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Partial Differential Equations I1T — Exam 2022/23 Solution

Section A

us consider the following Cauchy problem associated to a first order PDE

m281‘1u(-7717$2) =1, (xlva) € ]R2’ (1)
u(0,z9) =0, x2 € R.

Identify the leading vector field, the Cauchy data and the Cauchy curve.

Are the points on the Cauchy curve characteristic or non-characteristic? Justify your answer.

Using the method of characteristics, solve the problem in (1). Give the domain of definition of
the solution.

Solution:

1.(a)

The leading vector field @ : R? — R? is given by a@(z1,z2) = (z2,0), the Cauchy datum is
u(0,72) = 0 and the Cauchy curve is given by {y(s) := (0,5) : s € R} C R?, which is in fact
the xq9-axis.

We have 7/(s) = (0, 1), and we have @(z1,x2)-v'(s) = 0, so the vector field is always orthogonal
to the Cauchy curve. The only ‘problematic’ point is the origin, as @(0,0) vanishes, and
therefore all points on the Cauchy curve, except (0,0), are non-characteristic. The point (0, 0)
is characteristic and we expect the solutions to have problems at this point.

We have the system of ODEs (where 7 € R stands for the artificial time parameter and s € R
is used for the parametrisation of the Cauchy curve)

0-x1(T, ) = xa(T, 5),
O-xa(7,8) =0,
O0-z(1,8) =1

equipped with the boundary conditions

x1(0,8) =0, x2(0,5)=s, z(0,s)=0.
From here, we directly find

zi(1,8) =718, xa(1,8) =35, z2(1,8)=T.

For a generic point (X1, X2) € RY, we find s = X5 and 7 = X;/X», provided X5 # 0. Therefore
the solution becomes u(x1, x2) = 1 /2 and the domain of this function is R?\{(z1,0) : 1 € R}.
We notice that since @(0,0) = (0,0), no information can be transported along the z;-axis.



2. Consider the Cauchy problem for Burgers’ equation

{ Opu(z,t) + %&E(uQ(aj,t)) =0, (x,t) €Rx(0,400), (2)
u(z,0) = ug(z), z € R,

where ug : R — R is given.

(a) Let up(z) = 227. Show that (2) has a global in time classical solution.

(b) Let ug(x) = sin(z). Write down the definition of the critical time ¢. (until when we can
guarantee the existence of a classical solution to (2)) associated to this initial datum. Show
that t. < 1.

Solution: Some general fact used in both questions below. In the case of Burgers’ equation, we have
that the wave speed is given by c¢(u) = u and the characteristics are given in the (z,t)-(half)plane
(t >0) by

r =5+ up(s)t,

where s € R parametrises the characteristics.

2.(a) If ug € C*(R), the global existence of a classical solution to Burgers’ boils down to the global
invertibility of the flow map s — s + wuo(s)t, for every ¢t > 0. A sufficient condition for this is
1+up(s)t > 0for allt > 0 and for all s € R. As ug is increasing, we have 1+u{(s)t = 1+ts® > 0
for all t > 0 and all s € R. This implies the global in time existence of a classical solution.

2.(b) The critical time is defined as the greatest ¢ > 0 such that we can guarantee the global
invertibility of the flow map. This is formally defined as

1
tc :_inf{—/:sel},
ug(s)
where I = {s € R : yy(s) < 0}.

In this case u((s) = cos(s) and so
I = Ugeg(m/2 + 2km, 31 /2 + 2k).

Therefore, in order to find information about t., we would need to optimise the function
h(s) = —cos(s)~! on the interval (7/2,37/2) (notice that this function is 27-periodic, so it is
enough to consider this interval). We have clearly

lim A(s) = lim h(s) = +oo. 3
sym/2 ( ) s13m/2 ( ) ( )

Since h(m) = 1, we certainly have that t. < 1. In fact, as the maximum of | cos(s)|is 1, t. = 1.



3. In this problem we consider harmonic function on the unit ball in R3, B;(0).
(a) Using the fact that the Laplacian in spherical coordinates is given by

19 (L0 1 e 1 0%
A= ( m) T g (SI“%a) T 256 062

show that if u € C? (Bl (0)) is radial (i.e. only depends on r in spherical coordinates) and

harmonic in B; (0) then it must be constant.

(b) Show that there exists no radial solution in C? (Bl(())) to the equation

{ — Au(T)

=0, 7€ B (0)
u(Z) = (),

X € 0B (0) ,
for f(¥) = 22.
Solution:

3.(a) Given a harmonic function u(r) that solves the equation Au(x) = 0 we find that

712% (7"21/(1")) =0
which implies that
r2d/(r) = C
or o
u'(r) = 2

Integration gives us that the general radial solution for Laplace’s equation is

u(r) = —g + B.

As u needs to be continuous we find that the only harmonic radial function in B;(0) is a
constant function.

3.(b) Since the boundary condition is not a constant function there can be no radial harmonic
function which solves the equation.



4. Consider the heat-like equation

Ut — Ugy +cu =0, (z,t) €Rx(0,+00), (@)
u(z,0) = g(z), xz € R,

where ¢ € R is a fixed constant and g € C. (R).

(a) Define v(z,t) = e“u(z,t). Show that v(z,t) solves the heat equation

v — Vg =0,  (x,t) € R x (0,+00),
v(z,0) =g(x), ek

(b) Show that there exists a solution to (4) that satisfies

sup [u(z, t)] < €™ g oo m)
z€eR

You may use the following inequality without proof: For any f € L' (R) and g € L™ (R) we
have that

[y \ <Ml 9l Vo€ R

Solution:

4.(a) We have that
v — Ve = e“uy + ceu — ey = e (up — Uge + cu) = 0.

Additionally
v(z,0) = eu(z,0) = g(z).

4.(b) From class we know that v(x,t) = (®(-,t) * g) (z) is a solution to the equation.
Moreover, ® is non-negative and fR ®(x,t)dr = 1. Using the given inequality we find that

o(t, 2)] = 1@+ g(z, )] < 1Pl L1my 9]l ooy = N9l oo m)

from which we conclude that for any x € R the solution u that is associated to the above v
satisfies
u(z,t)] = e Jo(z,t)] < ™ [|g]| Lo gy »

which shows the desired result.



Section B

5. We consider the following conservation law

{ ou(z,t) — u(z, t)0pu(x,t) =0, (x,t) € R x (0,+00), (5)
u(z,0) = up(z), z €R.

[Notice that this is not Burgers’ equation.]

(a) Suppose that ug is bounded, differentiable with bounded derivative. Give a formula of the
critical time ¢., for which we know that (5) has a classical solution on R x (0, .).

(b) Let up(x) = —arctan(z). Show that in this case (5) has a global in time classical solution.
(c) Let up now be given by
uo(x) = 0, =<0,
0711, z>o.

By drawing the characteristics, show that there is instantaneous crossing of characteristics.
Find a shock that satisfies the Rankine-Hugoniot condition. Give the expression of the weak
solution in this case.

Solution:

5.(a) We notice here that the flux function is f(s) = —1s? and the wave speed is ¢(s) = —s. From
the lectures we know that for s € R, the characteristics in the (z,¢)-half-plane are given by

x = s+ c(up(s))t,

and the critical time is defined as
1 1
tc::inf{— = ZSGI},
9s(c(uo(s)))  ugp(s)
where I = {s € R: 95(c(uo(s))) < 0} = {s € R : ugy(s) > 0}.
5.(b) As ug(s) = —H% < 0, we have that I = (), and by definition ¢, = 4o0.

5.(c) We have that the characteristics are given by

r=s, if s<0; and z=s—1t, if s>0.

+
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To introduce a shock that satisfies the Rankine-Hugoniot condition, this must satisfy ¢(0) =0
and

(e — )6 = Flug) — Fluur) = — (g — ) (g + ),

2
from where ¢ = —% and so, o(t) = —%. The figure below includes this shock.
—=--<
+t
<o

Therefore, the weak integral solution in this case writes as

[0, xz<—t/2,
“(x’t)_{ 1, z>t/2.



6. We aim to solve the following problem by the method of characteristics

02,u — 38§yu + 28§yu =0, (x,9)€R?

u(1,y) = g(y), y €R, (6)
Ozu(l,y) = h(y), y €R,

where g, h : R — R are given smooth functions.

(a) Identify the Cauchy data and the Cauchy curve in the above problem.

(b) Rewrite the PDE in (6) as a system of two linear first order PDEs. [Hint: think about the
algebraic relation (a — b)(a — 2b) = a® — 3ab + 20, (a,b € R).]

(¢) By solving the two first order PDEs arising from 6b using the method of characteristics, find
the solution to (6).

Solution:

6.(a) The Cauchy data are the functions g and h, while the Cauchy curve is given by {v(s) = (1, s) :
s € R} C R

6.(b) Using the hint, we can write
02,u — 307, u + 20;,u = (0 — 0,) (9 — 20,)u = 0.
Therefore, introduce v such that

Orpu — 20yu = v,
O0zv — Oyv = 0.

The corresponding boundary conditions read as

{ v(L,y) = h(y) —2¢'(y), y€ER,
u(1,y) = g(y), y € R.

6.(c) We first solve the equation for v. Using the method of characteristics, we can write the ODE

System
0:X(1,8) =1, X(0,s) =1,
0-Y (1, s) = —1, Y (0,s) = s,
0-z(1,s) = 0. 2(0,s) = h(s) — 24'(s).

Solving this system, we obtain

X(r,s)=1+1,
Y(r,8) = —7+s,
z(1,8) = h(s) — 2¢'(s).

For a given arbitrary point (z,y) € R?, by inverting the flow map, we find

{74_1:1;, {T:x—l,
and so
_T+S:y7

from where the solution reads as

v(z,y) =hy+z—1)—2¢'(y + = —1).



Now we focus on solving the PDE for u, for this we write the ODE system

0-X(1,s) =1, X(0,s) =1,
0-Y(1,s) = -2, Y (0,s) = s,
0rz(1,8) =v(X(1,$),Y(1,5)), 2(0,5) = g(s).

Solving this system, we obtain

X(1,8)=7+1,
Y(7,8) = =27 + s,
2(1,8) = g(s) + [; v(X(t,5),Y (L, 5))dt = [y (h(s —t) —2¢'(s —t)) dt.

For a given arbitrary point (z,y) € R?, by inverting the flow map, we find

T+1=uz, and so T=x—1,
2T +s5=1, s=y+ 2z -2,

therefore, the general solution for u, and hence of the original problem reads as
z—1
u(z,y) :g(y+2m—2)+/ (h(y+2z—2—1t)—2¢'(y+ 22 —2—1t))dt
0
z—1
:/ hy+2x—2—t)dt+29(y +z—1) — gy + 22 — 2).
0

From this expression we see

and by direct computation, we can also check that this u satisfies also the PDE.



7. Let Q be an open bounded set with smooth boundary in R and let u; and up be C? () N C (Q)
solutions to Poisson equation

(an@ s, zen
uz( ) = gz(-%'), Te BQ,

i=1,2, where f € C! (ﬁ) and g1, g2 € C (09).
(a) Show that for any 7 € Q

u2(7) — uy (7 )<rrég>5(92( T) — q1(%)) .

(b) Show that

max |up (%) — u1(Z)| < max [92(Z) — g1(7)]-
e €0

(¢) For n € Nlet u, € C*(Q2) N C (Q) solve the system

F2u@ =@, ze
Un( )_gn( ) :Ee@ﬂ,

and let u € C* (Q) N C (Q) solve the system

{ —Au(Z) = f(Z), T,
u(®) = g(2), Z € .

Show that if {g,}, oy converges uniformly to g on 0€2 then {u,}, . converges uniformly to u

on €.
Recall that we say that a sequence of functions {f},cy in C (K) converges uniformly to
feC(K)if
sup |ful@) — f(z)] — 0.
zeK n—oo
Solution:

7.(a) Since w = uy — u; solves Laplace’s equation
—Aw(Z) =0 el
w(Z) = g2(Z) — g1 (7) T €0Q
we can use the weak maximum principle to conclude that

max w(Z) < max (g2(7) — g1(%)) ,
Q <to/9)

from which we conclude that for any e
S

u2(Z) — wi(7) < max (92(7) — g1(2)) -

7.(b) Interchanging u; with us we find that for any ¥ € Q

ur(%) — u2(%) < max (91(7) — g2(7))

Consequently

max |ug(F) — u (T)] = maxmax (ug(Z) — ui (L), u1 (¥) — ua(Z))
2e) zeQ

< o (s (n(5) — 000 1 (1) — ()

< r) — 7)| .
< max 191(Z) — g2 (Z)]



7.(c) Using our previous estimation we find that

max |u (Z) — up (¥)| < max |g (%) — gn (¥)| — 0.
reN TEIN n—00

This concludes the proof.
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8. Let u € L' (R) N L% (R) be a classical solution to the equation

Ut + kggre = 0, (x,t) € R x (0,400),
U(l’,‘,O) = f(x)v z €R,

where k > 0 is a fixed constant and f is a smooth function on R that belongs to L' (R) N L? (R).

(a) Show that u, the Fourier transform of u in the x—variable, satisfies

~

U, t) = fle)e ke,

(b) Using the fact that the Fourier transform preserves the L2 norm (Plancherel’s identity) as well
as the fact that it is in L°° to show that

(f]R e_m4dx) :

u(-,t 2 <
a2, —

1Al Ly 1Nl 2 ey -

Solution:

8.(a) Using the linearity of the Fourier transform together with the identity

~

/' (§) = igu(§)

we find that using the Fourier transform on the spatial variable in our equation yields the
equation

(&, t) + k (i€) (g, t) = 0.

This is a separable equation whose solution is
(e 1) = e A 0) = e H(E)

since u(z,0) = f(x).
8.(b) Using the fact that for any f € L' (R)

1l ey < M2y

together with Plancherel identity and Cauchy-Schwarz we find that

12
Ol ey = 13Dy = [ e Fio)] e

<[] ([ o ()’

1
(flR 6_$4dx> :
e VI Iy 11l L2y -

F©)]de) < 1l |7
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