
Partial Differential Equations III – Exam 2022/23 Solution

Section A

1. Let us consider the following Cauchy problem associated to a first order PDE{
x2∂x1u(x1, x2) = 1, (x1, x2) ∈ R2,
u(0, x2) = 0, x2 ∈ R. (1)

(a) Identify the leading vector field, the Cauchy data and the Cauchy curve.

(b) Are the points on the Cauchy curve characteristic or non-characteristic? Justify your answer.

(c) Using the method of characteristics, solve the problem in (1). Give the domain of definition of
the solution.

Solution:

1.(a) The leading vector field a⃗ : R2 → R2 is given by a⃗(x1, x2) = (x2, 0), the Cauchy datum is
u(0, x2) = 0 and the Cauchy curve is given by {γ(s) := (0, s) : s ∈ R} ⊂ R2, which is in fact
the x2-axis.

1.(b) We have γ′(s) = (0, 1), and we have a⃗(x1, x2) ·γ′(s) = 0, so the vector field is always orthogonal
to the Cauchy curve. The only ‘problematic’ point is the origin, as a⃗(0, 0) vanishes, and
therefore all points on the Cauchy curve, except (0, 0), are non-characteristic. The point (0, 0)
is characteristic and we expect the solutions to have problems at this point.

1.(c) We have the system of ODEs (where τ ∈ R stands for the artificial time parameter and s ∈ R
is used for the parametrisation of the Cauchy curve)

∂τx1(τ, s) = x2(τ, s),
∂τx2(τ, s) = 0,
∂τz(τ, s) = 1

equipped with the boundary conditions

x1(0, s) = 0, x2(0, s) = s, z(0, s) = 0.

From here, we directly find

x1(τ, s) = τs, x2(τ, s) = s, z(τ, s) = τ.

For a generic point (X1, X2) ∈ Rd, we find s = X2 and τ = X1/X2, provided X2 ̸= 0. Therefore
the solution becomes u(x1, x2) = x1/x2 and the domain of this function is R2\{(x1, 0) : x1 ∈ R}.
We notice that since a⃗(0, 0) = (0, 0), no information can be transported along the x1-axis.
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2. Consider the Cauchy problem for Burgers’ equation{
∂tu(x, t) +

1
2∂x(u

2(x, t)) = 0, (x, t) ∈ R× (0,+∞),
u(x, 0) = u0(x), x ∈ R, (2)

where u0 : R → R is given.

(a) Let u0(x) =
1
7x

7. Show that (2) has a global in time classical solution.

(b) Let u0(x) = sin(x). Write down the definition of the critical time tc (until when we can
guarantee the existence of a classical solution to (2)) associated to this initial datum. Show
that tc ≤ 1.

Solution: Some general fact used in both questions below. In the case of Burgers’ equation, we have
that the wave speed is given by c(u) = u and the characteristics are given in the (x, t)-(half)plane
(t ≥ 0) by

x = s+ u0(s)t,

where s ∈ R parametrises the characteristics.

2.(a) If u0 ∈ C1(R), the global existence of a classical solution to Burgers’ boils down to the global
invertibility of the flow map s 7→ s + u0(s)t, for every t > 0. A sufficient condition for this is
1+u′0(s)t > 0 for all t > 0 and for all s ∈ R. As u0 is increasing, we have 1+u′0(s)t = 1+ts6 > 0
for all t > 0 and all s ∈ R. This implies the global in time existence of a classical solution.

2.(b) The critical time is defined as the greatest t > 0 such that we can guarantee the global
invertibility of the flow map. This is formally defined as

tc := inf

{
− 1

u′0(s)
: s ∈ I

}
,

where I = {s ∈ R : u′0(s) < 0}.
In this case u′0(s) = cos(s) and so

I = ∪k∈Z(π/2 + 2kπ, 3π/2 + 2kπ).

Therefore, in order to find information about tc, we would need to optimise the function
h(s) = − cos(s)−1 on the interval (π/2, 3π/2) (notice that this function is 2π-periodic, so it is
enough to consider this interval). We have clearly

lim
s↓π/2

h(s) = lim
s↑3π/2

h(s) = +∞. (3)

Since h(π) = 1, we certainly have that tc ≤ 1. In fact, as the maximum of | cos(s)| is 1, tc = 1.
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3. In this problem we consider harmonic function on the unit ball in R3, B1(0).

(a) Using the fact that the Laplacian in spherical coordinates is given by

∆ψ =
1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+

1

r2 sin θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂ϕ2

show that if u ∈ C2
(
B1 (0)

)
is radial (i.e. only depends on r in spherical coordinates) and

harmonic in B1 (0) then it must be constant.

(b) Show that there exists no radial solution in C2
(
B1(0)

)
to the equation{

−∆u(x⃗) = 0, x⃗ ∈ B1 (0) ,
u(x⃗) = f(x⃗), x⃗ ∈ ∂B1 (0) ,

for f(x⃗) = x21.

Solution:

3.(a) Given a harmonic function u(r) that solves the equation ∆u(x) = 0 we find that

1

r2
d

dr

(
r2u′(r)

)
= 0

which implies that
r2u′(r) = C

or

u′(r) =
C

r2
.

Integration gives us that the general radial solution for Laplace’s equation is

u(r) = −C
r
+B.

As u needs to be continuous we find that the only harmonic radial function in B1(0) is a
constant function.

3.(b) Since the boundary condition is not a constant function there can be no radial harmonic
function which solves the equation.
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4. Consider the heat-like equation{
ut − uxx + cu = 0, (x, t) ∈ R× (0,+∞) ,
u(x, 0) = g(x), x ∈ R, (4)

where c ∈ R is a fixed constant and g ∈ Cc (R).

(a) Define v(x, t) = ectu(x, t). Show that v(x, t) solves the heat equation{
vt − vxx = 0, (x, t) ∈ R× (0,+∞) ,
v(x, 0) = g(x), x ∈ R.

(b) Show that there exists a solution to (4) that satisfies

sup
x∈R

|u(x, t)| ≤ e−ct ∥g∥L∞(R) .

You may use the following inequality without proof: For any f ∈ L1 (R) and g ∈ L∞ (R) we
have that ∣∣∣∣∫

R
f (x− y) g(y)

∣∣∣∣ ≤ ∥f∥L1(R) ∥g∥L∞(R) , ∀x ∈ R.

Solution:

4.(a) We have that

vt − vxx = ectut + cectu− ectuxx = ect (ut − uxx + cu) = 0.

Additionally
v(x, 0) = e0u(x, 0) = g(x).

4.(b) From class we know that v(x, t) = (Φ(·, t) ∗ g) (x) is a solution to the equation.

Moreover, Φ is non-negative and
∫
RΦ(x, t)dx = 1. Using the given inequality we find that

|v(t, x)| = |Φ ∗ g(x, t)| ≤ ∥Φ∥L1(R) ∥g∥L∞(R) = ∥g∥L∞(R)

from which we conclude that for any x ∈ R the solution u that is associated to the above v
satisfies

|u(x, t)| = e−ct |v(x, t)| ≤ e−ct ∥g∥L∞(R) ,

which shows the desired result.
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Section B

5. We consider the following conservation law{
∂tu(x, t)− u(x, t)∂xu(x, t) = 0, (x, t) ∈ R× (0,+∞),
u(x, 0) = u0(x), x ∈ R. (5)

[Notice that this is not Burgers’ equation.]

(a) Suppose that u0 is bounded, differentiable with bounded derivative. Give a formula of the
critical time tc, for which we know that (5) has a classical solution on R× (0, tc).

(b) Let u0(x) = − arctan(x). Show that in this case (5) has a global in time classical solution.

(c) Let u0 now be given by

u0(x) =

{
0, x < 0,
1, x ≥ 0.

By drawing the characteristics, show that there is instantaneous crossing of characteristics.
Find a shock that satisfies the Rankine–Hugoniot condition. Give the expression of the weak
solution in this case.

Solution:

5.(a) We notice here that the flux function is f(s) = −1
2s

2 and the wave speed is c(s) = −s. From
the lectures we know that for s ∈ R, the characteristics in the (x, t)-half-plane are given by

x = s+ c(u0(s))t,

and the critical time is defined as

tc := inf

{
− 1

∂s(c(u0(s)))
=

1

u′0(s)
: s ∈ I

}
,

where I = {s ∈ R : ∂s(c(u0(s))) < 0} = {s ∈ R : u′0(s) > 0}.
5.(b) As u′0(s) = − 1

1+s2
< 0, we have that I = ∅, and by definition tc = +∞.

5.(c) We have that the characteristics are given by

x = s, if s < 0; and x = s− t, if s ≥ 0.
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To introduce a shock that satisfies the Rankine–Hugoniot condition, this must satisfy σ(0) = 0
and

(uℓ − ur)σ̇ = f(uℓ)− f(ur) = −1

2
(uℓ − ur)(uℓ + ur),

from where σ̇ = −1
2 and so, σ(t) = − t

2 . The figure below includes this shock.

 

Therefore, the weak integral solution in this case writes as

u(x, t) =

{
0, x < −t/2,
1, x > t/2.
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6. We aim to solve the following problem by the method of characteristics
∂2xxu− 3∂2xyu+ 2∂2yyu = 0, (x, y) ∈ R2,

u(1, y) = g(y), y ∈ R,
∂xu(1, y) = h(y), y ∈ R,

(6)

where g, h : R → R are given smooth functions.

(a) Identify the Cauchy data and the Cauchy curve in the above problem.

(b) Rewrite the PDE in (6) as a system of two linear first order PDEs. [Hint: think about the
algebraic relation (a− b)(a− 2b) = a2 − 3ab+ 2b2, (a, b ∈ R).]

(c) By solving the two first order PDEs arising from 6b using the method of characteristics, find
the solution to (6).

Solution:

6.(a) The Cauchy data are the functions g and h, while the Cauchy curve is given by {γ(s) = (1, s) :
s ∈ R} ⊂ R2.

6.(b) Using the hint, we can write

∂2xxu− 3∂2xyu+ 2∂2yyu = (∂x − ∂y)(∂x − 2∂y)u = 0.

Therefore, introduce v such that {
∂xu− 2∂yu = v,
∂xv − ∂yv = 0.

The corresponding boundary conditions read as{
v(1, y) = h(y)− 2g′(y), y ∈ R,
u(1, y) = g(y), y ∈ R.

6.(c) We first solve the equation for v. Using the method of characteristics, we can write the ODE
system 

∂τX(τ, s) = 1,
∂τY (τ, s) = −1,
∂τz(τ, s) = 0.


X(0, s) = 1,
Y (0, s) = s,
z(0, s) = h(s)− 2g′(s).

Solving this system, we obtain 
X(τ, s) = τ + 1,
Y (τ, s) = −τ + s,
z(τ, s) = h(s)− 2g′(s).

For a given arbitrary point (x, y) ∈ R2, by inverting the flow map, we find{
τ + 1 = x,
−τ + s = y,

and so

{
τ = x− 1,
s = y + x− 1,

from where the solution reads as

v(x, y) = h(y + x− 1)− 2g′(y + x− 1).
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Now we focus on solving the PDE for u, for this we write the ODE system
∂τX(τ, s) = 1,
∂τY (τ, s) = −2,
∂τz(τ, s) = v(X(τ, s), Y (τ, s)),


X(0, s) = 1,
Y (0, s) = s,
z(0, s) = g(s).

Solving this system, we obtain
X(τ, s) = τ + 1,
Y (τ, s) = −2τ + s,
z(τ, s) = g(s) +

∫ τ
0 v(X(t, s), Y (t, s))dt =

∫ τ
0 (h(s− t)− 2g′(s− t)) dt.

For a given arbitrary point (x, y) ∈ R2, by inverting the flow map, we find{
τ + 1 = x,
−2τ + s = y,

and so

{
τ = x− 1,
s = y + 2x− 2,

therefore, the general solution for u, and hence of the original problem reads as

u(x, y) = g(y + 2x− 2) +

∫ x−1

0

(
h(y + 2x− 2− t)− 2g′(y + 2x− 2− t)

)
dt

=

∫ x−1

0
h(y + 2x− 2− t)dt+ 2g(y + x− 1)− g(y + 2x− 2).

From this expression we see

u(1, y) = g(y),

∂xu(1, y) = h(y),

and by direct computation, we can also check that this u satisfies also the PDE.
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7. Let Ω be an open bounded set with smooth boundary in Rn and let u1 and u2 be C2 (Ω) ∩ C
(
Ω
)

solutions to Poisson equation {
−∆ui(x⃗) = f (x⃗) , x⃗ ∈ Ω,
ui(x⃗) = gi(x⃗), x⃗ ∈ ∂Ω,

i = 1, 2, where f ∈ C1
(
Ω
)
and g1, g2 ∈ C (∂Ω).

(a) Show that for any x⃗ ∈ Ω

u2(x⃗)− u1(x⃗) ≤ max
x⃗∈∂Ω

(g2(x⃗)− g1(x⃗)) .

(b) Show that
max
x⃗∈Ω

|u2(x⃗)− u1(x⃗)| ≤ max
x⃗∈∂Ω

|g2(x⃗)− g1(x⃗)| .

(c) For n ∈ N let un ∈ C2 (Ω) ∩ C
(
Ω
)
solve the system{

−∆un(x⃗) = f (x⃗) , x⃗ ∈ Ω,
un(x⃗) = gn(x⃗), x⃗ ∈ ∂Ω,

and let u ∈ C2 (Ω) ∩ C
(
Ω
)
solve the system{

−∆u(x⃗) = f (x⃗) , x⃗ ∈ Ω,
u(x⃗) = g(x⃗), x⃗ ∈ ∂Ω.

Show that if {gn}n∈N converges uniformly to g on ∂Ω then {un}n∈N converges uniformly to u
on Ω.
Recall that we say that a sequence of functions {fn}n∈N in C (K) converges uniformly to
f ∈ C (K) if

sup
x∈K

|fn(x)− f(x)| −→
n→∞

0.

Solution:

7.(a) Since w = u2 − u1 solves Laplace’s equation

−∆w(x⃗) = 0 x⃗ ∈ Ω

w(x⃗) = g2(x⃗)− g1(x⃗) x⃗ ∈ ∂Ω

we can use the weak maximum principle to conclude that

max
Ω

w(x⃗) ≤ max
x⃗∈∂Ω

(g2(x⃗)− g1(x⃗)) ,

from which we conclude that for any x⃗ ∈ Ω

u2(x⃗)− u1(x⃗) ≤ max
x⃗∈∂Ω

(g2(x⃗)− g1(x⃗)) .

7.(b) Interchanging u1 with u2 we find that for any x⃗ ∈ Ω

u1(x⃗)− u2(x⃗) ≤ max
x⃗∈∂Ω

(g1(x⃗)− g2(x⃗)) .

Consequently

max
x⃗∈Ω

|u2(x⃗)− u1(x⃗)| = max
x⃗∈Ω

max (u2(x⃗)− u1(x⃗), u1(x⃗)− u2(x⃗))

≤ max
x⃗∈Ω

max

(
max
x⃗∈∂Ω

(g2(x⃗)− g1(x⃗)) ,max
x⃗∈∂Ω

(g1(x⃗)− g2(x⃗))

)
≤ max

x∈∂Ω
|g1(x⃗)− g2 (x⃗)| .
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7.(c) Using our previous estimation we find that

max
x⃗∈Ω

|u (x⃗)− un (x⃗)| ≤ max
x⃗∈∂Ω

|g (x⃗)− gn (x⃗)| −→
n→∞

0.

This concludes the proof.
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8. Let u ∈ L1 (R) ∩ L2 (R) be a classical solution to the equation{
ut + kuxxxx = 0, (x, t) ∈ R× (0,+∞) ,
u(x, 0) = f(x), x ∈ R,

where k > 0 is a fixed constant and f is a smooth function on R that belongs to L1 (R) ∩ L2 (R).

(a) Show that û, the Fourier transform of u in the x−variable, satisfies

û(ξ, t) = f̂(ξ)e−kξ4t.

(b) Using the fact that the Fourier transform preserves the L2 norm (Plancherel’s identity) as well
as the fact that it is in L∞ to show that

∥u(·, t)∥2L2(R) ≤

(∫
R e

−x4
dx

) 1
2

8
√
4kt

∥f∥L1(R) ∥f∥L2(R) .

Solution:

8.(a) Using the linearity of the Fourier transform together with the identity

û′(ξ) = iξû(ξ)

we find that using the Fourier transform on the spatial variable in our equation yields the
equation

ût(ξ, t) + k (iξ)4 û(ξ, t) = 0.

This is a separable equation whose solution is

û(ξ, t) = e−kξ4tû(ξ, 0) = e−kξ4tf̂(ξ)

since u(x, 0) = f(x).

8.(b) Using the fact that for any f ∈ L1 (R)∥∥∥f̂∥∥∥
L∞(R)

≤ ∥f∥L1(R)

together with Plancherel identity and Cauchy-Schwarz we find that

∥u(·, t)∥2L2(R) = ∥û(·, t)∥2L2(R) =

∫
R

∣∣∣e−kξ4tf̂(ξ)
∣∣∣2 dξ

≤
∥∥∥f̂∥∥∥

L∞(R)

(∫
R
e−2kξ4t

∣∣∣f̂ (ξ)∣∣∣ dξ) ≤ ∥f∥L1(R)

∥∥∥f̂∥∥∥
L2(R)

(∫
R
e−4kξ4tdξ

) 1
2

=
x=

4√
4ktξ

(∫
R e

−x4
dx

) 1
2

8
√
4kt

∥f∥L1(R) ∥f∥L2(R) .
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