier transform of the
initial condition u(x,0) = g(x) gives

(g, 0) = g(¢)-
We have reduced the PDE to a one-parameter family of uncoupled ODEs, indexed by ¢:

Recall that the ODE 4 = Az has solution z(t) = z(0)e. Applying this with 2 = @, A = —i¢?
gives

a(é,t) = a(g,0)e ™t = g(¢)e . (4)

To obtain u we need to compute the following inverse Fourier transform:
F (39 @).

The trick is to recognise that g(f)e_’fzt is the product of Fourier transforms, which follows
from the fact that the Fourier transform of a Gaussian is a Gaussian. Recall that

()= e
VZ2a
Therefore . 1
e~ = \/2q e—aa® (&) for a= e (5)
i

Since the product of Fourier transforms is the Fourier transform of a convolution, we obtain

()™ = V2a g(g) e (¢) (by equation (5))

g% e (¢)

1
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=\ViI* e~ (€).

Combining this with equation (4) and taking the inverse Fourier transform gives

u(g,t) = % g*/e-:ﬂ(é) —  u(zx,t) = \/zg x o0

Since a = 4% and the convolution is commutative we arrive at
1 z? 1 iz2 1 X i(z—y)?
u(x,t) = gxe 4it(x) = et xg(x) = / e 2 gy dy
(%) 4t (z) Vit () Varit J - )

as required.



(ii) In part (i) we showed that
A€, t) = g(e)e .
Since the Fourier transform preserves the L? norm,
- Dy = (- 8) 220z,
N —i£2
= 19(€)e™ ™ 72w,

= [ Jatoeef e

S NGIRG

—00

= 9172

as required.
4. The Fourier transform: The wave equation. Use the Fourier transform to derive the solution
1
u(a, 1) = Slgle = ct) + glo + ct)
of the wave equation

Uy = Pug,  for (z,t) € R x (0,00),

u(z,0) = g(z) for z € R,
ut(x,0) =0 for x € R,

where the constant ¢ > 0 is the wave speed. This is known as D’Alembert’s solution.
Hint: Use Q2(i) and the fact that cos(c&t) = [exp(icgt) + exp(—ictt)]/2.

Taking the Fourier transform of uy; = c?ug, with respect to the z variable gives

—

U = gy < Gy(&,t) = A(i€)%0(6,t) = -6, t).
Taking the Fourier transform of the initial condition u(z,0) = g(z) gives
a(€,0) = (&)
Taking the Fourier transform of the initial condition u:(x,0) = 0 gives
1 (€,0) = 0.
We have reduced the PDE to a one-parameter family of uncoupled ODEs, indexed by &:
Gy = —c*¢a,  a(6,0)=g(€),  w(&0)=0.

Recall that the ODE & = — A2z has solution of the form z(t) = A cos(\t) + Bsin(\t). Applying this
with © = 4, A = c£ gives
(&, t) = Acos(c€t) + Bsin(ctt).

€), ut(§,0) = 0 imply that A = g(§) and B = 0. Therefore

= 9(&) cos(ctt)

exp(ict) + exp(—ict)
2




where a = ct, by Q2(i). Taking the inverse Fourier transform gives

T_ag(z)+ % Ta 9()

oo+ a) + 5 gla —a)

l9(z + ct) + g(z — ct)]

u(x,t) =

N RN =N

as required.

5. The Fourier transform of a derivative. By definition

~

E) = — Oou’xe_i&x
W) = o= [ e

1 & d _,
=—— u(x)—e %% da (integration by parts)
V2T J dx
1 o

= —— w(x)(—i€)e % dx

—25\/127_ O;u(x)ei&dx
= i&a()

as required.

6. The Fourier transform of a convolution. By definition

urv(€) = — (u* v)(x)e % dx

/_ Z ( /_ O; w(x)o(z — 2) dz> e~ gy

/ u(z)v(x — 2) dz> e E(T2) gy
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as desired.

7. Proof of the Sobolev embedding using the Fourier transform.



(i) Since the Fourier transform preserves the L?>norm

”uH%Il(JR) = HUH%?(R) + ||U/||%2(R)
= ||ﬂ||2L2(R) + [ v H%Q(R)
= l[all72gy + i€l 72,

= [T laorae+ [ jiao ae

—00 —00

-/ T el de.

—0
as required.
(ii) Following the hint
oo
fillowe = | la)las

—00

- / (Hémz (1+ 162 a(¢)| de

([ e dﬁ)m ([ a+emaora) " (Cauchy-Sctwars)

~ oo (T [€) o0
o 1 1/2

- ([ arm®) e

= CHUHHI(R)

where

o~ ([ )

If we can show that C' is finite, then we’ve completed the proof. This is a simple calculus
exercise; one way is as follows:
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as required.



(iii) By the Fourier Inversion Theorem

by part (ii). Since this holds for all = € R,

HUHLOO(R \ﬁ HUHHl(R
as required.

8. Fundamental Solution of the Heat Equation. We compute
1 _l=? -z |z|?
P t) = _ = flind I
et = e ™ < 2 e
87@(33 t) o 1 67% _QI‘Z'
dz; " (4rkt)s dkt )’
827@(;1‘; t) — 1 6_% _i + 2:1:2 ? — 1 6_% _L + x’b2
07 (4nkt)® Akt~ \4kt) | (4rkt): 2kt | Ak22)
" 0%® 1 || n ||?
Ad(x,t) = —(x,t) = —e ikt | —— .
(2.6) =2 57 (@) arkt)s < ( okt AR2(?

Therefore @ satisfies ®;(x,t) = kA®(x,t) for all x € R™, t > 0, as required.

9. Finite speed of propagation for a degenerate diffusion equation.
(i) Observe that

1
1 3 \3 1 22 2 1 11
- , I =33k37m 6(3
2 <k:7rt) 6k t ol = 3sksmots

and so
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O(x,t) =
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Clearly ® satisfies the degenerate diffusion equation for |z| > 33k3n ot3. For |z| < 3§k%ﬂ7%t%,
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(a(®)®,) (. 1) = —— ( 3 )5 L

6t \ knt 18kt2’
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(a(P)Ps)o(x,t) = 6t <k7rt) + Ghi2

Therefore ® satisfies the degenerate diffusion equation for all ¢ > 0 and all x € R with |z| #
3ikim 65,

(ii) For fixed t > 0, ®(x,t) is the maximum of a concave quadratic function and the zero function.
The support of the map = — ®(x,t) is the compact interval
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10. The mathematical equation that caused the banks to crash. Let t(x,T) satisfy
T=T—t(x,7).

Differentiating this expression with respect to 7 and z gives

Let S(z, ) satisfy

z=In (S(;T)) + (r - ;(;2> T. (6)

Differentiating this expressions with respect to 7 gives

K5, 1, (1,
0—§?+7" 50’ < ST—<2O' ’I">S
Differentiating equation (6) with respect to z gives
K S,
1=-°2% . =S.
K Sy =S5
Therefore
1
ur = Ce" [rV +VgS; + Vit ] = Ce'™ [TV + (202 - r) SV, — Vt] ,
uy = Ce' [VgSy + Vity] = Ce’™ SV,
Upp = Ce' [Sy Vs + SVgsSy] = Ce'™ [SVs + S?Vss] .
Therefore

1 1 1
Uyr — §a2um =Ce'" [TV + (202 — r) SV, -V, — 502(51/5 + S2V55)]

1
= —Ce'” {Vt + 5078 Vs + Vs — rv]
=0

since V' satisfies the Black-Scholes PDE. This completes the proof.



11. The energy method: Uniqueness for the heat equation in a time dependent domain. Let u and v be

12.

solutions and let w = u — v. Then w satisfies

wy — kwg, =0 for (z,t) € U,
w(a(t),t) =0 fort e [0,T],
w(b(t),t) =0 forte[0,T],

w(z,0) =0 for z € (a(0),b(0)).

Multiply the equation w; = kwy, by w and integrate over (a(t),b(t)) to obtain

b() b(t)
/ wwy dr = k:/ WWgy dx.
a(t) a(t)

Recall the Fundamental Theorem of Calculus:

b(t)

il " patyde— [ ety de + BB, 0) — a0 f(alt), )
o » , = " t(x, , ,1).

We can use this to rewrite the left-hand side of equation (7) as follows:

/b(t) wwy dr = 4l /b(t) w?(x,t) do — %b(t)wQ(b(t),t) + 1(I“L(t)wQ(a(t),t)

® 2 Jaq 2

d1 /b“) )
= —= w?(z,t) dz

(8)

since w(a(t),t) = w(b(t),t) = 0. We rewrite the right-hand side of equation (7) using integration by

parts:

b(t)
k/ WWge AT = KWwy

b(t b(t) b(t)
()—k/ w?cdx——k:/ w? dx
() a a

a(t) 0 W

again using the fact that w(a(t),t) = w(b(t),t) = 0. Substituting (8) and (9) into (7) gives

1 b b(t)
d/ wQ(:L',t)dx:—k‘/ w? dx < 0.
a(t)

Let
1 @)

E(t) = 3 /(t) w?(x,t) dz.

We have shown that F(t) < 0. Hence

0<E(t) < E(0)=0

(9)

since w = 0 for t = 0. Consequently E(t) = 0 for all ¢. Therefore w = 0 in U and so u = v, as

required.

The energy method: Uniqueness for a 4th-order heat equation. Let u and v be solutions and let

w = u —v. Then w satisfies

Wt + kWygze =0 for (z,t) € (a,b) x (0,77,

w(a,t) =w(b,t) =0 forte[0,T],
wy(a,t) =w,(b,t) =0 forte[0,T)
w(z,0) =0 for x € (a,b).

Y
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13.

Multiplying the equation w; = —kwgez, by w and integrating over (a,b) gives

b
/ WWy = —k‘/ WWpprr A
a v

10 .,
2 Ot
b b
= —kwwggy —i—k/ Wy Wapr AT
b a
= k:/ WepWage AT (by (11))
a b b
= kwyWgy| — k:/ Weg Wy AT
b a
= —k:/ w2, dx (by (12)).
Therefore
a1 2d k 02 dz <0
—_— = — <
dt2/a w* dx /a Wh, dr <
and so

b b
0§/ w2(x,t)dx§/ w?(x,0)dr =0

by (13). We conclude that w = 0 and hence u = v, as required.

We consider u; + kg = 0 to be the 4th-order version of the heat equation u; — kug, = 0 since it
has the same energy-decay property:

d
%HUH%?([CL,Z;]) <0

(provided that u and w, vanish at © = a and © = b). The equation u; — kugzer = 0 looks more
similar to the heat equation u; — kug, = 0 (because of the minus sign), but its L?-energy grows
with time:

d, o

%HUHLQ([a,b]) > 0.
Asymptotic behaviour of the heat equation with time independent data. Let w(x,t) = u(x,t) —v(x).
We need to prove that lim; . [|w||12(q) = 0. By subtracting the PDEs for u and v we find that w
satisfies

wi(x,t) — kAw(x,t) =0 for (x,t) € 2 x (0,00),
w(zx,t) =0 for (x,t) € 00 x [0, 00),
w(z,0) =up(x) —v(x) forxz e Q.

Multiplying the equation w; = kAw by w and integrating by parts over {2 gives

d1
/wwtdw:k/wAwda: = /deas:k/ wVw-ndS—k/Vw~dea:
Q Q dt 2 29 Q
= — 14
= dtz/wdw k/|Vw\ dx (14)

since w = 0 on 0f). By the Poincaré inequality, there exists a constant C;, > 0 such that

/]w\2dw < Cp/ V| de.
Q Q

10



Multiplying this by —k/C) gives

k

e \dem> k/|Vw\2d:c. (15)

Combining equations (14), (15) yields

d1 ,
< ——
dt2/w dx /|w| dx.

Define

B(t) = /Q (1) da = ]2

and A = %—IZ We have shown that

E < —)\E.

By the Gionwall inequality,

E(t) < e ME(0).

Since A > 0, we conclude that E(t) — 0 as t — oo. Therefore w — 0 in L?(Q) as t — oo, as
required.

14. Asymptotic behaviour of the heat equation with time independent data in the L°°—norm.

(i)

By linearity, w satisfies

we(z,t) — kwgy(x,t) =0 for (x,t) € (a,b) x (0,00),
w(z,0) = ug(x) —v(z) for z € (a,b),
w(a,t) = w(b,t) =0 fort e [0,00).

Multiplying the PDE by w and integrating over [a, b] gives

d1

b b
73 / w? dr = kww, —k/ w? dx

b b
/wwtdm:k:/ WWee dx <

where we have used the Chain Rule and integration by parts. Note that the boundary terms
vanish when we perform integration by parts since w(a,t) = w(b,t) = 0. Therefore

b b
pn w?(z,t) de = —Zk/ w2 (x,t) dx

as required.

We can write the result of part (i) in terms of L?-norms as

d
pr L Wl 22 asy = —2klwellF (0 p- (16)

By the Poincaré inequality, there exists a constant C' > 0 such that
1ol 72((apy < Cllwall 2 a,p- (17)
Combining equations (16), (17) gives

d 2k
Zlw 1720y = —2kl[well72 () < _7HwHL2 la.b])" (18)

11



(iii)

(v)

Define
E(t) = |wl|72(az)-

We can rewrite equation (18) as .
E<-)\E

with A = 2k/C > 0. By the Gronwall inequality,
E(t) < E(0)e™ =0 ast— oco.

Therefore, by definition of E, w — 0 in L?([a,b]) as t — 0o, as required.
By differentiating the PDE for w with respect to ¢ we obtain

wy(x,t) — kwige(x,t) =0 for (x,t) € (a,b) x (0,00),
wi(a,t) = w(b,t) =0 fort € [0,00).

In particular, w; satisfies the heat equation with Dirichlet boundary conditions, just like w.
Therefore the argument we applied in parts (i) and (ii) to w can also be applied to w;, which
yields w; — 0 in L?([a, b]) as t — oo.

We have

b
walZ2 o) = / w2 (z,1) du

_ LA e (by part (i)
= detaw z,t)dx y part (i

b
:—;/ w(z, t)w(z,t) dx
’ 1/2

1 b 1/2 b
= k (/ w?(w,t) dx) (/ wi (@, t) dﬂﬂ) (Cauchy-Schwarz)
a a

1
= 7 lwllz2 e lwellz2gagy = 0 ast — oo

by parts (ii) and (iii). Therefore w, — 0 in L?([a,b]) as t — oo, as required. Note that we
don’t really need w; — 0 in L?([a,b]) as t — oo, we just need |Jwy||2(jqp)) to be uniformly
bounded in ¢.

This final result follows from the Sobolev inequality: There exists a constant C' > 0 such that

1/2
[wl Loe (ap)) < Cllwll g (ag) = C (lwll L2 (e + lwall 2 (o) 250 ast—oo

by parts (ii) and (iv).

15. Applications of the mazimum principle: Uniqueness and bounds on solutions.

(i)

Let I'r = [a, b] x {0}U{a, b} x[0, T] be the parabolic boundary of Q7. Let u,v € CZ(Q7)NC(Qr)
satisfy

Ut — Ugy = 1 in QT,

u=0 in I'p.
Then w = u —v € C(Qr) N C(Qr) satisfies
Wy — Wee =0 in Qrp,

w=0 1in I'p.

12



By the weak maximum principle

maxw = maxw = 0, minw = minw = 0.
QT 1—‘T QT FT

Therefore w = 0 and u = v, as required.
(ii) Since u¢ — uyy = 1 > 0, the weak maximum principle gives

minu = minwu = 0.
QT I‘T

This is the desired lower bound on u. We still need to prove the upper bound. Let v(x,t) = t.
Then v; — vz = 1 and w = u — v satisfies
Wy — Wee =0 in Qp,
w=—t inIp.
By the weak maximum principle

max w = max w = max(—t) = 0.
Qrp I'p I'r

Therefore w < 0 in Q7 and hence u < v =t in Qp, which is the desired upper bound.

16. Application of the mazximum principle: Comparison Principle. Define v = u; — ug. Then v satisfies
(Z:(w,t) — kAv(z,t) = fi(x) — fo(x) for (z,t) € Q x (0,7,
o(x) for (z,t) € 0N x [0,T],
() —ud(x) forxec Q.
Since fi1 < fo, then
v —kAv = f1 — fo <0 in Qp.
Therefore the weak maximum principle implies that

maxv = maxv.
QT 1—‘T

For (x,t) € I'p,
o(@, ) = { g1(x) — go(x) if (x,t) € 002 x [0,T7,
’ ul(x) —ud(x) ift =0,z €.
But
g1 — g2 <0, u(l)—ugSO.

Therefore v < 0 on I'r and hence

maxv = maxv < 0.
Qr I'p

Hence v < 0 in Q7 and so u1 < ug in Qp, as required.

17. Eigenfunctions of the Laplacian and an application to the heat equation. Formally (not worrying
about interchanging limits and infinite sums),

0= — kAv

en(t)un(x) — kD cn(t) Aup ()
n=1

M

Il
—

n

M

Cn(t)un(x) + k Z en(t) Apun ()
n=1

i
I

M

(en(t) + kAnen(t)) un(x).

i
I
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Since {uy, }nen forms an orthogonal basis, it follows that
én(t) + kXpen(t) =0

for all n. We also have
v(z,0) =g(x) <= Z cn(0)un () = Zgnun(a:) — Z(Cn(o) — gn)un(x) = 0.
n=1 n=1 n=1

Again, since {uy, }nen forms an orthogonal basis, it follows that
cn(0) = gn

for all n. We have reduced the PDE for v to a one-parameter family of uncoupled ODEs, indexed
by n:
en(t) = —kAnen(t), cn(0) = gp.

These ODEs have solutions
en(t) = gne_w‘"t.

Therefore -
U(a:,t) = Zgne_k/\"tun(x)
n=1

as required.
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